首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Aging is associated with an increase in oxidative stress and inflammation. The aim of this study was to investigate the effect of aging on various physiological parameters related to inflammation in livers obtained from two types of male mice models: Senescence-accelerated prone (SAMP8) and senescence-accelerated-resistant (SAMR1) mice, and to study the influence of the administration of melatonin (1 mg/kg/day) for one month on old SAMP8 mice on these parameters.  相似文献   

3.
Autophagy is responsible for the degradation of long-lived proteins and damaged organelles intracellular, even extracellular,and autophagy is proved to have relationship with Alzheimer's disease (AD) and aging. The senescence accelerated mouse prone 8 (SAMP8) was a non-genetically modified mice widely used as a rodent model of aging and senile dementia. However, little was known about the age-related changes of autophagy in the brain of SAMP8 mice. To better understand the precise relationship between aging, autophagy and neurodegeneration, we explored the time course of cognitive ability, ubiquitin-positive inclusions, ultrastructure of neurons and detected the expression of LC3 and Beclin 1 protein in different brain regions of 2, 7 and 12-month-old SAMP8 and SAMR1 mice. We found that 7 and 12-month-old SAMP8 mice presented cognitive decline and ubiquitinated proteins enhanced. In the hippocampal neurons of 12-month-old SAMP8 mice, lots of dense clumps and autophagic vacuoles were found in the cytoplasm and axons. The LC3-II expression showed an increase in hippocampus and cortex of 7 and 12-month-old SAMP8 mice. The expression of Beclin 1 displayed a significant increase in 7 months old and a decline in 12 months old mice. Based on these data, we suggest that the autophagic activity maybe increase reactively at the beginning of AD and then showed a decline with aging, and the pathological changes of 12-month-old SAMP8 mice are more similar to the late-onset AD in the perspective of autophagy.  相似文献   

4.
5.
The histidine-containing dipeptides (HCD) carnosine and anserine are found in high concentrations in mammalian skeletal muscle. Given its versatile biologic properties, such as antioxidative, antiglycation, and pH buffering capacity, carnosine has been implicated as a protective factor in the aging process. The present study aimed to systematically explore age-related changes in skeletal muscles HCD content in a murine model of accelerated aging. Additionally, we investigated the effect of lifelong creatine supplementation on muscle HCD content and contractile fatiguability. Male senescence-accelerated mice (SAMP8) were fed control or creatine-supplemented (2% of food intake) diet from the age of 10 to 60 weeks. At week 10, 25, and 60, tibialis anterior muscles were dissected and analysed for HCD and taurine content by HPLC. Soleus and EDL muscles were tested for in vitro contractile fatigue and recovery. From 10 to 60 weeks of age, muscular carnosine (-45%), taurine (-24%), and total creatine (-42%) concentrations gradually and significantly decreased. At 25 but not at 60 weeks, oral creatine supplementation significantly increased carnosine (+88%) and anserine (+40%) content compared to age-matched control-fed animals. Taurine and total creatine content were not affected by creatine supplementation at any age. Creatine-treated mice showed attenuated muscle fatigue (soleus) and enhanced force recovery (m. extensor digitorum longus [EDL]) compared to controls at 25 weeks, but not at 60 weeks. From the present study, we can conclude that skeletal muscle tissue exhibits a significant decline in HCD content at old age. Oral creatine supplementation is able to transiently but potently increase muscle carnosine and anserine content, which coincides with improved resistance to contractile fatigue.  相似文献   

6.
The influence of two known cardiovascular risk factors, aging and consumption of a high-fat diet, on vascular mesenteric artery reactivity was examined in a mouse model of accelerated senescence (SAM). Five-month-old SAM prone (SAMP8) and resistant (SAMR1) female mice were fed a Western-type high-fat diet (WD; 8 weeks). Mesenteric arteries were dissected, and vascular reactivity, protein and messenger RNA expression, superoxide anion (O2·−) and hydrogen peroxide formation were evaluated by wire myography, immunofluorescence, RT-qPCR, ethidium fluorescence and ferric-xylenol orange, respectively. Contraction to KCl and relaxation to acetylcholine remained unchanged irrespective of senescence and diet. Although similar contractions to phenylephrine were observed in SAMR1 and SAMP8, accelerated senescence was associated with decreased eNOS and nNOS and increased O2·− synthesis. Senescence-related alterations were compensated, at least partly, by the contribution of NO derived from iNOS and the enhanced endogenous antioxidant capacity of superoxide dismutase 1 to maintain vasoconstriction. Administration of a WD induced qualitatively different alterations in phenylephrine contractions of mesenteric arteries from SAMR1 and SAMP8. SAMR1 showed increased contractions partly as a result of decreased NO availability generated by decreased eNOS and nNOS and enhanced O2·− formation. In contrast, WD feeding in SAMP8 resulted in reduced contractions due to, at least in part, the increased functional participation of iNOS-derived NO. In conclusion, senescence-dependent intrinsic alterations during early stages of vascular senescence may promote vascular adaptation and predispose to further changes in response to high-fat intake, which may lead to the progression of aging-related cardiovascular disease, whereas young subjects lack the capacity for this adaptation.  相似文献   

7.
The senescence-accelerated mouse (SAM) is an accelerated aging model that was established through phenotypic selection from a common genetic pool of AKR/J strain of mice. The SAM model was established in 1981, including nine major senescence-accelerated mouse prone (SAMP) substrains and three major senescence-accelerated mouse resistant (SAMR) substrains, each of which exhibits characteristic disorders. Recently, SAMP8 have drawn attention in gerontological research due to its characteristic learning and memory deficits at old age. Many recent reports provide insight into mechanisms of the cognitive impairment and pathological changes in SAMP8. Therefore, this mini review examines the recent findings of SAMP8 mice abnormalities at the gene and protein levels. The genes and proteins described in this review are functionally categorized into neuroprotection, signal transduction, protein folding/degradation, cytoskeleton/transport, immune response and reactive oxygen species (ROS) production. All of these processes are involved in learning and memory. Although these studies provide insight into the mechanisms that contribute to the learning and memory decline in aged SAMP8 mice, higher throughput techniques of proteomics and genomics are necessary to study the alterations of gene expression and protein abnormalities in SAMP8 mice brain in order to more completely understand the central nervous system dysfunction in this mouse model. The SAMP8 is a good animal model to investigate the fundamental mechanisms of age-related learning and memory deficits at the gene and protein levels.  相似文献   

8.
Common complaints of the elderly involve impaired cognitive abilities, such as loss of memory and inability to attend. Although much research has been devoted to these cognitive impairments, other factors such as disrupted sleep patterns and increased daytime drowsiness may contribute indirectly to impaired cognitive abilities. Disrupted sleep–wake cycles may be the result of age-related changes to the internal (circadian) clock. In this article, we review recent research on aging and circadian rhythms with a focus on the senescence-accelerated mouse (SAM) as a model of aging. We explore some of the neurobiological mechanisms that appear to be responsible for our aging clock, and consider implications of this work for age-related changes in cognition.  相似文献   

9.
The present study examined the effect of age on the spontaneous motor rhythms of mice during wheel running. The spontaneous motor tempo (SMT) of wheel running was measured for the P8 strain of the senescence-accelerated mouse (SAMP8) by recording the sequence of time intervals (measured in milliseconds) for successive revolutions ofa run-wheel over the course of 16 days. Analyses of the distribution of interrevolution intervals of 2-, 7-, and 12-month-old SAMP8 revealed an age-related slowing of wheel running and a corresponding increase in variability consistent with Weber's law. All three age groups also demonstrated a practice effect over the course of testing best described by a power law. These findings provide evidence of age-related changes in the spontaneous motor rhythms of the SAMP8 that occur as early as 7 months of age. The results are consistent with age-related changes in human subjects and suggest that spontaneous wheel-running behavior in rodents may be a good model for studying SMT.  相似文献   

10.
Aging is associated with an increased risk of depression in humans. To elucidate the underlying mechanisms of depression and its dependence on aging, here we study signs of depression in male SAMP8 mice. For this purpose, we used the forced swimming test (FST). The total floating time in the FST was greater in SAMP8 than in SAMR1 mice at 9 months of age; however, this difference was not observed in 12-month-old mice, when both strains are considered elderly. Of the two strains, only the SAMP8 animals responded to imipramine treatment. We also applied the dexamethasone suppression test (DST) and studied changes in the dopamine and serotonin (5-HT) uptake systems, the 5-HT2a/2c receptor density in the cortex, and levels of TPH2. The DST showed a significant difference between SAMR1 and SAMP8 mice at old age. SAMP8 exhibits an increase in 5-HT transporter density, with slight changes in 5-HT2a/2c receptor density. In conclusion, SAMP8 mice presented depression-like behavior that is dependent on senescence process, because it differs from SAMR1, senescence resistant strain.  相似文献   

11.
It has been suggested that oxidative stress is a feature of aging. The goal of the present study was to assess the oxidant effects related to aging and the protective role of exogenous melatonin in senescence-accelerated mice (SAMP8). Two groups of SAMP8 mice (males and females) were compared with their respective control groups of SAMR1 mice (senescence-resistant inbred strain) to determine their oxidative status without melatonin treatment. Four other groups of the same characteristics were treated with melatonin (10 mg/kg/day) in their drinking water. The melatonin concentration in the feeding bottles was titrated according to water consumption and body weight (i.e. 0.06 mg/mL for 30 g of body weight and 5 mL/day of water consumption). The treatment began when animals were 1-month old and continued for 9 months. When mice were 10-month old, they were anesthetized and blood was obtained. Plasma and erythrocytes were processed to examine oxidative stress markers: reduced glutathione (GSH), oxidized glutathione (GSSG), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), glutathione reductase (GR), glutathione S-transferase (GST), thiobarbituric acid reactive substances (TBARS), and hemolysis. The results showed greater oxidative stress in SAMP8 than in SAMR1, largely because of a decrease in GSH levels and to an increase in GSSG and TBARS with the subsequent induction of the antioxidant enzymes GPX and GR. Melatonin, as an antioxidant molecule, improved the glutathione-related parameters, prevented the induction of GPX in senescent groups, and promoted a decrease in SOD and TBARS in almost all the groups.  相似文献   

12.
The senescence-accelerated-prone mouse 8 (SAMP8) has been proposed as a suitable, naturally derived animal model for investigating the fundamental mechanisms of Alzheimer's disease (AD). In addition, the serum testosterone levels decrease quickly in the natural growth process of this model. This study investigated the effect of androgen deficiency on the synaptic plasticity of hippocampus in male SAMP8 mice after castration and dihydrotestosterone (DHT) administration. We observed the dendritic spines and synapses using Golgi staining and transmission electron microscope. Androgen deficiency after castration significantly reduced the number of apical dendritic thorns, and the abnormal ultrastructure of excitatory synapses was more obvious. Androgen replacement therapy reversed this change. To explore the protective mechanisms and neurological basis of DHT, we researched the changes of expression of GluN1 subunit-containing N-methyl-d-aspartate receptors (NMDARs) and synaptophysin (SYN), which are closely related to synaptic plasticity. Comparisons were made among results observed with immunohistochemistry techniques, Western blots analysis and RT-PCR analysis. The GluN1 and SYN regulation at the protein and mRNA levels probably be related to the DHT-induced morphological synaptic plasticity. This study will be helpful for understanding the function of androgen, and it provides a valuable theoretical basis about the protective and therapeutic targets of androgen in AD.  相似文献   

13.
The senescence-accelerated prone 8 (SAMP8) mouse strain shows early cognitive loss that mimics the deterioration of learning and memory in the elderly and is widely used as an animal model of aging. SAMP8 mouse brain suffers oxidative stress, as well as tau- and amyloid-related pathology. Mitochondrial dysfunction and the subsequent increase in cellular oxidative stress are central to the aging processes of the organism. Here, we examined the mitochondrial status of neocortical neurons cultured from SAMP8 and senescence-accelerated-resistant (SAMR1) mice. SAMP8 mouse mitochondria showed a reduced membrane potential and higher vulnerability to inhibitors and uncouplers than SAMR1 mitochondria. DL-buthionine-[S,R]-sulfoximine (BSO) caused greater oxidative damage in neurons from SAMP8 mice than in those from SAMR1 mice. This increased vulnerability, indicative of frailty-associated senescence, was protected by the anti-aging agents melatonin and resveratrol. The sirtuin 1 inhibitor, sirtinol, demonstrated that the neuroprotection against BSO was partially mediated by increased sirtuin 1 expression. Melatonin, like resveratrol, enhanced sirtuin 1 expression in neuron cultures of SAMR1 and SAMP8 mice. Therefore, a deficiency in the neuroprotection and longevity of the sirtuin 1 pathway in SAMP8 neurons may contribute to the early age-related brain damage in these mice. This supports the therapeutic use of sirtuin 1-enhancing agents against age-related nerve cell dysfunction and brain frailty.  相似文献   

14.
Cardiac and diaphragmatic mitochondria from male SAMP8 (senescent) and SAMR1 (resistant) mice of 5 or 10 months of age were studied. Levels of lipid peroxidation (LPO), glutathione (GSH), GSH disulfide (GSSG), and GSH peroxidase and GSH reductase (GRd) activities were measured. In addition, the effect of chronic treatment with the antioxidant melatonin from 1 to 10 months of age was evaluated. Cardiac and diaphragmatic mitochondria show an age-dependent increase in LPO levels and a reduction in GSH:GSSG ratios. Chronic treatment with melatonin counteracted the age-dependent LPO increase and GSH:GSSG ratio reduction in these mitochondria. Melatonin also increased GRd activity, an effect that may account for the maintenance of the mitochondrial GSH pool. Total mitochondrial content of GSH increased after melatonin treatment. In general, the effects of age and melatonin treatment were similar in senescence-resistant mice (SAMR1) and SAMP8 cardiac and diaphragmatic mitochondria, suggesting that these mice strains display similar mitochondrial oxidative damage at the age of 10 months. The results also support the efficacy of long-term melatonin treatment in preventing the age-dependent mitochondrial oxidative stress.  相似文献   

15.
目的 观察丁苯酞(NBP)对快速老化小鼠SAMP8学习记忆能力的影响.方法 选用4月龄SAMP8 40只,随机分为SAMP8空白组、NBP低、中及高剂量组;另选4月龄SAMR1 10只作正常对照组.各组分别灌药60 d后,以Morris水迷宫实验检测各组小鼠学习记忆能力的变化.结果 与SAMR1组比较,SAMP8小鼠在隐蔽平台实验中表现出明显的学习记忆障碍,逃避潜伏期显著延长,NBP组从第4天起逃避潜伏期比SAMP8组显著缩短(P<0.05);探索实验中NBP组原平台象限的停留时间明显多于SAMP8组,且高剂量组与低剂量组也有显著性差异(P<0.05);反向实验中NBP高剂量组第3天的逃避潜伏期比SAMP8组显著缩短(P<0.05);可视平台实验结果各组无显著性差异.结论 NBP能改善SMAP8鼠的学习记忆能力.  相似文献   

16.
17.
Aromatase (CYP19) is a cytochrome P450 enzyme that catalyzes the formation of aromatic C18 estrogens from C19 androgens. It is expressed in various tissues and contributes to sex-specific differences in cellular metabolism. We have generated aromatase-knockout (ArKO) mice in order to study the role of estrogen in the regulation of glucose metabolism. The mean body weights of male ArKO (-/-) mice (n=7) and wild-type littermates (+/+) (n=7) at 10 and 12 weeks of age were 26.7+/-1.9 g vs 26.1+/-0.8 g and 28.8+/-1.4 g vs 26.9+/-1.0 g respectively. The body weights of the ArKO and wild-type mice diverged between 10 and 12 weeks of age with the ArKO males weighing significantly more than their wild-type littermates (P<0.05). The ArKO males showed significantly higher blood glucose levels during an intraperitoneal glucose tolerance test compared with wild-type littermates beginning at 18 weeks of age. By 24 weeks of age, they had higher fasting blood glucose levels compared with wild-type littermates (133.8+/-22.8 mg/dl vs 87.8+/-20.3 mg/dl respectively; P<0.01). An intraperitoneal injection of insulin (0.75 mU insulin/g) caused a continuous decline in blood glucose levels in wild-type mice whereas ArKO males at 18 weeks and older exhibited a rebound increase in glucose levels 30 min after insulin injection. Thus, ArKO male mice appear to develop glucose intolerance and insulin resistance in an age-dependent manner. There was no difference in fasting serum triglyceride and total cholesterol levels between ArKO male mice and wild-type littermates at 13 and 25 weeks of age. However, serum triglyceride and cholesterol levels were significantly elevated following a meal in ArKO mice at 36 weeks of age. Serum testosterone levels in ArKO male mice were continuously higher compared with wild-type littermates. Treatment of ArKO males with 17beta-estradiol improved the glucose response as measured by intraperitoneal glucose and insulin tolerance tests. Treatment with fibrates and thiazolidinediones also led to an improvement in insulin resistance and reduced androgen levels. As complete aromatase deficiency in man is associated with insulin resistance, obesity and hyperlipidemia, the ArKO mouse may be a useful animal model for examining the role of estrogens in the control of glucose and lipid homeostasis.  相似文献   

18.

Background and Aim

Caloric restriction (CR) improves insulin sensitivity and is one of the dietetic strategies most commonly used to enlarge life and to prevent aging-induced cardiovascular alterations. The aim of this study was to analyze the possible beneficial effects of caloric restriction (CR) preventing the aging-induced insulin resistance in the heart of male Wistar rats.

Methods and results

Three experimental groups were used: 3 months old rats (3m), 24 months old rats (24m) and 24 months old rats subjected to 20% CR during their three last months of life (24m-CR). After sacrifice hearts were mounted in a perfusion system (Langendorff) and heart function in basal conditions and in response to accumulative doses of insulin (10?9-10?7 M), in the presence or absence of Wortmannin (10?6 M), was recorded. CR did not attenuate the aging-induced decrease in coronary artery vasodilation in response to insulin administration, but it prevented the aging-induced downregulation of cardiac contractility (dp/dt) through activation of the PI3K/Akt intracellular pathway. Insulin stimulated in a greater extent the PI3K/Akt pathway vs the activation of the MAPK pathway and increased the protein expression of IR, GLUT-4 and eNOS in the hearts of 3m and 24m-CR rats, but not in the hearts of 24m rats. Furthermore, CR prevented the aging induced increase in endothelin-1 protein expression in myocardial tissue.

Conclusion

In conclusion CR partially improves cardiac insulin sensitivity and prevents the aging induced decrease in myocardial contractility in response to insulin administration through activation of PI3K/Akt pathway.  相似文献   

19.
The senescence-accelerated mouse strain P6 (SAMP6) is a model of senile osteoporosis, which possesses many features of senile osteoporosis in humans. So far, little is known about the systemic bone microstructural changes that occur at multiple skeletal sites. In this study, we therefore, investigated site (vertebra, femur and tibia) dependence of bone microstructure and bone mineral density (BMD) in SAMP6 and the normal control mouse (SAMR1) at 5 and 12 months of age using quantitative micro computed tomography (micro-CT) and image analysis software. As compared with SAMR1, the most prominent change in SAMP6 was the reduction of vertebral trabecular bone volume fraction (BV/TV) and trabecular BMD. Moderate decrease of trabecular bone mass was observed in the proximal tibia and distal femur. Increased marrow area and periosteal perimeter were investigated, though the cortical area and cortical thickness had no marked changes in the mid-tibial and mid-femoral cortical bones. These results indicate that bone microstructural properties in SAMP6 are remarkably heterogeneous throughout the skeleton, which is analogous to changes that occur in human bones. These findings further validate the relevance of SAMP6 as a model of senile osteoporosis.  相似文献   

20.
We studied vascular function in quiescent aortas from senescence-accelerated resistant (SAM-R1) and prone (SAM-P8) mice. Myographical studies of thoracic aorta segments from 6–7 month-old mice showed that the contractility of SAM-P8 aortas was markedly higher than that of SAM-R1 after KCl depolarization or phenylephrine addition. Acetylcholine dose-response relaxation curves revealed that SAM-R1 vessels were slightly more sensitive than those of SAM-P8. In the presence of the NO synthase inhibitor, L-NAME, all vessels displayed contractions to acetylcholine, but these were more distinct in the SAM-R1. Phenylephrine plus L-NAME displayed stronger contractions in both animal strains, but were markedly more pronounced in SAM-R1. The cyclooxygenase inhibitor, indomethacin did not change the vessel responses to acetylcholine or phenylephrine. These data indicate that NO synthase, not cyclooxygenase, was responsible for the differences in contractility. Standard histology and immunohistochemistry of endothelial NO synthase revealed no differences in the expression of this protein. In contrast, increased levels of malondialdehyde were found in SAM-P8 vessels. We conclude that SAM-P8 vessels exhibit higher contractility than those of SAM-R1. Furthermore, our results suggest that the endothelium of SAM-P8 vessels is dysfunctional and lacks normal capability to counteract smooth muscle contraction. Therefore, our findings support SAM-P8 as a suitable model for the study of vascular physiological changes during aging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号