首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
We investigated the effect of short-term vestibulo-ocular reflex (VOR) adaptation in normal human subjects on the dynamic properties of the velocity-to-position ocular motor integrator that holds positions of gaze. Subjects sat in a sinusoidally rotating chair surrounded by an optokinetic nystagmus drum. The movement of the visual surround (drum) was manipulated relative to the chair to produce an increase (× 1.7 viewing), decrease (× 0.5, × 0 viewing), or reversal (× (-2.5) viewing) of VOR gain. Before and after 1 h of training, VOR gain and gaze-holding after eccentric saccades in darkness were measured. Depending on the training paradigm, eccentric saccades could be followed by centrifugal drift (after × 0.5 viewing), implying an unstable integrator, or by centripetal drift [after × 1.7 or × (-2.5) viewing], implying a leaky integrator. The changes in the neural integrator appear to be context specific, so that when the VOR was tested in non-training head orientations, both the adaptive change in VOR gain and the changes in the neural integrator were much smaller. The changes in VOR gain were on the order of 10% and the induced drift velocities were several degrees per secend at 20 deg eccentric positions in the orbit. We propose that (1) the changes in the dynamic properties of the neural integrator reflect an attempt to modify the phase (timing) relationships of the VOR and (2) the relative directions of retinal slip and eye velocity during head rotation determine whether the integrator becomes unstable (and introduces more phase lag) or leaky (and introduces less phase lag).Visiting scientist from: 1 INSERM-U94. 16, avenue du Doyen Lépine, F-69500 Bron, France  相似文献   

2.
Studies on motor learning typically present a constant adaptation stimulus, corresponding to the desired final adaptive state. Studies of the auditory and optokinetic systems provide compelling evidence that neural plasticity is enhanced when the error signal driving adaptation is instead adjusted gradually throughout training. We sought to determine whether the angular vestibulo-ocular reflex (aVOR) may be adaptively increased using an incremental velocity error signal (IVE) compared with a conventional constant and large velocity-gain demand (x2). We compared the magnitude of aVOR gain change for these two paradigms across different motion contexts (active and passive). Seven individuals with normal vestibular function and six individuals with unilateral vestibular hypofunction (UVH) were exposed to the IVE and x2 (“control”) aVOR demand tasks. Each subject participated in 10 epochs of 30 active head impulses over a 15 min aVOR gain increase training session separately for the IVE and x2 paradigms, separated by either seven days (normal subjects) or 14 days (UVH subjects). For both normal and UVH subjects, both paradigms led to aVOR gain increase during the training session. For the normal subjects, the IVE paradigm led to larger aVOR gain change after training compared to the x2 paradigm, for both active (mean 17.3 ± 4% vs. mean 7.1 ± 9%, P = 0.029) and passive (mean 14.2 ± 5% vs. 4.5 ± 8%, P = 0.018) head impulses. For subjects with UVH, IVE produced a greater change in aVOR gain for active head impulses (mean 18.2 ± 9.2% vs. mean −6 ± 3.8%, P = 0.003). However, aVOR gains for passive head impulses were less consistent after IVE, with only two subjects displaying greater aVOR gain with this incremental paradigm. Some individuals generated compensatory saccades that occurred in the same direction of the deficient aVOR during either training paradigm. Our data suggest that the aVOR is modifiable when the velocity error signal is presented incrementally, and that this adaptation stimulus is particularly effective in the case of unilateral vestibular hypofunction. This has implications for programs of vestibular rehabilitation, where active head rotation is prescribed as a means to improve gaze stability.  相似文献   

3.
The adaptive plasticity of the translational vestibulo-ocular reflex (VOR) was investigated in rhesus monkeys after 2-h exposure to either vertical or torsional optic flow stimulation accompanied by lateral translation stimuli (0.5 Hz). Because of the inherent ambiguity in the otolith system for the detection of gravitoinertial accelerations, we hypothesized that cross-axis adaptation of the translational VOR during lateral motion would be preferentially selective for a torsional optic flow stimulus that would mimic a roll tilt movement. However, we found that both vertical and torsional adaptation was possible. Furthermore, there was no significant preference for whether the torsional adaptation was in phase or out of phase with the apparent tilt induced by the motion stimulus. These results suggest that, at least at 0.5 Hz, there seems to be no preferential, visually induced adaptive capacity of the otolith system for tilt/translation reinterpretation during motion. Like the rotational VOR, translational VOR appears to exhibit a general form of cross-axis adaptation that operates for different directions of optic flow stimulation.  相似文献   

4.
The purpose of this study was to examine the effect of fixation target distance on the human vestibuloocular reflex (VOR) during eccentric rotation in pitch. Such rotation induces both angular and linear acceleration. Eight normal subjects viewed earth-fixed targets that were either remote or near to the eyes during wholebody rotation about an earth-horizontal axis that was either oculocentric or 15 cm posterior (eccentric) to the eyes. Eye and head movements were recorded using magnetic search coils. Using a servomotor-driven chair, passive whole-body rotations were delivered as trains of single-frequency sinusoids at frequencies from 0.8 to 2.0 Hz and as pseudorandom impulses of acceleration. In the light, the visually enhanced VOR (VVOR) was recorded while subjects were asked to fixate targets at one of several distances. In darkness, subjects were asked to remember targets that had been viewed immediately prior to the rotation. In order to eliminate slip of the retinal image of a near target when the axis of rotation of the head is posterior to the eyes, the ideal gain (compensatory eye velocity divided by head velocity) of the VVOR and VOR must exceed 1.0. Both the VOR and VVOR were found to have significantly enhanced gains during sinusoidal and pseudorandom impulses of rotation (P<0.05). Enhancement of VVOR gain was greatest at low frequencies of head rotation and decreased with increasing frequency. However, enhanced VOR gain only slightly exceeded 1.0, and VVOR gain enhancement was significantly lower than the expected ideal values for the stimulus conditions employed (P<0.05). During oculocentric rotations with near targets, both the VOR and VVOR tended to exhibit small phase leads that increased with rotational frequency. In contrast, during eccentric rotations with near targets, there were small phase lags that increased with frequency. Visual tracking contributes during ocular compensatory responses to sustained head rotation, although the latency of visual tracking reflexes exceeds 100 ms. In order to study initial vestibular responses prior to modification by visual tracking, we presented impulses of head acceleration in pseudorandom sequence of initial positions and directions, and evaluated the ocular response in the epoch from 25 to 80 ms after movement onset. As with sinusoidal rotations, pseudorandom eccentric head rotation in the presence of a near, earth-fixed target was associated with enhancement of VVOR and VOR gains in the interval from 25 to 80 ms from movement onset. Despite the inability of visual tracking to contribute to these responses, VVOR gain significantly exceeded VOR gain for pseudorandom accelerations. This gain enhancement indicates that target distance and linear motion of the head are considered by the human ocular motor system in adjustment of performance of the early VOR, prior to a contribution by visual following reflexes. Vergence was appropriate to target distance during all VVOR rotations, but varied during VOR rotations with remembered targets. For the 3-m target distance, vergence during the VOR was stable over each entire trial but slightly exceeded the ideal value. For the 0.1-m near target, instantaneous vergence during the VOR typically declined gradually in a manner not corresponding to the time course of instantaneous VOR gain change; mean vergence over entire trials ranged from 60 to 90% of ideal, corresponding to target distances for which ideal gain would be much higher than actually observed. These findings suggest a dissociation between vergence and VOR gain during eccentric rotation with near targets in the frequency range from 0.8 to 2.0 Hz.  相似文献   

5.
We investigated the effects of short-term vestibulo-ocular reflex (VOR) adaptation on the gain and phase of the VOR, and on eccentric gaze-holding in darkness, in five normal human subjects. For 1 h, subjects sat in a chair that rotated sinusoidally at 0.2 Hz while surrounded by a visual stimulus (optokinetic drum). The drum was rotated relative to the chair, to require a VOR with either a phase lead or lag of 45 deg (with respect to a compensatory phase of zero) with no change in gain, or a gain of 1.7 or 0.5 with no change in phase. Immediately before and after each training session, VOR gain and phase were measured in the dark with 0.2 Hz sinusoidal rotation. Gaze-holding was evaluated following 20 deg eccentric saccades in darkness. Adaptation paradigms that called only for a phase lead produced an adapted VOR with 33% of the required amount of phase change, a 20% decrease in VOR gain, and an increased centripetal drift after eccentric saccades made in darkness. Adaptation paradigms that called for a phase lag produced an adapted VOR with 29% of the required amount of phase change, no significant change in VOR gain, and a centrifugal drift after eccentric saccades. Adaptation paradigms requiring a gain of 1.7 produced a 15% increase in VOR gain with small increases in phase and in centripetal drift. Adaptation paradigms requiring a gain of 0.5 produced a 31% decrease in VOR gain with a 6 deg phase lag and a centrifugal drift. The changes in drift and phase were well correlated across all adaptation paradigms; the changes in phase and gain were not. We attribute the effects on phase and gaze-holding to changes in the time constant of the velocity-to-position ocular motor neural integrator. Phase leads and the corresponding centripetal drift are due to a leaky integrator, and phase lags and the corresponding centrifugal drift are due to an unstable integrator. These results imply that in the short-term adaptation paradigm used here, the control of drift and VOR phase are tightly coupled through the neural integrator, whereas VOR gain is controlled by another mechanism.  相似文献   

6.
The phase of the angular vestibulo-ocular reflex (VOR) is subject to adaptive control. We had previously found that adapting the phase of the VOR also produced changes in drift on eccentric gaze-holding, implying a change in the time constant of the velocity-to-position neural integrator. Here we attempted to dissociate changes in gaze-holding drift from changes in the phase of the VOR. In normal human subjects, for 2 h, we alternated 5 min of VOR phase adaptation (sinusoids, 0.2 Hz) with 5 min of making saccades in the light with the head stationary. Afterwards, changes in VOR phase were the same (32% of requested) as those obtained with 1 h of phase adaptation alone, but changes in drift following saccades were much smaller than those found after phase adaptation alone (0.8°/s compared with 5°/s). When measuring drift after VOR steps, however, the changes were closer to those found after phase adaptation alone (3.8°/s). To test the relationship between gaze-holding drift after VOR steps and adaptive changes in VOR phase, we alternated sinusoidal VOR phase adaptation with normal VOR steps in the light. In this paradigm, the adaptive change in VOR phase was about the same as with phase-adaptation alone (35%), but there was now little drift after saccades (1.9°/s) or after VOR steps (0.7°/s). We conclude that the state of the velocity-to-position neural integrator can be altered selectively and rapidly depending upon the task required. Such context-specific adaptation is advantageous, because it allows adjustment of the phase of the VOR without degrading the ability to hold eccentric fixation. Received: 28 March 1997 / Accepted: 20 October 1997  相似文献   

7.
Summary We studied the vertical vestibulo-ocular reflex (VOR) and vertical visual-vestibular interaction induced by voluntary pitch in the upright and onside positions in eight normal human subjects. Subjects were trained to produce sinusoidal (0.4 to 1.6 Hz) pitch head movements guided by a frequency modulated sound signal. Eye and head movements were recorded with a magnetic search coil. There was no significant difference between the pooled average gain (eye velocity/head velocity) of the vertical VOR in the upright and onside positions. Vertical VOR gain in any position could be more or less than 1.0 for individual subjects. By contrast, gain with an earth-fixed visual target was always near 1.0. Asymmetries in the gain of upward and downward VOR, pursuit and fixation suppression of the VOR were found in individual subjects, but in the group of normal subjects there was no significant difference between gain of up and down eye movements induced by vestibular, visual or visual-vestibular stimulation in any position. We conclude that during voluntary pitch otolith signals are not critical for normal functioning of the vertical VOR.  相似文献   

8.
The vestibulo-ocular reflex (VOR) was studied in nine human subjects 2–15 months after permanent surgical occlusion of one posterior semicircular canal. The stimuli used were rapid, passive, unpredictable, low-amplitude (10–20°), high-acceleration (3000–4000°/s2) head rotations in pitch and yaw planes. The responses measured were vertical and horizontal eye rotations, and the results were compared with those from 19 normal subjects. After unilateral occlusion of the posterior semi-circular canal, the gain of the head-up pitch vertical VOR — the vertical VOR generated by excitation from only one and disfacilitation from two vertical semicircular canals — was reduced to 0.61±0.06 (normal 0.92±0.06) at a head velocity of 200°/s. In contrast the gain of the head-down pitch vertical VOR — the VOR still generated by excitation from two, but disfacilitation from only one vertical semicircular canal — was within normal limits: 0.86±0.11 (normal 0.96±0.04). The gain of the horizontal VOR in response to yaw head rotations — ipsilesion 0.81±0.06 (normal 0.88±0.05) and contralesion 0.80±0.11 (normal 0.92±0.11) — was within normal limits in both directions (group means ± two-tailed 95% confidence intervals given in each case). These results show that occlusion of just one vertical semicircular canal produces a permanent deficit of about 30% in the vertical VOR gain in response to rapid pitch head rotations in the excitatory direction of the occluded canal. This observation indicates that, in response to a stimulus in the higher dynamic range, compensation of the human VOR for the loss of excitatory input from even one vertical semicircular canal is incomplete.  相似文献   

9.
During transient, high-acceleration rotation, performance of the normal vestibulo-ocular reflex (VOR) depends on viewing distance. With near targets, gain (eye velocity/head velocity) enhancement is manifest almost immediately after ocular rotation begins. Later in the response, VOR gain depends on both head rotation and translation; gain for near targets is decreased for rotation about axes anterior to the otoliths and augmented for rotation about axes posterior to the otoliths. We sought to determine whether subjects with cerebellar dysfunction have impaired modification of the VOR with target distance. Eleven subjects of average age 48 +/- 16 years (mean +/- standard deviation, SD) with cerebellar dysfunction underwent transients of directionally unpredictable whole-body yaw rotation to a peak angular acceleration of 1000 or 2800 degrees/s2 while viewing a target either 15 cm or 500 cm distant. Immediately before onset of head rotation, the lights were extinguished and were relit only after the rotation was completed. The axis of head rotation was varied so that it was located 20 cm behind the eyes, 7 cm behind the eyes (centered between the otoliths), centered between the eyes, or 10 cm anterior to the eyes. Angular eye and head positions were measured with magnetic search coils. The VOR in subjects with cerebellar dysfunction was compared with the response from 12 normal subjects of mean age 25 +/- 4 years. In the period 35-45 ms after onset of 2800 degrees/s2 head rotation, gain was independent of rotational axis. In this period, subjects with cerebellar dysfunction had a mean VOR gain of 0.5 +/- 0.2, significantly lower than the normal range of 1.0 +/- 0.2. During a later period, 125-135 ms after head rotation about an otolith-centered axis, subjects with cerebellar dysfunction had a mean VOR gain of 0.67 +/- 0.46, significantly lower than the value of 1.06 +/- 0.14 in controls. Unlike normal subjects, those with cerebellar dysfunction did not show modification of VOR gain with target distance in the early response and only one subject showed a correct effect of target distance in the later response. The effect of target distance was quantitatively assessed by subtracting gain for a target 500 cm distant from gain for a target 15 cm distant. During the period 35-45 ms after the onset of 2800 degrees/s2 head motion, only two subjects with cerebellar loss demonstrated significant VOR gain enhancement with a near target, and both of these exhibited less than half of the mean enhancement for control subjects. During the later period 125-135 ms after the onset of head rotation, when VOR gain normally depended on both target location and otolith translation, only one subject with cerebellar dysfunction consistently demonstrated gain changes in the normal direction. These findings support a role for the cerebellum in gain modulation of both the canal and otolith VOR in response to changes in distance. The short latency of gain modification suggests that the cerebellum may normally participate in target distance-related modulation of direct VOR pathways in a manner similar to that found in plasticity induced by visual-vestibular mismatch.  相似文献   

10.
Summary The vertical vestibulo-ocular reflex (VOR) was recorded in cats using electro-oculography during sinusoidal angular pitch. Peak stimulus velocity was 50°/s over a frequency range from 0.01 to 4.0 Hz. To test the effect of gravity on the vertical VOR, the animal was pitched while sitting upright or lying on its side. Upright pitch changed the cat's orientation relative to gravity, while on-side pitch did not. The cumulative slow component position of the eye during on-side pitch was less symmetric than during upright pitch. Over the mid-frequency range (0.1 to 1.0 Hz), the average gain of the vertical VOR was 14.5% higher during upright pitch than during on-side pitch. At low frequencies (<0.05 Hz) changing head position relative to gravity raised the vertical VOR gain and kept the reflex in phase with stimulus velocity. These results indicate that gravity-sensitive mechanisms make the vertical VOR more compensatory.  相似文献   

11.
Single-case, longitudinal studies of the three-dimensional vestibulo-ocular response (VOR) were conducted with two spaceflight subjects over a 180-day mission. For reference, a control study was performed in the laboratory with 13 healthy volunteers. Horizontal, vertical and torsional VOR was measured during active yaw, pitch and roll oscillations of the head, performed during visual fixation of real and imaginary targets. The control group was tested in the head-upright position, and in the gravity-neutral, onside and supine positions. Binocular eye movements were recorded throughout using videooculography, yielding eye position in Fick co-ordinates. Eye velocity was calculated using quaternion algebra. Head angular velocities were measured by a head-mounted rate sensor. Eye/head velocity gain and phase were evaluated for the horizontal, vertical and torsional VOR. The inclination of Listing's plane was also calculated for each test session. Control group gain for horizontal and vertical VOR was distributed closely around unity during real-target fixation, and reduced by 30-50% during imaginary-target trials. Phase was near zero throughout. During head pitch in the onside position, vertical VOR gain did not change significantly. Analysis of up/down asymmetry indicated that vertical VOR gain for downward head movement was significantly higher than for upward head movement. Average torsional VOR gain with real-target fixation was significantly higher than with imaginary-target fixation. No difference in phase was found. In contrast to vertical VOR gain, torsional VOR gain was significantly lower in the gravity-neutral supine position. Spaceflight subjects showed no notable modification of horizontal or vertical VOR gain or phase during real-target fixation over the course of the mission. However, the up/down asymmetry of vertical VOR gain was inverted in microgravity. Torsional VOR gain was clearly reduced in microgravity, with some recovery in the later phase. After landing, there was a dip in gain during the first 24 h, with subsequent recovery to near baseline over the 13-day period tested. Listing's plane appeared to remain stable throughout the mission. The findings reflect various functions of the otolith responses. The reduced torsional VOR gain in microgravity is attributed to the absence of the gravity-dependent, dynamic stimulation to the otoliths (primarily utricles). On the other hand, the reversal of vertical VOR up/down gain asymmetry in microgravity is attributed to the off-loading of the constant 1-g bias (primarily to the saccules) on Earth. The observed increase in torsional VOR gain from the 1st to the 6th month in microgravity demonstrates the existence of longer-term adaptive processes than have previously been considered. Likely factors are the adaptive reweighting of neck-proprioceptive afferents and/or enhancement of efference copy.  相似文献   

12.
Summary Reversing vision in the horizontal (left-right) plane in humans induces adaptive mechanisms and even reversal of the horizontal vestibulo-ocular reflex (HVOR). The present experiments were aimed at investigating if such adaptive modifications could be observed in the frontal plane by reversal of the torsional visual world movements. Torsional vestibulo-ocular reflex (TVOR) was measured in one subject who wore Dove prisms for 19 days. The gain of TVOR was tested in the dark with the head leaned backward and rotating around an earth vertical axis with sinusoidal rotation (1/6 Hz). The gain decreased from 0.27 to 0.13 at 70 ° peak-to-peak amplitude, and from 0.3 to 0.11 at 45 ° peak-to-peak amplitude after 19 days of prism-wearing. Full gain recovery was observed 10 days after prism removal. The results are compared with the observation that in the same situation the vertical VOR (up-down) is not reversed (Dove prisms do not reverse visual images in this plane). As the same four (vertical) canals produce both reflexes, it is suggested that central neuronal mechanisms allow the recognition of the geometrical pattern of visual reversals and selectively adapt the reflex in the relevant planes.Supported by CNRS Greco 17 fundsSupported by Canadian Medical Research Council and McGill Hosmer Research FundSupported by a D.G.R.S.T. fellowship  相似文献   

13.
The linear vestibulo-ocular reflex (LVOR) was studied in eight normal human subjects of average age 24±5 years. Subjects underwent a sudden heave (mediolateral) translation delivered by a pneumatic servo-driven chair with a peak acceleration of 0.5 g while viewing earth-fixed targets at 15, 25, 50, and 200 cm. Stimuli were provided both with targets continuously visible or extinguished just prior to motion. Cancellation was tested using chair-fixed targets at each viewing distance. Eye movements were recorded using binocular magnetic search coils. Head translation was measured using a linear accelerometer attached to the upper teeth, to which also was attached a magnetic search coil verifying absence of head rotation. Vergence angles achieved by all subjects were appropriate to interpupillary distance and target distance. Heave translations evoked horizontal ocular rotations in the opposite direction following a brief latency. Latency of the LVOR was determined by automated algorithms based on identification of times when eye position and head acceleration exceeded three standard deviations (SDs) of baseline noise, and was corrected for differing transducer delays. Mean LVOR latency was 30±16 ms (mean ± SD), range 12–53 ms. Slow phase LVOR amplitude was greater for near and less for more distant targets, although all observed responses were suboptimal. Measured 100 ms after head translation onset, mean response was 20% of ideal for the target at 15 cm, 22% at 25 cm, 31% at 50 cm, and 53% at 200 cm. Mean latency was significantly longer than the previously reported values for both the human angular VOR and the monkey LVOR, and had significant inverse correlation with response magnitude. The relatively longer latency of the human LVOR than angular VOR may be tailored to match human head movement dynamics. Electronic Publication  相似文献   

14.
 We employed binocular magnetic search coils to study the vestibulo-ocular reflex (VOR) and visually enhanced vestibulo-ocular reflex (VVOR) of 15 human subjects undergoing passive, whole-body rotations about a vertical (yaw) axis delivered as a series of pseudorandom transients and sinusoidal oscillations at frequencies from 0.8 to 2.0 Hz. Rotations were about a series of five axes ranging from 20 cm posterior to the eyes to 10 cm anterior to the eyes. Subjects were asked to regard visible or remembered targets 10 cm, 25 cm, and 600 cm distant from the right eye. During sinusoidal rotations, the gain and phase of the VOR and VVOR were found to be highly dependent on target distance and eccentricity of the rotational axis. For axes midway between or anterior to the eyes, sinusoidal gain decreased progressively with increasing target proximity, while, for axes posterior to the otolith organs, gain increased progressively with target proximity. These effects were large and highly significant. When targets were remote, rotational axis eccentricity nevertheless had a small but significant effect on sinusoidal gain. For sinusoidal rotational axes midway between or anterior to the eyes, a phase lead was present that increased with rotational frequency, while for axes posterior to the otolith organs phase lag increased with rotational frequency. Transient trials were analyzed during the first 25 ms and from 25 to 80 ms after the onset of the head rotation. During the initial 25 ms of transient head rotations, VOR and VVOR gains were not significantly influenced by rotational eccentricity or target distance. Later in the transient responses, 25–80 ms from movement onset, both target distance and eccentricity significantly influenced gain in a manner similar to the behavior during sinusoidal rotation. Vergence angle generally remained near the theoretically ideal value during illuminated test conditions (VVOR), while in darkness vergence often varied modestly from the ideal value. Regression analysis of instantaneous VOR gain as a function of vergence demonstrated only a weak correlation, indicating that instantaneous gain is not likely to be directly dependent on vergence. A model was proposed in which linear acceleration as sensed by the otoliths is scaled by target distance and summed with angular acceleration as sensed by the semicircular canals to control eye movements. The model was fit to the sinusoidal VOR data collected in darkness and was found to describe the major trends observed in the data. The results of the model suggest that a linear interaction exists between the canal and otolithic inputs to the VOR. Received: 1 April 1996 / Accepted: 15 October 1996  相似文献   

15.
Summary The gain of the vestibulo-ocular reflex in the sagittal plane may be due to a cooperation between otoliths and the vertical semi-circular canals. The present space experiment was aimed at studying the influence of the absence of gravity stimulation on the otoliths, by comparing VOR gain and phase in space and on ground. Measurements were taken the 5th and the 7th day of flight, the subject being asked to perform, eyes closed, active head oscillations in pitch while fixating an imaginary target in front of him. No significant decrease of the VOR gain was found in space, but a change in phase was noted. A significant increase of the VOR gain was found 14 h after landing. Control experiments have been done on ground on several subjects. They indicate that pitch VOR gain during active head movements is about one, with eyes open in darkness at 1 Hz.  相似文献   

16.
Latencies of normal and adapted feline vestibulo-ocular reflex (VOR) were studied in five cats by applying ± 20°/s horizontal head velocity steps (4000°/s2 acceleration) and measuring the elicited horizontal or vertical reflex eye responses. Normal VOR latency was 13.0 ms ± 1.9 SD. Short-term adaptation was then accomplished by using 2 h of paired horizontal sinusoidal vestibular stimulation and phase-synchronized vertical optokinetic stimulation (cross-axis adaptation). For long-term adaptation, cats wore ×0.25 or ×2.2 magnifying lenses for 4 days. The cats were passively rotated for 2 h/day and allowed to walk freely in the laboratory or their cages for the remainder of the time. The latency of the early (primary) adaptive response was 15.2ms±5.2 SD for crossaxis adaptation and 12.5 ms±3.9 SD for lens adaptation. This short-latency response appeared within 30 min after beginning the adaptation procedure and diminished in magnitude overnight. A late (secondary) adaptive response with latency of 76.8 ms±7.0 SD for cross-axis adaptation and 68.1 ms±8.8 SD for lens adaptation appeared after approximately 2 h of adaptation. It had a more gradual increase in magnitude than the primary response and did not diminish in magnitude overnight. These data suggest that brainstem VOR pathways are a site of learning for adaptive VOR modification, since the primary latency is short and has a similar latency to that of the normal VOR.  相似文献   

17.
Summary The responsiveness of floccular Purkinje cells to head oscillations was examined in alert pigmented rabbits subjected to adaptation of horizontal vestibulo-ocular reflex (HVOR) under three different combinations of turntable and screen oscillations. Purkinje cells involved in the HVOR control (H-zone cells) were identified by local stimulation effects that induced horizontal eye movements. In control states, simple spike discharages of H-zone cells were modulated predominantly out of phase with the velocity of sinusoidal turntable oscillation (0.1 Hz, 5° peak-to-peak). A sustained 180° outphase combination (5° turntable and 5° screen oscillation) was found to increase the average HVOR gain by 0.16, at which point the majority of H-zone cells increased the outphase simple spike modulation. A sustained inphase combination (5° turntable and 5° screen oscillation) decreased the average HVOR gain by 0.09, with the majority of H-zone cells decreasing the outphase simple spike modulation or becoming converted to the inphase modulation. With a vision-reversal combination (5° turntable and 10° screen oscillation), there was no change in the gain of the HVOR, but a moderate advancement in the phase. In this case, H-zone cells showed no appreciable changes in their simple spike modulation. Complex spike discharges of all H-zone cells tested were modulated in response to optokinetic stimuli involved in the combinations of turntable and screen oscillations. These results support the hypothesis that H-zone cells adaptively control HVOR dynamic characteristics through modification of mossy fiber responsiveness to head oscillation under influences of retinal error signals conveyed by climbing fiber afferents.  相似文献   

18.
To determine age-related changes, the initial horizontal vestibulo-ocular reflex (VOR) of 11 younger normal subjects (aged 20–32 years) was compared with that of 12 older subjects (aged 58–69 years) in response to random transients of whole-body acceleration of 1,000 and 2,800°/s2 delivered around eccentric vertical axes ranging from 10 cm anterior to 20 cm posterior to the eyes. Eye and head positions were sampled at 1,200 Hz using magnetic search coils. Subjects fixed targets 500 cm or 15 cm distant immediately before the unpredictable onset of rotation in darkness. For all testing conditions, younger subjects exhibited compensatory VOR slow phases with early gain (eye velocity/head velocity, interval 35–45 ms from onset of rotation) of 0.90±0.02 (mean ± SEM) for the higher head acceleration, and 0.79±0.02 for the lower acceleration. Older subjects had significantly (P<0.0001) lower early gain of 0.77±0.04 for the higher head acceleration and 0.70±0.02 for the lower acceleration. Late gain (125–135 ms from onset of rotation) was similar for the higher and lower head accelerations in younger subjects. Older subjects had significantly lower late gain at the higher head acceleration, but gain similar to the younger subjects at the lower acceleration. All younger subjects maintained slow-phase VOR eye velocity to values ≥200°/s throughout the 250-ms rotation, but, after an average of 120 ms rotation (mean eccentricity 13°), 8 older subjects consistently had abrupt declines (ADs) in slow-phase VOR velocity to 0°/s or even the anticompensatory direction. These ADs were failures of the VOR slow phase rather than saccades and were more frequent with the near target at the higher acceleration. Slow-phase latencies were 14.4±0.4 ms and 16.8±0.4 ms for older subjects at the higher and lower accelerations, significantly longer than comparable latencies of 10.0±0.5 ms and 12.0±0.6 ms for younger subjects. Late VOR gain modulation with target distance was significantly attenuated in older subjects only for the higher head acceleration. Electronic Publication  相似文献   

19.
The gain of the vestibulo-ocular reflex (VOR) normally depends on the distance between the subject and the visual target, but it remains uncertain whether vergence angle can be linked to changes in VOR gain through a process of context-dependent adaptation. In this study, we examined this question with an adaptation paradigm that modified the normal relationship between vergence angle and retinal image motion. Subjects were rotated sinusoidally while they viewed an optokinetic (OKN) stimulus through either diverging or converging prisms. In three subjects the diverging prisms were worn while the OKN stimulus moved out of phase with the head, and the converging prisms were worn when the OKN stimulus moved in-phase with the head. The relationship between the vergence angle and OKN stimulus was reversed in the fourth subject. After 2 h of training, the VOR gain at the two vergence angles changed significantly in all of the subjects, evidenced by the two different VOR gains that could be immediately accessed by switching between the diverged and converged conditions. The results demonstrate that subjects can learn to use vergence angle as the contextual cue that retrieves adaptive changes in the angular VOR.  相似文献   

20.
The angular vestibulo-ocular reflex (AVOR) normally has an increased response during vergence on a near target. Some lines of evidence suggest that different vestibular afferent classes may contribute differentially to the vergence effect. For example, lesions that selectively affect those afferents sensitive to acceleration, i.e. irregular afferents, (galvanic ablation, intratympanic gentamicin) have been found to markedly reduce the vergence-mediated modulation of the AVOR. We hypothesized that a nonspecific and incomplete reduction in the AVOR response caused by canal plugging should have minimal effect on vergence-mediated modulation of the AVOR. The AVOR response to passive head impulses in canal planes (horizontal canals, left anterior-right posterior canals, right anterior-left posterior canals) while viewing a far (124 cm) or near (15 cm) target was measured in seven human subjects before and after anterior canal (AC) plugging to treat vertigo caused by dehiscence of the AC (i.e. superior canal dehiscence). The impulses were low amplitude (∼20°), high velocity (∼150°/s), high-acceleration (∼3,000°/s2) head rotations administered manually by the investigator. Binocular eye and head velocity were recorded using the scleral search coil technique. The AVOR gain was defined as inverted eye velocity divided by head velocity. Before plugging, AVOR gain for the dehiscent AC went from 0.87 ± 0.10 for far targets to 1.04 ± 0.13 for near targets (+19.1 ± 7.3%). After plugging, the AC AVOR gain went from 0.50 ± 0.10 for far targets to 0.59 ± 0.11 for near targets (+19.7 ± 6.1%). There was no difference in the vergence-mediated gain increase between pre- and post-plugged conditions (multi-way analysis of variance: P = 0.66). AC plugging also did not change the latency of the AVOR for either AC. We hypothesize that canal plugging, unlike gentamicin or galvanic ablation, has no effect on vergence-mediated modulation of the AVOR because plugging does not preferentially affect irregular afferents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号