首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
OBJECTIVE: The purpose of this experiment was to systematically examine hearing aid benefit as measured by speech recognition and self-assessment methods across omnidirectional and directional hearing aid modes. These data were used to compare directional benefit as measured by speech recognition in the laboratory to hearing aid wearer's perceptions of benefit in everyday environments across full-time directional, full-time omnidirectional, and user selectable directional fittings. Identification of possible listening situations that resulted in different self reported hearing aid benefit as a function of microphone type was a secondary objective of this experiment. DESIGN: Fifteen adults with symmetrical, sloping sensorineural hearing loss were fitted bilaterally with in-the-ear (ITE) directional hearing aids. Measures of hearing aid benefit included the Profile of Hearing Aid Benefit (PHAB), the Connected Sentence Test (CST), the Hearing in Noise Test (HINT), and a daily use log. Additionally, two new subscales were developed for administration with the PHAB. These subscales were developed to specifically address situations in which directional hearing aids may provide different degrees of benefit than omnidirectional hearing aids. Participants completed these measures in three conditions: omnidirectional only (O), directional only with low-frequency gain compensation (D), and user-selectable directional/omnidirectional (DO). RESULTS: Results from the speech intelligibility in noise testing indicated significantly more hearing aid benefit in directional modes than omnidirectional. PHAB results indicated more benefit on the background noise subscale (BN) in the DO condition than in the O condition; however, this directional advantage was not present for the D condition. Although the reliability of the newly proposed subscales is as yet unknown, the data were interpreted as revealing a directional advantage in situations where the signal of interest was in front of the participant and a directional disadvantage in situations where the signal of interest was behind the listener or localization was required. CONCLUSIONS: Laboratory directional benefit is reflected in self-assessment measures that focus on listening in noise when the sound source of interest is in front of the listener. The use of a directional hearing aid mode; however, may have either a positive, a neutral, or a negative impact on hearing aid benefit measured in noisy situations, depending on the specific listening situation.  相似文献   

2.
Automatic directionality algorithms currently implemented in hearing aids assume that hearing-impaired persons with similar hearing losses will prefer the same microphone processing mode in a specific everyday listening environment. The purpose of this study was to evaluate the robustness of microphone preferences in everyday listening. Two hearing-impaired persons made microphone preference judgments (omnidirectional preferred, directional preferred, no preference) in a variety of everyday listening situations. Simultaneously, these acoustic environments were recorded through the omnidirectional and directional microphone processing modes. The acoustic recordings were later presented in a laboratory setting for microphone preferences to the original two listeners and other listeners who differed in hearing ability and experience with directional microphone processing. The original two listeners were able to replicate their live microphone preferences in the laboratory with a high degree of accuracy. This suggests that the basis of the original live microphone preferences were largely represented in the acoustic recordings. Other hearing-impaired and normal-hearing participants who listened to the environmental recordings also accurately replicated the original live omnidirectional preferences; however, directional preferences were not as robust across the listeners. When the laboratory rating did not replicate the live directional microphone preference, listeners almost always expressed no preference for either microphone mode. Hence, a preference for omnidirectional processing was rarely expressed by any of the participants to recorded sites where directional processing had been preferred as a live judgment and vice versa. These results are interpreted to provide little basis for customizing automatic directionality algorithms for individual patients. The implications of these findings for hearing aid design are discussed.  相似文献   

3.
OBJECTIVE: The benefits of directional processing in hearing aids are well documented in laboratory settings. Likewise, substantial research has shown that speech understanding is optimized in many settings when listening binaurally. Although these findings suggest that speech understanding would be optimized by using bilateral directional technology (e.g., a symmetric directional fitting), recent research suggests similar performance with an asymmetrical fitting (directional in one ear and omnidirectional in the other). The purpose of this study was to explore the benefits of using bilateral directional processing, as opposed to an asymmetric fitting, in environments where the primary speech and noise sources come from different directions. DESIGN: Sixteen older adults with mild-to-severe sensorineural hearing loss (SNHL) were recruited for the study. Aided sentence recognition using the Hearing in Noise Test (HINT) was assessed in a moderately reverberant room, in three different speech and noise conditions in which the locations of the speech and noise sources were varied. In each speech and noise condition, speech understanding was assessed in four different microphone modes (bilateral omnidirectional mode; bilateral directional mode; directional mode left and omnidirectional mode right; omnidirectional mode left and directional mode right). The benefits and limitations of bilateral directional processing were assessed by comparing HINT thresholds across the various symmetric and asymmetric microphone processing conditions. RESULTS: Study results revealed directional benefit varied based on microphone mode symmetry (i.e., symmetric versus asymmetric directional processing) and the specific speech and noise configuration. In noise configurations in which the speech was located in the front of the listener and the noise was located to the side or surrounded the listener, maximum directional benefit (approximately 3.3 dB) was observed with the symmetric directional fitting. HINT thresholds obtained when using bilateral directional processing were approximately 1.4 dB better than when an asymmetric fitting (directional processing in only one ear) was used. When speech was located on the side of the listener, the use of directional processing on the ear near the speech significantly reduced speech understanding. CONCLUSIONS: Although directional benefit is present in asymmetric fittings, the use of bilateral directional processing optimizes speech understanding in noise conditions in which the speech comes from in front of the listener and the noise sources are located to the side of or surround the listener. In situations in which the speech is located to the side of the listener, the use of directional processing on the ear adjacent to the speaker is likely to reduce speech audibility and thus degrade speech understanding.  相似文献   

4.
5.
The improvement in speech recognition in noise obtained with directional microphones compared to omnidirectional microphones is referred to as the directional advantage. Laboratory studies have revealed substantial differences in the magnitude of the directional advantage across hearing-impaired listeners. This investigation examined whether persons who were successful users of directional microphone hearing aids in everyday living tended to obtain a larger directional advantage in the test booth than persons who were unsuccessful users. Results revealed that the mean directional advantage did not differ significantly between patients who used the directional mode regularly and those who reported little or no benefit from directional microphones in daily living and, therefore, tended to leave their hearing aids set in the default omnidirectional mode. Success with directional microphone hearing aids in everyday living, therefore, cannot be reliably predicted by the magnitude of the directional advantage obtained in the clinic.  相似文献   

6.
OBJECTIVES: Studies have shown that listener preferences for omnidirectional (OMNI) or directional (DIR) processing in hearing aids depend largely on the characteristics of the listening environment, including the relative locations of the listener, signal sources, and noise sources; and whether reverberation is present. Many modern hearing aids incorporate algorithms to switch automatically between microphone modes based on an analysis of the acoustic environment. Little work has been done, however, to evaluate these devices with respect to user preferences, or to compare the outputs of different signal processing algorithms directly to make informed choices between the different microphone modes. This study describes a strategy for automatically switching between DIR and OMNI microphone modes based on a direct comparison between acoustic speech signals processed by DIR and OMNI algorithms in the same listening environment. In addition, data are shown regarding how a decision to choose one microphone mode over another might change as a function of speech to noise ratio (SNR) and spatial orientation of the listener. DESIGN: Speech and noise signals were presented at a variety of SNR's and in different spatial orientations relative to a listener's head. Monaural recordings, made in both OMNI and DIR microphone processing modes, were analyzed using a model of auditory processing that highlights the spectral and temporal dynamics of speech. Differences between OMNI and DIR processing were expressed in terms of a modified spectrotemporal modulation index (mSTMI) developed specifically for this hearing aid application. Differences in mSTMI values were compared with intelligibility measures and user preference judgments made under the same listening conditions. RESULTS: A comparison between the results of the mSTMI analyses and behavioral data (intelligibility and preference judgments) showed excellent agreement, especially in stationary noise backgrounds. In addition, the mSTMI was found to be sensitive to changes in SNR as well as spatial orientation of the listener relative to signal and noise sources. Subsequent mSTMI analyses on hearing aid recordings obtained from real-life environments with more than one talker and modulated noise backgrounds also showed promise for predicting the preferred microphone setting in varied and complex listening environments.  相似文献   

7.
Laboratory evidence suggests that an asymmetric microphone fitting (omnidirectional processing in one ear and directional processing in the other) can provide a directional advantage in background noise that is as great, or nearly as great, as that provided by binaural directional processing (Bentler et al, 2004). The present study investigated whether the potential benefit of an asymmetric fitting observed in the laboratory extends to real-life listening. Specifically, ease of listening was compared across a variety of real-life listening situations for asymmetric microphone fittings and bilateral omnidirectional processing. These ratings were compared to determine whether the asymmetric fitting provided an advantage in listening situations in which directional microphone processing is generally preferred and/or a disadvantage in listening situations in which omnidirectional microphone processing is generally preferred. Results suggest that an asymmetric fitting may be a viable option for patients who cannot or do not switch microphone modes.  相似文献   

8.
This study examined speech intelligibility and preferences for omnidirectional and directional microphone hearing aid processing across a range of signal-to-noise ratios (SNRs). A primary motivation for the study was to determine whether SNR might be used to represent distance between talker and listener in automatic directionality algorithms based on scene analysis. Participants were current hearing aid users who either had experience with omnidirectional microphone hearing aids only or with manually switchable omnidirectional/directional hearing aids. Using IEEE/Harvard sentences from a front loudspeaker and speech-shaped noise from three loudspeakers located behind and to the sides of the listener, the directional advantage (DA) was obtained at 11 SNRs ranging from -15 dB to +15 dB in 3 dB steps. Preferences for the two microphone modes at each of the 11 SNRs were also obtained using concatenated IEEE sentences presented in the speech-shaped noise. Results revealed that a DA was observed across a broad range of SNRs, although directional processing provided the greatest benefit within a narrower range of SNRs. Mean data suggested that microphone preferences were determined largely by the DA, such that the greater the benefit to speech intelligibility provided by the directional microphones, the more likely the listeners were to prefer that processing mode. However, inspection of the individual data revealed that highly predictive relationships did not exist for most individual participants. Few preferences for omnidirectional processing were observed. Overall, the results did not support the use of SNR to estimate the effects of distance between talker and listener in automatic directionality algorithms.  相似文献   

9.
This investigation assessed the extent to which listeners' preferences for hearing aid microphone polar patterns vary across listening environments, and whether normal-hearing and inexperienced and experienced hearing-impaired listeners differ in such preferences. Paired-comparison judgments of speech clarity (i.e. subjective speech intelligibility) were made monaurally for recordings of speech in noise processed by a commercially available hearing aid programmed with an omnidirectional and two directional polar patterns (cardioid and hypercardioid). Testing environments included a sound-treated room, a living room, and a classroom. Polar-pattern preferences were highly reliable and agreed closely across all three groups of listeners. All groups preferred listening in the sound-treated room over listening in the living room, and preferred listening in the living room over listening in the classroom. Each group preferred the directional patterns to the omnidirectional pattern in all room conditions. We observed no differences in preference judgments between the two directional patterns or between hearing-impaired listeners' extent of amplification experience. Overall, findings indicate that listeners perceived qualitative benefits from microphones having directional polar patterns.  相似文献   

10.
In this study, the performance of 48 listeners with normal hearing was compared to the performance of 46 listeners with documented hearing loss. Various conditions of directional and omnidirectional hearing aid use were studied. The results indicated that when the noise around a listener was stationary, a first- or second-order directional microphone allowed a group of hearing-impaired listeners with mild-to-moderate, bilateral, sensorineural hearing loss to perform similarly to normal hearing listeners on a speech-in-noise task (i.e., they required the same signal-to-noise ratio to achieve 50% understanding). When the noise source was moving around the listener, only the second-order (three-microphone) system set to an adaptive directional response (where the polar pattern changes due to the change in noise location) allowed a group of hearing-impaired individuals with mild-to-moderate sensorineural hearing loss to perform similarly to young, normal-hearing individuals.  相似文献   

11.
12.
This investigation assessed the extent to which listeners’ preferences for hearing aid microphone polar patterns vary across listening environments, and whether normal-hearing and inexperienced and experienced hearing-impaired listeners differ in such preferences. Paired-comparison judgments of speech clarity (i.e. subjective speech intelligibility) were made monaurally for recordings of speech in noise processed by a commercially available hearing aid programmed with an omnidirectional and two directional polar patterns (cardioid and hypercardioid). Testing environments included a sound-treated room, a living room, and a classroom. Polar-pattern preferences were highly reliable and agreed closely across all three groups of listeners. All groups preferred listening in the sound-treated room over listening in the living room, and preferred listening in the living room over listening in the classroom. Each group preferred the directional patterns to the omnidirectional pattern in all room conditions. We observed no differences in preference judgments between the two directional patterns or between hearing-impaired listeners’ extent of amplification experience. Overall, findings indicate that listeners perceived qualitative benefits from microphones having directional polar patterns.  相似文献   

13.
Abstract

To evaluate whether speech recognition in noise differs according to whether a wireless remote microphone is connected to just the cochlear implant (CI) or to both the CI and to the hearing aid (HA) in bimodal CI users. The second aim was to evaluate the additional benefit of the directional microphone mode compared with the omnidirectional microphone mode of the wireless microphone. This prospective study measured Speech Recognition Thresholds (SRT) in babble noise in a ‘within-subjects repeated measures design’ for different listening conditions. Eighteen postlingually deafened adult bimodal CI users. No difference in speech recognition in noise in the bimodal listening condition was found between the wireless microphone connected to the CI only and to both the CI and the HA. An improvement of 4.1?dB was found for switching from the omnidirectional microphone mode to the directional mode in the CI only condition. The use of a wireless microphone improved speech recognition in noise for bimodal CI users. The use of the directional microphone mode led to a substantial additional improvement of speech perception in noise for situations with one target signal.  相似文献   

14.
PURPOSE: To examine speech recognition performance and subjective ratings for directional and omnidirectional microphone modes across a variety of simulated classroom environments. METHOD: Speech recognition was measured in a group of 26 children age 10-17 years in up to 8 listening environments. RESULTS: Significant directional benefit was found when the sound source(s) of interest was in front, and directional decrement was measured when the sound source of interest was behind the participants. Of considerable interest is that a directional decrement was observed in the absence of directional benefit when sources of interest were both in front of and behind the participants. In addition, limiting directional processing to the low frequencies eliminated both the directional deficit and the directional advantage. CONCLUSIONS: Although these data support the use of directional hearing aids in some noisy school environments, they also suggest that use of the directional mode should be limited to situations in which all talkers of interest are located in the front hemisphere. These results highlight the importance of appropriate switching between microphone modes in the school-age population.  相似文献   

15.
Omnidirectional, supercardioid, and adaptive directional microphones (ADM) were evaluated in combination with the ADRO amplification scheme for eight participants with moderate sloping hearing losses. The ADM produced better speech perception scores than the other two microphones in all noise conditions. Participants performed the Hearing in Noise Test sentences at -4.5 dB SNR or better, which is similar to the level achievable with normal hearing. The Speech, Spatial and Qualities of Hearing Scale indicated no disadvantages of using the ADM relative to the omnidirectional microphone in real-life situations. The ADM was preferred over the omnidirectional microphone in 54% of situations, compared to 17% preferences for the omnidirectional microphone, and 29% no preference. The combination of the ADM to improve SNR, and ADRO to keep the signal output comfortable and audible provided near-normal hearing performance for people with moderate hearing loss. The ADM is the recommended microphone configuration for ADRO hearing aids.  相似文献   

16.
In this study speech intelligibility in background noise was evaluated with 10 binaural hearing-aid users for hearing aids with one omnidirectional microphone and a hearing aid with a two-microphone configuration (enabling an omnidirectional as well as a directional mode). Signal-to-noise ratio (SNR) measurements were carried out for three different types of background noise (speech-weighted noise, traffic noise and restaurant noise) and two kinds of speech material (bisyllabic word lists and sentences). The average SNR improvement of the directional microphone configuration relative to the omnidirectional one was 3.4 dB for noise presented from 90 degrees azimuth. This improvement was independent of the specific type of noise and speech material, indicating that one speech-in-noise condition may yield enough relevant information in the evaluation of directional microphones and speech understanding in noise.  相似文献   

17.
In this study, two types of hearing aids were used. Both aids had the same frequency characteristics for frontal sound, but one employed an omnidirectional microphone and the other a directional microphone. The frequency characteristics of both hearing aids were measured for five azimuths on KEMAR and in situ in 12 normal-hearing subjects. For these subjects we also determined the speech reception threshold (SRT) with background noise in two rooms with different reverberation times. The direction of the speech stimuli was always frontal; the direction of the noise was varied. Additionally, directional hearing was measured with short noise bursts from eight loudspeakers surrounding the subject. In the less reverberant room, sounds coming from behind were less amplified by the hearing aid with the directional microphone than by the one with the omnidirectional microphone. In this room the monaural SRT values were largely determined by the level of the background noise. For the directional hearing aids there was an extra binaural advantage which depended on the direction of the background noise. Only for low-frequency noise bursts was directional hearing better with directional hearing aids. In the more reverberant room, no distinct differences between the frequency characteristics of the two hearing aid types were measured. However, a systematic difference between monaural SRT values measured through the two hearing aids was found. This difference was independent of noise azimuth. In conclusion, hearing aid(s) with a directional microphone showed no disadvantages and clear advantages under specific conditions.  相似文献   

18.
OBJECTIVE: To evaluate the impact of venting, microphone port orientation, and compression on the electroacoustically measured directivity of directional and omnidirectional behind-the-ear hearing aids. In addition, the average directivity provided across three brands of directional and omnidirectional behind-the-ear hearing aids was compared with that provided by the open ear. DESIGN: Three groups of hearing aids (four instruments in each group) representing three commercial models (a total of 12) were selected for electroacoustic evaluation of directivity. Polar directivity patterns were measured and directivity index was calculated across four different venting configurations, and for five different microphone port angles. All measurements were made for instruments in directional and omnidirectional modes. Single source traditional, and two-source modified front-to-back ratios were also measured with the hearing aids in linear and compression modes. RESULTS: The directivity provided by the open (Knowles Electronics Manikin for Acoustic Research) ear was superior to that of the omnidirectional hearing aids in this study. Although the directivity measured for directional hearing aids was significantly better than that of omnidirectional models, significant variability was measured both within and across the tested models both on average and at specific test frequencies. Both venting and microphone port orientation affected the measured directivity. Although compression reduced the magnitude of traditionally measured front-to-back ratios, no difference from linear amplification was noted using a modified methodology. CONCLUSIONS: The variation in the measured directivity both within and across the directional microphone hearing aid brands suggests that manufacturer's specification of directivity may not provide an accurate index of the actual performance of all individual instruments. The significant impact of venting and microphone port orientation on directivity indicate that these variables must be addressed when fitting directional hearing aids on hearing-impaired listeners. Modified front-to-back ratio results suggest that compression does not affect the directivity of hearing aids, if it is assumed that the signal of interest from one azimuth, and the competing signal from a different azimuth, occur at the same time.  相似文献   

19.
20.
Hearing aids currently available on the market with both omnidirectional and directional microphone modes often have reduced amplification in the low frequencies when in directional microphone mode due to better phase matching. The effects of this low-frequency gain reduction for individuals with hearing loss in the low frequencies was of primary interest. Changes in sound quality for quiet listening environments following gain compensation in the low frequencies was of secondary interest. Thirty participants were fit with bilateral in-the-ear hearing aids, which were programmed in three ways while in directional microphone mode: no-gain compensation, adaptive-gain compensation, and full-gain compensation. All participants were tested with speech in noise tasks. Participants also made sound quality judgments based on monaural recordings made from the hearing aid. Results support a need for gain compensation for individuals with low-frequency hearing loss of greater than 40 dB HL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号