首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanism by which long-term exposure of the beta-cell to elevated concentrations of fatty acid alters glucose-induced insulin secretion has been examined. Exposure of INS-1 beta-cells to 0.4 mmol/l oleate for 72 h increased basal insulin secretion and decreased insulin release in response to high glucose, but not in response to agents acting at the level of the K(ATP) channel (tolbutamide) or beyond (elevated KCl). This also suppressed the glucose-induced increase in the cellular ATP-to-ADP ratio. The depolarization of the plasma membrane promoted by glucose was decreased after oleate exposure, whereas the response to KCl was unchanged. Cells exposed to free fatty acids displayed a lower mitochondrial membrane potential and a decreased glucose-induced hyperpolarization. The possible implication of uncoupling protein (UCP)-2 in the altered secretory response was examined by measuring UCP2 gene expression after chronic exposure of the cells to fatty acids. UCP2 mRNA and protein were increased twofold by oleate. Palmitate and the nonoxidizable fatty acid bromopalmitate had similar effects on UCP2 mRNA, suggesting that UCP2 gene induction by fatty acids does not require their metabolism. The data are compatible with a role of UCP2 and partial mitochondrial uncoupling in the decreased secretory response to glucose observed after chronic exposure of the beta-cell to elevated fatty acids, and suggest that the expression and/or activity of the protein may modulate insulin secretion in response to glucose.  相似文献   

2.
Rat islet beta-cells spread in response to glucose when attached on the matrix produced by a rat bladder carcinoma cell line (804G). Furthermore, in a mixed population of cells, it has been observed previously that spread cells secrete more insulin acutely in response to glucose, compared with cells that remain rounded. These results suggest bi-directional signaling between the islet beta-cell and the extracellular matrix. In the present study, the role of increased intracellular free Ca2+ concentration [Ca2+]i as an intracellular step linking glucose stimulation and beta-cell spreading (inside-out signaling) was investigated. Purified rat beta-cells were attached to this matrix and incubated under various conditions known to affect [Ca2+]i. The effect of glucose on beta-cell spreading was mimicked by 25 mmol/l KCl (which induces calcium influx) and inhibited by diazoxide (which impairs depolarization and calcium entry) and by the L-type Ca2+ channel blocker SR-7037. When a 24-h incubation at 16.7 glucose was followed by 24 h at 2.8 mmol/l, beta-cells that had first spread regained a round phenotype. In the presence of thapsigargin, spreading progressed throughout the experiment, suggesting that capture of calcium by the endoplasmic reticulum is involved in the reversibility of spreading previously induced by glucose. Spreading was still observed in degranulated beta-cells and in botulinum neurotoxin E-expressing beta-cells when exocytosis was prevented. In summary, the results indicate that increased [Ca2+]i is required for the glucose-induced spreading of beta-cells on 804G matrix and that it is not a consequence of exocytotic processes that follow elevation of [Ca2+]i.  相似文献   

3.
In this study on purified rat pancreatic beta-cells, we show that the second-generation sulfonylurea glyburide stimulates insulin release through a direct interaction with the beta-cells. During static incubations, 2 microM glyburide releases 0.16 pg insulin per beta-cell, which corresponds to a half-maximal glucose stimulation. This effect occurs independently from the glucose-recognition unit, being detectable at both nonstimulatory and stimulatory glucose concentrations and proceeding without alterations in the rate of glucose oxidation. The secretagogue action of glyburide appears not to be mediated through cAMP but is potentiated by cAMP-generating substances such as glucagon (10(-8) M; 0.31 pg insulin released per beta-cell). Its 10-fold higher potency in isolated islets is attributed to the markedly higher cAMP levels that are maintained in islet beta-cells under the influence of locally released glucagon. Perifused pancreatic beta-cells respond to glyburide with a biphasic insulin release. After removal of the drug, the cells continue to secrete insulin at the same rate for greater than or equal to 30 min. This prolonged secretory activity coincides with a cellular accumulation of the drug, primarily in association with membranes of secretory vesicles and mitochondria. Tolbutamide also stimulates insulin release from pure beta-cells, but it is less powerful on a molar basis and does not lead to a sustained hormone release after its removal from the extracellular medium. We conclude that the hypoglycemic action of glyburide is at least partly the result of a direct interaction with pancreatic beta-cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
beta-Cell mass can expand in response to demand: during pregnancy, in the setting of insulin resistance, or after pancreatectomy. It is not known whether similar beta-cell hyperplasia occurs following immune therapy of autoimmune diabetes, but the clinical remission soon after diagnosis and the results of recent immune therapy studies suggest that beta-cell recovery is possible. We studied changes in beta-cell replication, mass, and apoptosis in NOD mice during progression to overt diabetes and following immune therapy with anti-CD3 monoclonal antibodies (mAbs) or immune regulatory T-cells (Tregs). beta-Cell replication increases in pre-diabetic mice, after adoptive transfer of diabetes with increasing islet inflammation but before an increase in blood glucose concentration or a significant decrease in beta-cell mass. The pathogenic cells are responsible for increasing beta-cell replication because replication was reduced during diabetes remission induced by anti-CD3 mAb or Tregs. beta-Cell replication stimulated by the initial inflammatory infiltrate results in increased production of new beta-cells after immune therapy and increased beta-cell area, but the majority of this increased beta-cell area represents regranulated beta-cells rather than newly produced cells. We conclude that beta-cell replication is closely linked to the islet inflammatory process. A significant proportion of degranulated beta-cells remain, at the time of diagnosis of diabetes, that can recover after metabolic correction of hyperglycemia. Correction of the beta-cell loss in type 1 diabetes will, therefore, require strategies that target both the immunologic and cellular mechanisms that destroy and maintain beta-cell mass.  相似文献   

5.
We analyzed the effect of a brief exposure to nerve growth factor (NGF) on insulin secretion and macroscopic barium currents of single adult rat pancreatic beta-cells. After a 1-h exposure to NGF (50 ng/ml), single beta-cells show a 2.5-fold increase in the insulin secretion index in 5.6 mmol/l glucose and a nearly twofold increase in 15.6 mmol/l glucose compared with control cells. We have recently demonstrated that pancreatic beta-cells synthesize and secrete NGF. We analyzed the effect of endogenous NGF on insulin secretion by incubating islet cells in the presence of an anti-NGF monoclonal antibody for 1 h in different glucose concentrations. Although the basal insulin secretion index (5.6 mmol/l glucose) is not affected, glucose-stimulated insulin secretion (15.6 mmol/l glucose) is decreased by 41% in the presence of the antibody. This effect is mediated by the activation of the NGF receptor TrkA because the specific inhibitor of Trk phosphorylation K252a also blocks NGF-induced increase in insulin secretion, both in the presence and absence of exogenous NGF. Using the whole-cell variation of the patch-clamp technique, we found that cells exposed to NGF for 5 min exhibit a 32% increase in the average barium current density. These results suggest that the effects of NGF on insulin secretion are partially mediated by an increase in calcium current through Ca channels. These results further suggest that NGF plays an important autoregulatory role in pancreatic beta-cell function. Two targets of short-term NGF-modulation are insulin secretion and calcium-channel activity.  相似文献   

6.
The aim of this study was to estimate the time course of lysosomal transformations associated with crinophagy, i.e., the degradation of insulin within lysosomes, in the beta-cells of pancreatic islets. Primary and secondary lysosomes were identified in mouse islet beta-cells and subjected to ultrastructural morphometry. Islets from an in situ preparation were compared with isolated islets incubated in vitro. Under the in vitro conditions, the islets were initially exposed to 28 or 3.3 mM glucose for 24 h. Then the glucose concentration was rapidly changed to 3.3 and 28 mM glucose, respectively, and the islets were incubated for up to an additional 24 h. The beta-cell lysosomes were analyzed and related to alterations in insulin biosynthesis and secretion and islet insulin content after the rapid change in glucose concentration. In vivo, the beta-cell lysosomal population was predominantly composed of secondary lysosomes, which frequently contained secretory granule cores. After the initial 24-h period at 3.3 mM glucose, the volume density and the average volume of the secondary beta-cell lysosomes were increased, suggesting increased crinophagic activity. The mean diameter of the primary beta-cell lysosomes was decreased after 24 h at either 28 or 3.3 mM glucose. The change in glucose from 28 to 3.3 mM resulted in alterations in insulin biosynthesis and secretion, leading to an accumulation of insulin within the beta-cells. Lysosomal transformations suggestive of increased crinophagy were observed 24 h after the alteration in glucose concentration. The change from 3.3 to 28 mM glucose resulted in a parallel increase in insulin biosynthesis and secretion without a change in islet insulin content.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The extent to which adult pancreatic beta-cells can respond in vivo to a sustained glucose stimulus by increasing their mass through either hyperplasia or hypertrophy has remained unanswered. Therefore, we studied the in vivo effect of short-term (96-h) hyperglycemia on the growth of beta-cells by infusing adult rats with 35 or 50% glucose or 0.45% saline. After 96 h of glucose infusion, the beta-cell mass, quantified by point-counting morphometrics of immunoperoxidase-stained paraffin sections, showed a 50% increase (9.57 +/- 0.87 mg, n = 5, 50% glucose infused; 9.50 +/- 1.23, n = 7, 35% glucose infused; 6.15 +/- 0.55, n = 6, 0.45% saline infused). This growth was selective for beta-cells; the non-beta-cell mass was unchanged. The mitotic index, measured by accumulated mitotic frequency after a 4-h colchicine treatment, increased fivefold in glucose-infused animals compared to saline-infused animals. This enhanced replication of beta-cells provides evidence for increase in cell number or hyperplasia. In addition, hypertrophy of the beta-cell was also quantified. Mean cell volume, determined from the mean cell cross-sectional area measured planimetrically from low-magnification electron micrographs, increased to 150% of control values after 96 h of 50% glucose infusion. Seven days after the 96-h infusion, in reversal experiments, the beta-cell mass had not returned to saline-infused levels. In addition, the non-beta-cell mass of glucose-infused animals had increased. The mitotic index of the beta-cell of glucose-infused rats was, however, significantly lower than that of the saline controls, but the mean cell volume of the beta-cells remained elevated.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
D G Pipeleers 《Diabetes》1992,41(7):777-781
All pancreatic beta-cells are identified by specific morphological characteristics. Similarity in microscopic features is not necessarily associated with identity in functional properties. In vitro studies on isolated rat beta-cells have indicated intercellular differences in the threshold for glucose-induced shifts in metabolic redox state. The cellular heterogeneity in glucose sensitivity results in a dose-dependent recruitment of glucose-exposed beta-cells into biosynthetic and secretory activities. The molecular basis of this diversity is not known. Indirect evidence supports the concept that the in situ pancreatic beta-cell population is also composed of functionally diverse subpopulations. The heterogeneity in glucose responsiveness is expected to create subpopulations of beta-cells with either constant, fluctuating, or occasional glucose-dependent functions; whether any subpopulation is preferentially responsive to other regulatory factors and/or committed to other activities is unknown. Morphological markers may help identify beta-cell subpopulations in situ and quantify their size in conditions known to affect total beta-cell mass or function. The concept of a functionally heterogeneous beta-cell population influences views on the role of pancreatic beta-cells in health and disease.  相似文献   

9.
W K Ward  J B Halter  J D Best  J C Beard  D Porte 《Diabetes》1983,32(10):943-947
To assess the relationship between beta-cell function and the level and duration of hyperglycemia during generalized beta-cell impairment, we studied the effects of acute and prolonged infusion of somatostatin in seven normal men. Twenty minutes after beginning an acute infusion of somatostatin (200 microgram/h) plus glucagon replacement (0.75 ng/kg/min), plasma glucose (PG) remained unchanged, but plasma insulin (IRI) and acute insulin response to isoproterenol had fallen markedly. Seventy minutes after beginning somatostatin-plus-glucagon, a rise in PG was associated with an increase in the acute insulin response to isoproterenol, though not to the control level. In a separate study, after 46 h of the somatostatin-plus-glucagon infusion, at a glucose level similar to the 70-min level, plasma insulin had returned nearly to the control level and the acute insulin response to isoproterenol had returned completely to the control level. Such increases inb basal and stimulated insulin secretion most likely represent a time-dependent adaptation by the beta-cells to the persistent hyperglycemia. First- and second-phase insulin responses to intravenous glucose were markedly inhibited after 46 h of somatostatin-plus-glucagon. In summary, a 46-h infusion of somatostatin with glucagon replacement in humans leads to hyperglycemia, a slightly diminished basal insulin level, markedly decreased insulin responses to glucose, and an insulin response to isoproterenol maintained at a normal level by acute and probably chronic adaptation to the hyperglycemia. We speculate that beta-cell adaptation to hyperglycemia may explain the similar abnormalities of islet function observed in patients with NIDDM.  相似文献   

10.
p27 Regulates the transition of beta-cells from quiescence to proliferation   总被引:7,自引:0,他引:7  
Georgia S  Bhushan A 《Diabetes》2006,55(11):2950-2956
Diabetes results from an inadequate mass of functional beta-cells. Such inadequacy could result from loss of beta-cells due to an immune assault or the inability to compensate for insulin resistance. Thus, mechanisms that regulate the number of beta-cells will be key to understanding both the pathogenesis of diabetes and for developing therapies. In this study, we show that cell cycle regulator p27 plays a crucial role in establishing the number of beta-cells formed before birth. We show that p27 accumulates in terminally differentiated beta-cells during embryogenesis. Disabling p27 allows newly differentiated beta-cells that are normally quiescent during embryogenesis to reenter the cell cycle and proliferate. As a consequence, excess beta-cells are generated in the p27(-/-) mice, doubling their beta-cell mass at birth. The early postnatal expansion of beta-cell mass was unaffected in p27(-/-) mice, indicating that the main function of p27 is to maintain the quiescent state of newly differentiated beta-cells generated during embryogenesis. The expanded beta-cell mass was accompanied by increased insulin secretion; however, the p27(-/-) mice were glucose intolerant, as these mice were insulin insensitive. To assess the role of p27 to affect regeneration of beta-cells in models of diabetes, p27(-/-) mice were injected with streptozotocin (STZ). In contrast to control mice that displayed elevated blood glucose levels, p27(-/-) mice showed decreased susceptibility to develop STZ-induced diabetes. Furthermore, beta-cells retained the ability to reenter the cell cycle at a far greater frequency in p27(-/-) mice after developing STZ-induced diabetes compared with wild-type littermates. These data indicate that p27 is a key regulator in establishing beta-cell mass and an important target for facilitating beta-cell regeneration in therapies for diabetes.  相似文献   

11.
12.
13.
To clarify the relationship between variations in beta-cell mass and pancreatic function, we investigated the possibility to analyze, quantify, and sort beta-cell subpopulations with different functional maturity. To this aim, we tested the reliability of the sialylated form of neural cell adhesion molecule (NCAM) (PSA-NCAM) as a marker of beta-cell functional activity. Islet cells isolated from adult rats were analyzed for their PSA-NCAM abundance using an anti-PSA-NCAM antibody. We found that PSA-NCAM is expressed only in beta-cells. The PSA-NCAM labeling was also studied with a fluorescence-activated cell sorter. We showed that the beta-cell population is heterogeneous for PSA-NCAM labeling. To directly determine the relationship between PSA-NCAM labeling and beta-cell activity, in vitro insulin secretion studies were performed on sorted beta-cell subpopulations using a perifusion technique. Two beta-cell subpopulations were analyzed: one that was highly labeled for PSA-NCAM and another that was poorly labeled. Insulin secretion from high PSA-NCAM-labeled beta-cells was significantly higher than that in low PSA-NCAM-labeled beta-cells. This differential expression in the beta-cell population was well correlated with differences in glucose responsiveness. PSA-NCAM seems thus suitable for use as a tool to identify beta-cell subpopulations according to their glucose responsiveness.  相似文献   

14.
Porte D  Kahn SE 《Diabetes》2001,50(Z1):S160-S163
Type 2 diabetes is characterized by a progressive loss of beta-cell function throughout the course of the disease. The pattern of loss is an initial defect in early or first-phase insulin secretion, followed by a decreasing maximal capacity of glucose to potentiate all nonglucose signals. Last, a defective steady-state and basal insulin secretion develops, leading to complete beta-cell failure requiring insulin treatment. This functional loss exceeds the expected impact of a 20-50% loss of beta-cells reported at autopsy, which has been associated with amyloid deposits. This review summarizes the nature of the amyloid deposition process and its association with disproportionate hyperproinsulinemia. It reviews recent studies in IAPP (islet-amyloid polypeptide, or amylin) transgenic mice developing islet amyloid deposits and hyperglycemia to suggest that the process of amyloid fibril formation impairs function early and leads to beta-cell failure and eventual death. Based on the known association of amyloid deposits and relative hyperproinsulinemia, it is hypothesized that fibril formation begins during impaired glucose tolerance after other factors cause the initial defects in early insulin secretion and insulin action. Thus, the process that leads to beta-cell loss is implicated in the deposition of amyloid and the late unrelenting progressive hyperglycemia now found in all patients despite current therapies.  相似文献   

15.
Glucose regulation of glutaminolysis and its role in insulin secretion.   总被引:3,自引:0,他引:3  
Z Y Gao  G Li  H Najafi  B A Wolf  F M Matschinsky 《Diabetes》1999,48(8):1535-1542
Leucine or the nonmetabolized leucine analog +/- 2-amino-2-norbornane-carboxylic acid (BCH) (both at 10 mmol/l) induced biphasic insulin secretion in the presence of 2 mmol/l glutamine (Q2) in cultured mouse islets pretreated for 40 min without glucose but with Q2 present. The beta-cell response consisted of an initial peak of 20- to 25-fold above basal and a less marked secondary phase. However, BCH produced only a delayed response, while leucine was totally ineffective when islets were pretreated with 25 mmol/l glucose plus Q2. With Q2, 10 mmol/l BCH or leucine caused a nearly threefold increase, a twofold increase, or had no effect on cytosolic Ca2+ levels in islets pretreated for 40 min with 0, 5, or 15 mmol/l glucose, respectively. Thus, pretreatment of islets with high glucose inhibited BCH- and leucine-induced cytosolic Ca2+ changes and insulin release. Glucose decreased glutamine oxidation in cultured rat islets when BCH was present at 10 mmol/l, but not in its absence, with a lowest effective level of approximately 0.1 mmol/l, a maximum of 18-30 mmol/l, and an inhibitory concentration, 50%, of approximately 3 mmol/l. The data are consistent with the hypothesis that glucose inhibits glutaminolysis in pancreatic beta-cells in a concentration-dependent manner and hence blocks leucine-stimulated insulin secretion. We postulate that in the basal interprandial state, glutaminolysis of beta-cells is partly turned on because glutamate dehydrogenase (GDH) is activated by a decreased P-potential due to partial fuel depletion and sensitization to endogenous activators such as leucine. Additionally, it may contribute significantly to basal insulin release, which is known to be responsible for about half of the insulin released daily. The data explain "leucine-hypersensitivity" of beta-cells during hypoglycemia and contribute to the elucidation of the GDH-linked syndrome of hyperinsulinism associated with elevated serum ammonia levels. Thus, understanding the precise regulation and role of beta-cell glutaminolysis is probably central to our concept of normal blood glucose control.  相似文献   

16.
Kim WH  Lee JW  Suh YH  Hong SH  Choi JS  Lim JH  Song JH  Gao B  Jung MH 《Diabetes》2005,54(9):2602-2611
Chronic hyperglycemia is toxic to pancreatic beta-cells, impairing cellular functioning as observed in type 2 diabetes; however, the mechanism underlying beta-cell dysfunction and the resulting apoptosis via glucose toxicity are not fully characterized. Here, using MIN6N8 cells, a mouse pancreatic beta-cell line, we show that chronic exposure to high glucose increases cell death mediated by Bax oligomerization, cytochrome C release, and caspase-3 activation. During apoptosis, glucokinase (GCK) expression decreases in high-glucose-treated cells, concomitant with a decrease in cellular ATP production and insulin secretion. Moreover, exposure to a chronically high dose of glucose decreases interactions between GCK and mitochondria with an increase in Bax binding to mitochondria and cytochrome C release. These events are prevented by GCK overexpression, and phosphorylation of proapoptotic Bad proteins in GCK-overexpressing cells is prolonged compared with Neo-transfected cells. Similar results are obtained using primary islet cells. Collectively, these data demonstrate that beta-cell apoptosis from exposure to chronic high glucose occurs in relation to lowered GCK expression and reduced association with mitochondria. Our results show that this may be one mechanism by which glucose is toxic to beta-cells and suggests a novel approach to prevent and treat diabetes by manipulating Bax- and GCK-controlled signaling to promote apoptosis or proliferation.  相似文献   

17.
18.
Recent observations suggest a role for interleukin 1 beta (IL-1) in the autoimmune beta-cell destruction observed in type I (insulin-dependent) diabetes mellitus. We investigated the acute and long-term effects of IL-1 on pancreatic beta-cell function in vitro. Rat pancreatic islets were isolated and kept in tissue culture for 5 days. The islets were subsequently transferred to media containing RPMI-1640 plus 1% human serum with or without human recombinant IL-1 beta (300 pM) and cultured for another 48 h. The islets were examined either immediately after IL-1 exposure (day 0) or after an additional 6-day culture period without IL-1. On day 0, IL-1 was found to totally inhibit glucose-stimulated insulin release, partially inhibit glucose oxidation, and induce a decrease in islet DNA content. However, these islets were able to release insulin after stimulation with glucose plus theophylline, although the absolute rate of insulin secretion was lower than that of the control group. After 6 days in culture, the insulin-secretory response to glucose and the glucose oxidation rates of the IL-1-pretreated islets were completely restored, but there remained a reduced islet DNA content. We conclude that IL-1 is cytotoxic to islet beta-cells. However, surviving beta-cells are able to recover their functional capacity after a period of inhibited function.  相似文献   

19.
Roduit R  Masiello P  Wang SP  Li H  Mitchell GA  Prentki M 《Diabetes》2001,50(9):1970-1975
Endogenous lipid stores are thought to be involved in the mechanism whereby the beta-cell adapts its secretory capacity in obesity and diabetes. In addition, hormone-sensitive lipase (HSL) is expressed in beta-cells and may provide fatty acids necessary for the generation of coupling factors linking glucose metabolism to insulin release. We have recently created HSL-deficient mice that were used to directly assess the role of HSL in insulin secretion and action. HSL(-/-) mice were normoglycemic and normoinsulinemic under basal conditions, but showed an approximately 30% reduction of circulating free fatty acids (FFAs) with respect to control and heterozygous animals after an overnight fast. An intraperitoneal glucose tolerance test revealed that HSL-null mice were glucose-intolerant and displayed a lack of a rise in plasma insulin after a glucose challenge. Examination of plasma glucose during an insulin tolerance test suggested that HSL-null mice were insulin-resistant, because plasma glucose was barely lowered after the injection of insulin. Freshly isolated islets from HSL-deficient mice displayed elevated secretion at low (3 mmol/l) glucose, failed to release insulin in response to high (20 mmol/l) glucose, but had a normal secretion when challenged with elevated KCl. The phenotype of heterozygous mice with respect to the measured parameters in vitro was similar to that of wild type. Finally, the islet triglyceride content of HSL(-/-) mice was 2-2.5 fold that in HSL(-/+) and HSL(+/+) animals. The results demonstrate an important role of HSL and endogenous beta-cell lipolysis in the coupling mechanism of glucose-stimulated insulin secretion. The data also provide direct support for the concept that some lipid molecule(s), such as FFAs, fatty acyl-CoA or their derivatives, are implicated in beta-cell glucose signaling.  相似文献   

20.
Denatonium, one of the most bitter-tasting substances known, stimulated insulin secretion in clonal HIT-T15 beta-cells and rat pancreatic islets. Stimulation of release began promptly after exposure of the beta-cells to denatonium, reached peak rates after 4-5 min, and then declined to near basal values after 20-30 min. In islets, no effect was observed at 2.8 mmol/;l glucose, whereas a marked stimulation was observed at 8.3 mmol/;l glucose. No stimulation occurred in the absence of extracellular Ca(2+) or in the presence of the Ca(2+)-channel blocker nitrendipine. Stimulated release was inhibited by alpha(2)-adrenergic agonists. Denatonium had no direct effect on voltage-gated calcium channels or on cyclic AMP levels. There was no evidence for the activation of gustducin or transducin in the beta-cell. The results indicate that denatonium stimulates insulin secretion by decreasing KATP channel activity, depolarizing the beta-cell, and increasing Ca(2+) influx. Denatonium did not displace glybenclamide from its binding sites on the sulfonylurea receptor (SUR). Strikingly, it increased glybenclamide binding by decreasing the K(d). It is concluded that denatonium, which interacts with K(+) channels in taste cells, most likely binds to and blocks Kir6.2. A consequence of this is a conformational change in SUR to increase the SUR/glybenclamide binding affinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号