首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One of the fundamental goals of current strategies to develop an efficacious vaccine for AIDS is the elicitation of cytotoxic T lymphocyte (CTL) reactivities capable of recognizing cells infected with different subtypes of the human immunodeficiency virus type 1 (HIV-1). In efforts to explore new vaccine candidates by the UNAIDS/WHO Vaccine Committee, we review the most recent data concerning CTL epitopes that are conserved among the different HIV-1 subtypes. Moreover, we examine HLA allelic frequencies in several different populations, to determine those that could contribute to the goal of a cumulative phenotype frequency (CP) of at least 80%. By analyzing conserved epitopes in the context of HLA restricting alleles, we define a set of HIV-1 gene regions that may have the greatest potential to induce cross-clade reactive CTLs. The absence of well-defined correlates of immune protection that link CTL epitopes to delayed disease progression and/or prevention of infection does not permit an assignment of rank order of the most relevant component of a candidate vaccine. Thus far, most of the studies conducted in clade B-infected patients to define conserved and immunodominant epitopes indicate gag and pol gene products to be the most conserved among the HIV-1 subtypes. Moreover, anti-Pol and -Gag CTL responses appear to correlate inversely with disease progression, suggesting that they should be among the first choice of antigens to be included in a candidate vaccine construct aimed at induction of broad CTL responses. The impact of a clade B-based vaccine as a worldwide candidate capable of inducing protective immune responses can be determined only after "in vivo" studies. Meanwhile, extensive parallel studies in populations infected with non-clade B HIV-1 subtypes should define the patterns of immunodominant epitopes and HLA for comparison with the data already collected in clade B-infected subjects.  相似文献   

2.
Reports on T-cell cross-reactivity against SARS-CoV-2 epitopes in unexposed individuals have been linked with prior exposure to the human common cold coronaviruses (HCCCs). Several studies suggested that cross-reactive T-cells response to live attenuated vaccines (LAVs) such as BCG (Bacillus Calmette–Guérin), OPV (Oral Polio Vaccine), and MMR (measles, mumps, and rubella) can limit the development and severity of COVID-19. This study aims to identify potential cross-reactivity between SARS-CoV-2, HCCCs, and LAVs in the context of T-cell epitopes peptides presented by HLA (Human Leukocyte Antigen) alleles of the Indonesian population. SARS-CoV-2 derived T-cell epitopes were predicted using immunoinformatics tools and assessed for their conservancy, variability, and population coverage. Two fully conserved epitopes with 100% similarity and nine heterologous epitopes with identical T-cell receptor (TCR) contact residues were identified from the ORF1ab fragment of SARS-CoV-2 and all HCCCs. Cross-reactive epitopes from various proteins of SARS-CoV-2 and LAVs were also identified (15 epitopes from BCG, 7 epitopes from MMR, but none from OPV). A majority of the identified epitopes were observed to belong to ORF1ab, further suggesting the vital role of ORF1ab in the coronaviruses family and suggesting it as a candidate for a potential universal coronavirus vaccine that protects against severe disease by inducing cell mediated immunity.  相似文献   

3.
The genetic divergence of human immunodeficiency virus (HIV)-1 into distinct clades is a serious consideration for cytotoxic T lymphocyte (CTL)-based vaccine development. Demonstrations that CTLs can cross-recognize epitope sequences from different clades has been proposed as offering hope for a single vaccine. Cross-clade CTL data, however, have been generated by assessing recognition of exogenous peptides. The present study compares HIV-1-specific CTL cross-clade epitope recognition of exogenously loaded peptides with suppression of HIV-1-infected cells. Despite apparently broad cross-clade reactivity of CTLs against the former, CTL suppression of HIV-1 strains with corresponding epitope sequences is significantly impaired. The functional avidity of CTLs for nonautologous clade epitope sequences is diminished, suggesting that CTLs can fail to recognize levels of infected endogenously derived cell-surface epitopes despite recognizing supraphysiologic exogenously added epitopes. These data strongly support clade-specific antiviral activity of CTLs and call into question the validity of standard methods for assessing cross-clade CTL activity or CTL antiviral activity in general.  相似文献   

4.
5.
The HIV-1/AIDS epidemic continues to escalate, and a protective vaccine remains elusive. The first vaccine candidate, gp120, did not induce broadly neutralizing antibodies (nAbs) against primary HIV-1 isolates and was ineffective in phase III clinical trials. Attention then focused on generating cytotoxic lymphocyte (CTL)-based vaccines. Interest in anti-HIV-1 nAbs was renewed when passive immunization with human neutralizing monoclonal antibodies (nmAbs) completely protected macaques after intravenous and mucosal challenges with simian-human immunodeficiency viruses (SHIVs) encoding HIV-1 env. These nmAbs targeted conserved, functionally important epitopes on gp120 and gp41. Protection in primate/SHIV models was observed when nmAbs were used singly (nmAbs 2G12, b12) and in various combination regimens (nmAbs b12, F105, 2G12, 2F5, 4E10). Passive immunization, a well-established tool to determine the correlates of protective immunity, thus identified protective epitopes. The three-dimensional structures of some of the latter were recently elucidated, generating important information to design nAb-response-base immunogens. However, several of the protective nmAbs were found to exhibit autoreactivity, raising the possibility that B-cell responses against the cognate epitopes may be difficult to induce by active immunization. It will be important to explore whether broad neutralization can be dissociated from autoreactivity. Future experiments will reveal whether other conserved HIV-1 Env epitopes exist, antibodies against which will be broadly neutralizing in vitro, protective as passive immunization in SHIV-challenged macaques, but lacking autoreactivity. Since all protective epitopes identified to date are located on HIV-1 clade B Env, future studies should include analysis of nmAbs against non-clade B strains.  相似文献   

6.
Early HIV-1 infection is marked by rapid evolution of both CD8(+) T lymphocyte (CTL) epitope targeting and viral sequences, while chronic infection demonstrates relative stability of these parameters. To examine the interactions of changing CTL targeting and viremia in early infection, we assessed CTL targeting and viremia levels in persons during early HIV-1 infection (estimated 15-271 days post-infection) who were placed on effective antiretroviral therapy. Pre-therapy, CTL targeting of viral proteins varied between persons depending on time after infection. Across individuals, increasing time after infection was associated with increasing Gag and Pol targeting, suggesting increasing targeting of conserved sequences. The intensity of Gag targeting correlated to lower viremia levels, while Env targeting correlated to higher viremia levels during early infection. This suggested that shifted targeting towards more conserved sequences is involved with the drop of viremia during early infection, consistent with prior observations of correlation between Gag targeting and lower viremia during chronic infection. After suppressive antiretroviral therapy, CTL targeting was generally static, indicating that HIV-1 replication and evolution drives the evolution of CTL targeting in early infection. Overall, these data suggest that early CTL targeting is directed towards more variable epitopes, causing escape and re-targeting until more conserved epitopes are recognized stably in chronic infection. Circumventing this natural history by pre-targeting CTL against more conserved epitopes with a vaccine could minimize the initial period of viral escape and immune damage during acute infection, improving long-term containment of HIV-1.  相似文献   

7.
BACKGROUND: The etiological agents responsible for a substantial proportion of respiratory tract diseases have not been identified. We sought to determine whether novel human coronaviruses (HCoVs) are circulating in New Haven, Connecticut, and, if so, whether they are associated with respiratory tract disease in infants and young children. METHODS: We developed a polymerase chain reaction (PCR)-based approach for screening specimens from the respiratory tracts of symptomatic children. PCR probes that target regions of the replicase 1a gene that are conserved among genetically diverse animal CoVs and HCoVs were designed. Using these probes, we identified genomic sequences of a novel HCoV, designated "New Haven coronavirus" (HCoV-NH). Thereafter, we designed specific probes to screen respiratory specimens from children <5 years old for this novel HCoV. Clinical features associated with HCoV-NH infection were identified. RESULTS: Seventy-nine (8.8%) of 895 children tested positive for HCoV-NH. Cough, rhinorrhea, tachypnea, fever, abnormal breath sounds, and hypoxia were the most common findings associated with HCoV-NH infection. Sequence analysis revealed that HCoV-NH is closely related to a novel HCoV recently reported in The Netherlands. CONCLUSIONS: The novel HCoVs identified in New Haven and The Netherlands are similar and likely represent the same species. This newly discovered virus may have worldwide distribution and may account for a significant proportion of respiratory tract disease in infants and young children.  相似文献   

8.
Recently identified human metapneumovirus (hMPV) is an important respiratory pathogen in children and adults worldwide. Little is known about cytotoxic T lymphocyte (CTL) responses that may control hMPV infection in humans. To address this, we evaluated major histocompatibility complex (MHC) class I T cell immunity in 7 patients with previous hMPV respiratory disease. CTL responses were evident in most patients and to most proteins of hMPV. Individual patients had responses to at least 2 hMPV proteins (particularly the M protein) and had multiallele responses. In addition, we identified 9 CTL epitopes that are presented by human leukocyte antigen alleles of the most common MHC "supertypes." Many of these CTL epitopes are conserved across hMPV types, and there is epitope similarity between hMPV and human respiratory syncytial virus. This study provides the first report of MHC class I T cell immunity to hMPV in humans. These findings have significance for understanding cellular immunity to hMPV infection and for future vaccine development.  相似文献   

9.
Considerable effort is directed at the development of a malaria vaccine that elicits antigen-specific T-cell responses against pre-erythrocytic antigens of Plasmodium falciparum. Genetic restriction of host T-cell responses and polymorphism of target epitopes on parasite antigens pose obstacles to the development of such a vaccine. Liver stage-specific antigen-1 (LSA-1) is a prime candidate vaccine antigen and five T-cell epitopes that are degenerately restricted by HLA molecules common in most populations have been identified on LSA-1. To define the extent of polymorphism within these T-cell epitopes, the N-terminal non-repetitive region of the LSA-1 gene from Malaysian P. falciparum field isolates was sequenced and compared with data of isolates from Brazil, Kenya and Papua New Guinea. Three of the T-cell epitopes were completely conserved while the remaining two were highly conserved in the isolates examined. Our findings underscore the potential of including these HLA-degenerate T-cell epitopes of LSA-1 in a subunit vaccine.  相似文献   

10.
Despite the success of Antiretroviral Therapy (ART) in preventing HIV-1-associated clinical progression to AIDS, it is unable to eliminate the viral reservoirs and eradicate the HIV-1 infection. Therapeutic vaccination is an alternative approach to alter the HIV-1 infection course. It can induce effective HIV-1-specific immunity to control viremia and eliminate the need for lifelong ART. Immunological data from spontaneous HIV-1 controllers have shown that cross-reactive T-cell responses are the key immune mechanism in HIV-1 control. Directing these responses toward preferred HIV-1 epitopes is a promising strategy in therapeutic vaccine settings. Designing novel immunogens based on the HIV-1 conserved regions containing a wide range of critical T- and B-cell epitopes of the main viral antigens (conserved multiepitope approaches) supplies broad coverage of global diversity in HIV-1 strains and Human Leukocyte Antigen (HLA) alleles. It can also prevent immune induction to undesirable decoy epitopes theoretically. The efficacy of different novel HIV-1 immunogens based on the conserved and/or functional protective site of HIV-1 proteome has been evaluated in multiple clinical trials. Most of these immunogens were generally safe and able to induce potent HIV-1-specific immunity. However, despite these findings, several candidates have demonstrated limited efficacy in viral replication control. In this study, we used the PubMed and ClinicalTrial.gov databases to review the rationale of designing curative HIV-1 vaccine immunogens based on the conserved favorable site of the virus. Most of these studies evaluate the efficacy of vaccine candidates in combination with other therapeutics and/or with new formulations and immunization protocols. This review briefly describes the design of conserved multiepitope constructs and outlines the results of these vaccine candidates in the recent clinical pipeline.  相似文献   

11.
Analysis of the human immunodeficiency virus type 1 (HIV-1) cytolytic T lymphocyte (CTL) epitopes recognized by the targeted population is critical for HIV-1 vaccine design. Peripheral blood mononuclear cells from 47 Indian subjects at different stages of HIV-1 infection were tested for HIV-1 Gag-, Nef-, and Env-specific T cell responses by interferon (IFN)- gamma enzyme-linked immunospot (ELISPOT) assay, using pools of overlapping peptides. The Gag and Nef antigens were targeted by 83% and 36% of responders. Five immunodominant regions, 4 in Gag and 1 in Nef, were identified in the study; these regions are conserved across clades, including the African subtype C clade. Three antigenic regions were also found to be recognized by CTLs of the study participants. These regions were not identified as immunodominant regions in studies performed in Africa, which highlights the importance of differential clustering of responses within HIV-1 subtype C. Twenty-six putative epitopes--15 Gag (10 in p24 and 5 in p17), 10 Nef, and 1 Env (gp 41)--were predicted using a combination of peptide matrix ELISPOT assay and CTL epitope-prediction software. Ninety percent of the predicted epitopes were clustered in the conserved immunodominant regions of the Gag and Nef antigens. Of 26 predicted epitopes, 8 were promiscuous, 3 of which were highly conserved across clades. Three Gag and 4 Nef epitopes were novel. The identification of conserved epitopes will be important in the planning of an HIV-1 vaccine strategy for subtype C-affected regions.  相似文献   

12.
Cross-reactive T cell immunity to seasonal coronaviruses (HCoVs) may lead to immunopathology or protection during SARS-CoV2 infection. To understand the influence of cross-reactive T cell responses, we used IEDB (Immune epitope database) and NetMHCpan (ver. 4.1) to identify candidate CD8+ T cell epitopes, restricted through HLA-A and B alleles. Conservation analysis was carried out for these epitopes with HCoVs, OC43, HKU1, and NL63. 12/18 the candidate CD8+ T cell epitopes (binding score of ≥0.90), which had a high degree of homology (>75%) with the other three HCoVs were within the NSP12 and NSP13 proteins. They were predicted to be restricted through HLA-A*2402, HLA-A*201, HLA-A*206, and HLA-B alleles B*3501. Thirty-one candidate CD8+ T cell epitopes that were specific to SARS-CoV2 virus (<25% homology with other HCoVs) were predominantly identified within the structural proteins (spike, envelop, membrane, and nucleocapsid) and the NSP1, NSP2, and NSP3. They were predominantly restricted through HLA-B*3501 (6/31), HLA-B*4001 (6/31), HLA-B*4403 (7/31), and HLA-A*2402 (8/31). It would be crucial to understand T cell responses that associate with protection, and the differences in the functionality and phenotype of epitope specific T cell responses, presented through different HLA alleles common in different geographical groups, to understand disease pathogenesis.  相似文献   

13.
The pp65(495-503) cytotoxic T-lymphocyte (CTL) epitope from cytomegalovirus (CMV) is universally recognized among CMV+ individuals who express an allele of the human leukocyte antigen A (HLA-A*0201). The relative binding affinity of the epitope to HLA-A*0201 is moderate, and its increased activity might prove beneficial in its use as a CTL epitope vaccine. A new approach to enhance the activity of T-cell epitopes is the use of positional scanning synthetic combinatorial libraries (PS-SCLs). Using a nonamer PS-SCL, the pp65(495-503) epitope was modified after screening a CMV-specific T-cell clone (TCC) (3-3F4) from which the native peptide sequence was derived. Two peptides with amino acid substitutions at P1, P3, P7, and P8 are between 10(3) and 10(4) more active than the native epitope. Although the native CTL epitope terminates as a free acid, both tetrasubstituted peptides only function as CTL epitopes when the carboxyl terminus is amidated. Selective substitution of the native sequence based on PS-SCL screening results identified 3 amidated monosubstituted and disubstituted peptides that are better recognized than the native epitope by TCCs from a cohort expressing HLA-A*0201. In vitro stimulation of peripheral blood mononuclear cells with each of the peptide epitope analogs stimulated memory CTLs, which recognized CMV-infected targets among a high percentage of CMV+ individuals. Binding studies of peptide analogs with HLA-Ig (immunoglobulin) dimers and 2 different TCCs correlated with in vitro lysis results. These data suggest that increasing the activity of CTL epitopes while maintaining broad recognition is possible, which holds promise for vaccine development in infectious disease and cancer.  相似文献   

14.
Despite advances in the clinical management of HIV infection, using combinations of antiretroviral pharmaceuticals, a safe and efficacious vaccine is needed to limit the AIDS pandemic. It is now thought that an effective HIV-1 vaccine should prime both cross-neutralizing antibodies and long-lasting cytotoxic CD8+ T lymphocytes (CTLs) recognizing multiple codominant HIV-1 epitopes. To that end, many novel vaccine strategies have been tested. However, only a few of these strategies, beside those relying on live-attenuated viruses, are able to prime strong CTL responses in nonhuman primates and humans. In this study, three rhesus macaques were immunized with HIV-1 p55gag virus-like particles (VLPs) in the absence of adjuvant to assess the potential of such a vaccine to prime CTL responses. After intramuscular injection of p55gag VLP, all three animals mounted CTL responses against HIV-1 p55gag. Notably, these CTLs primed by vaccination recognized naturally processed peptides and were long lived (>8.5 months) both in the peripheral blood and draining lymph node. Furthermore, these CTLs were directed against multiple HIV-1 p55gag epitopes. This indicated that immunization with p55gag VLP primes strong MHC class I-restricted, CD8+ cell-mediated immune responses and suggested that HIV-1 p55gag VLPs should be a reasonable vaccine candidate, when combined with strategies priming cross-neutralizing antibodies.  相似文献   

15.
To fully define HLA-A11-restricted HIV-1-specific cytotoxic T-lymphocyte epitopes in China, a method combining the enzyme-linked immunospot (ELISPOT) assay with intracellular gamma interferon staining (ICS) of peripheral blood mononuclear cells (PBMC) was used to map the optimal epitopes targeted by ELISPOT and then to define the HLA restriction of epitopes by ICS. A novel HLA-A11-restricted CTL epitope and five other published HLA-A11-restricted epitopes previously identified by reverse immunogenetics or other methods were defined. The approach of integrating ELISPOT with ICS is both convenient and useful for the characterization of CTL responses to HIV-1 infection; this method is practical for defining novel epitopes and facilitates in developing new strategies for future vaccine design in China and other Asian countries.  相似文献   

16.
Respiratory viruses infections caused by influenza viruses, human parainfluenza virus (hPIV), respiratory syncytial virus (RSV) and coronaviruses are an eminent threat for public health. Currently, there are no licensed vaccines available for hPIV, RSV and coronaviruses, and the available seasonal influenza vaccines have considerable limitations. With regard to pandemic preparedness, it is important that procedures are in place to respond rapidly and produce tailor made vaccines against these respiratory viruses on short notice. Moreover, especially for influenza there is great need for the development of a universal vaccine that induces broad protective immunity against influenza viruses of various subtypes. Modified Vaccinia Virus Ankara (MVA) is a replication-deficient viral vector that holds great promise as a vaccine platform. MVA can encode one or more foreign antigens and thus functions as a multivalent vaccine. The vector can be used at biosafety level 1, has intrinsic adjuvant capacities and induces humoral and cellular immune responses. However, there are some practical and regulatory issues that need to be addressed in order to develop MVA-based vaccines on short notice at the verge of a pandemic. In this review, we discuss promising novel influenza virus vaccine targets and the use of MVA for vaccine development against various respiratory viruses.  相似文献   

17.
Cross-reactivity between antibodies to different human coronaviruses (HCoVs) has not been systematically studied. By use of Western blot analysis, indirect immunofluorescence assay (IFA), and enzyme-linked immunosorbent assay (ELISA), antigenic cross-reactivity between severe acute respiratory syndrome (SARS)-associated coronavirus (SARS-CoV) and 2 HCoVs (229E and OC43) was demonstrated in immunized animals and human serum. In 5 of 11 and 10 of 11 patients with SARS, paired serum samples showed a > or =4-fold increase in antibody titers against HCoV-229E and HCoV-OC43, respectively, by IFA. Overall, serum samples from convalescent patients who had SARS had a 1-way cross-reactivity with the 2 known HCoVs. Antigens of SARS-CoV and HCoV-OC43 were more cross-reactive than were those of SARS-CoV and HCoV-229E.  相似文献   

18.
The current spread of multidrug-resistant malaria demands rapid vaccine development against the major pathogen Plasmodium falciparum. The high quantities of protein required for a worldwide vaccination campaign select recombinant DNA technology as a practical approach for large-scale antigen production. We describe the vaccination of Aotus monkeys with two recombinant blood-stage antigens (recombinant p41 and 190N) that were considered as vaccine candidates because parasite-derived antigen preparations could protect susceptible monkeys from an otherwise lethal malaria infection. In contrast to the natural antigen, recombinant p41 protein (P. falciparum aldolase) could not protect monkeys, although all animals seroconverted. 190N antigen, a recombinant protein containing conserved sequences of the major merozoite surface antigen p190, protected two of five monkeys from critical levels of infection with the highly virulent FVO isolate of P. falciparum. However, the B- and T-cell responses to 190N antigen were similar in protected and unprotected animals so that other unknown factors may contribute to protection. Higher purity or lack of protective epitopes or different structure of protective epitopes in the recombinant proteins might explain the better performance of parasite-derived antigens in vaccination trials. The partial protection obtained with 190N antigen suggests that this molecule could contribute to a vaccine mixture against P. falciparum.  相似文献   

19.
20.
Tumor relapses in patients with precursor B-cell acute lymphoblastic leukemia (BALL) occur frequently after primary treatment. Therefore, development of additional treatment modalities to eliminate residual tumor cells is needed. Active immunotherapy using dendritic cells (DCs) loaded with tumor-associated antigens is a promising approach to induce specific T-cell immunity in patients with cancer. In previous studies, we described HB-1 as a B-cell lineage-specific antigen that is recognized by donor-derived cytotoxic T lymphocytes (CTLs) on allogeneic B-ALL tumor cells. Here, we investigated the potential use of the HB-1 antigen as an autologous T-cell vaccine target. To determine whether HB-1-specific CTL precursors are present within the T-cell repertoire, we induced expansion of CD8+ T cells using mature monocyte-derived DCs pulsed with the previously identified HB-1.B44 antigenic peptide. In 6 of 8 donors, CD8+ CTL lines have been generated that exert cytotoxicity against target cells exogenously pulsed with peptide or endogenously expressing the HB-1 antigen. From one of these HB-1-specific T-cell lines, we isolated a CD8+ CTL that produces interferon-gamma on stimulation with B-ALL tumor cells. Interestingly, the HB-1 antigen also induced CD4+ T-helper responses on activation with protein-loaded mature monocyte-derived DCs. We identified 2 novel epitopes recognized in the context of HLA-DR4 and HLA-DR11 with the use of HB-1-specific CD4+ T-cell clones generated from different donors. These present data, that HB-1 induces both helper and cytotoxic T-cell responses, indicate that the HB-1 antigen is a candidate target to induce T-cell-mediated antitumor immunity in patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号