首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The MPL gene codes for the thrombopoietin receptor, whose ligand specifically controls megakaryocytic differentiation. To understand the molecular basis for the megakaryocyte-specific expression of MPL, we analyzed the promoter of this gene. A 200 bp fragment is sufficient for high-level specific expression. This fragment can bind several trans- acting factors in vitro, including GATA-1 and members of the Ets family. GATA-1 binds with low affinity to a unique GATA motif at -70 in the MPL promoter, and destruction of this site yields only a modest decrease in expression level in HEL cells. Ets proteins also bind with low affinity to two sites. One is located at position -15 and its destruction reduces expression to 50%; the other is located immediately downstream of the GATA motif and plays a crucial role in expression of the promoter in HEL cells, as its inactivation reduces expression to 15%. Furthermore, GATA-1 and two Ets proteins, Ets-1 and Fli-1, can trans-activate the MPL promoter in heterologous cells. The effects of GATA-1 and these two Ets proteins are additive. Together with our previous results on the glycoprotein IIb (GpIIb) promoter, this study indicates a molecular basis for the coregulation of early markers of megakaryocyte differentiation.  相似文献   

4.
5.
The ETS family member Tel is rearranged in human leukemia of both myeloid and lymphoid origin while the ETS member Fli-1 is insertionally activated in Friend erythroleukemia in mice and is translocated to the EWS locus in Ewing's sarcoma. In previous studies we demonstrated that Tel binds to Fli-1 and blocks transactivation of megakaryocytic promoters by Fli-1. In this study we demonstrate that expression of Fli-1 in the leukemia cell line K562 induces a megakaryocytic phenotype and the expression of the platelet markers GPIX, GP1balpha, and GPIIb. Introduction of Tel blocked the megakaryocytic phenotype induced by Fli-1, suggesting a biological correlation to the biochemical interaction of Tel and Fli-1 reported previously.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
In washed platelet systems, thrombin has been demonstrated to downregulate the platelet surface expression of glycoprotein (GP) Ib and GPIX. In the present study, we addressed the question as to whether, in the more physiologic milieu of whole blood, downregulation of platelet surface GPIb and GPIX can be induced by thrombin, adenosine diphosphate (ADP), and/or by an in vivo wound. Thrombin-induced downregulation of GPIb and GPIX on the surface of individual platelets in whole blood was demonstrated by the use of flow cytometry, a panel of monoclonal antibodies (MoAbs) and, to inhibit fibrin polymerization, the peptide glycyl-L-prolyl-L-arginyl-L-proline. Platelets were identified in whole blood by a GPIV-specific MoAb and exclusion of monocytes by light scattering properties. Flow cytometric analysis of whole blood emerging from a standardized bleeding-time wound established that downregulation of platelet surface GPIb and GPIX can occur in vivo. A GPIb-IX complex-specific antibody indicated that the GPIb and GPIX remaining on the surface of platelets activated in vivo or in vitro were fully complexed. Simultaneous analysis of individual platelets by two fluorophores demonstrated that thrombin-induced platelet surface exposure of GMP-140 (degranulation) was nearly complete at the time that downregulation of platelet surface GPIb-IX was initiated. However, degranulation was not a prerequisite because ADP downregulated platelet surface GPIb-IX without exposing GMP-140 on the platelet surface. Inhibitory effects of cytochalasins demonstrated that the activation-induced downregulation of both GPIX and GPIb are dependent on actin polymerization. In summary, downregulation of the platelet surface GPIb-IX complex occurs in whole blood stimulated by thrombin, ADP, or an in vivo wound, and is independent of alpha granule secretion.  相似文献   

16.
K E Orwig  M J Soares 《Endocrinology》1999,140(9):4032-4039
The decidual/trophoblast PRL-related protein (d/tPRP) is dually expressed by decidual and trophoblast cells during pregnancy. We have characterized the proximal d/tPRP promoter responsible for directing d/tPRP expression in decidual and trophoblast cells. We have demonstrated that the proximal 93 bp of d/tPRP 5'-flanking DNA are sufficient to direct luciferase gene expression in primary decidual and Rcho-1 trophoblast cells, but not in fibroblast, undifferentiated uterine stromal cells or trophoblast cells of a labyrinthine lineage. The 93-bp d/tPRP promoter was also sufficient to direct differentiation-dependent expression in trophoblast giant cells. Mutational analysis demonstrated the differential importance of activating protein-1 and Ets regulatory elements (located within the proximal 93 bp of d/tPRP 5'-flanking DNA) for activation of the d/tPRP promoter in decidual vs. trophoblast cells. Disruption of the activating protein-1 regulatory element inhibited d/tPRP promoter activity by more than 95% in decidual cells, and approximately 80% trophoblast cells. Disruption of the Ets regulatory element reduced d/tPRP promoter activity by approximately 50% in decidual cells, while inactivating the d/tPRP promoter in trophoblast cells. Protein interactions with the trophoblast Ets regulatory element were shown to be cell type specific and to change during trophoblast giant cell formation. In conclusion, a 93-bp region of the d/tPRP promoter is shown to contain regulatory elements sufficient for gene activation in decidual and trophoblast cells.  相似文献   

17.
18.
19.
Bernard-Soulier syndrome (BSS) is an autosomal recessive bleeding disorder caused by quantitative or qualitative abnormalities in the glycoprotein (GP) Ib/IX/V complex, the platelet receptor for von Willebrand factor. This complex is composed of four subunits, GPIbalpha, GPIbbeta, GPIX, and GPV, and the coordinated assembly of GPIbalpha, GPIbbeta, and GPIX is required for the efficient surface expression of a functional complex. We report here a novel nonsense mutation of the GPIbbeta gene associated with BSS. Flow cytometric analysis of the patient's platelets showed markedly reduced GPIbalpha and absent GPIX surface expression. Immunoblot analysis of solubilized platelets showed that a small amount of GPIbalpha was detected; however, GPIbbeta and GPIX were undetectable. DNA sequencing analysis revealed a novel nonsense mutation of the GPIbbeta gene that converts Trp (TGG) to a stop codon (TAG) at residue 123. Transient transfection studies revealed that the mutant GPIbbeta polypeptide was not detected in the transfected 293T cells, suggesting that null expression of the mutant GPIbbeta impairs expression of the GPIbalpha and GPIX subunits and results in a BSS phenotype in the patient.  相似文献   

20.
Bernard-Soulier syndrome (BSS) is a rare bleeding disorder characterized by giant platelets, thrombocytopenia, and prolonged bleeding time. It is caused by abnormalities in the glycoprotein (GP) Ib/IX/V complex, the receptor for von Willebrand factor (vWF). Most cases of BSS described so far involve quantitative rather than qualitative defects in the complex. In this study, we investigated the effects of two naturally occurring mutations in the GPIbbeta gene, C122S and 443delG, on the expression of the GPIb/IX complex identified in a variant type of BSS in which the platelets had severely reduced GPIbalpha ( approximately 10%) and less markedly reduced GPIbbeta and GPIX ( approximately 20%) expression. Immunoblot analysis showed the absence of non-reduced GPIb (GPIbalpha/GPIbbeta) in the patient's platelets. Transient transfection experiments in 293T cells revealed the expression of GPIbbeta Ser122 polypeptide and absence of GPIbbeta 443delG polypeptide. Although no disulfide-linked association was observed between GPIbbeta Ser122 and GPIbalpha, GPIbbeta Ser122 was non-covalently associated with both GPIbalpha and GPIX subunits on the cell surface when cotransfected with wild-type GPIbalpha and GPIX. Chinese hamster ovary cells stably expressing GPIbalpha/Ibbeta Ser122/IX had the ability to bind soluble vWF and to aggregate in the presence of ristocetin. These results suggest that despite disruption of the disulfide linkage between GPIbalpha and GPIbbeta, GPIb/IX is formed, but its stability may be impaired, resulting in low levels of the complex on the platelet membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号