首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper reports on the effects of porosity and its distribution on the fatigue strength of bone cement. Hand-mixed (HM) and vacuum-mixed (VM) bone cement samples were fatigue tested to failure. The point of failure commonly coincided with large single pores (in the VM materials) and multiple pores in clusters (in the HM material). The effect of pores was analysed using the Theory of Critical Distances (TCD), a theory previously developed to explain the effect of notches and other stress concentrations on fatigue and fracture. Clusters of pores were analysed by developing a criterion to decide whether local cracking would act to link pores together, forming a single stress concentration of more complex shape. This approach enabled us to predict the high-cycle fatigue strength of samples containing clusters of pores, with good accuracy (errors less than 13%). We then used the analysis to develop general rules for the effect of pore size and proximity on fatigue strength. For example, we showed that a single pore of 2mm diameter or more would cause a significant decrease in the fatigue strength (compared to that of pore-free material); however, two pores of only 1mm diameter in close proximity would be equally damaging. This demonstrates the importance not only of pore size but also of pore density and distribution. However, pores do have beneficial effects such as improved drug dispersion, bone ingrowth and crack tip blunting. Therefore, given the findings from this study, a possible step forward in the development of surgical bone cements may involve a compromise in which relatively small pores are evenly distributed throughout the material.  相似文献   

2.
Fracture surfaces of both monotonic and fatigue loaded bone cement samples were examined to investigate the fractographic characteristics of PMMA. Classic cleavage step river patterns were observed on all monotonically loaded samples, running downstream in the direction of crack propagation. All fatigue cracks initiated at internal pores and the direction of crack propagation of many cracks was discernible. Porosity, pore size, and pore size distribution were found to affect the crack initiation and fatigue behavior of bone cement. Statistical analysis revealed a strong negative correlation between two-dimensional porosity present on the fracture surfaces and the cycles to failure. The fractographic observations of these fatigue samples elucidate one reason why porosity reduction by centrifugation or vacuum mixing increases the fatigue life of PMMA bone cement.  相似文献   

3.
Jeffers JR  Browne M  Taylor M 《Biomaterials》2005,26(27):5532-5541
The behaviour of bone cement under fatigue loading is of interest to assess the long-term in vivo performance. In this study, uniaxial tensile fatigue tests were performed on CMW-1 bone cement. Acoustic emission sensors and an extensometer were attached to monitor damage accumulation and creep deformation respectively. The S-N data exhibited the scatter synonymous with bone cement fatigue, with large pores generally responsible for premature failure; at 20 MPa specimens failed between 2 x 10(3) and 2 x 10(4) load cycles, while at 7 MPa specimens failed from 3 x 10(5) load cycles but others were still intact after 3 x 10(6) load cycles. Acoustic emission data revealed a non-linear accumulation of damage with respect to time, with increasing non-linearity at higher stress levels. The damage accumulation process was not continuous, but occurred in bursts separated by periods of inactivity. Damage in the specimen was located by acoustic emissions, and allowed the failure site to be predicted. Acoustic emission data were also used to predict when failure was not imminent. When this was the case at 3 million load cycles, the tests were terminated. Creep strain was plotted against the number of load cycles and a linear relationship was found when a double logarithmic scale was employed. This is the first time a brand of cement has been characterised in such detail, i.e. fatigue life, creep and damage accumulation. Results are presented in a manner that allows direct comparison with published data for other cements. The data can also be used to characterise CMW-1 in computational simulations of the damage accumulation process. Further evidence is provided for the condition-monitoring capabilities of the acoustic emission technique in orthopaedic applications.  相似文献   

4.
In this study, the fatigue strengths of acrylic cement prepared by various commercially available reduced pressure mixing systems were compared with the fatigue strength of cement mixed by hand (control) under atmospheric conditions. The following observations were made from this investigation. The mean fatigue strength of reduced pressure mixed acrylic bone cement is double that of cement mixed by hand using an open bowl, 11,354+/-6,441 cycles to failure for reduced pressure mixing in comparison with 5,938+/-3,199 cycles for mixing under atmospheric conditions. However, the variability in mean fatigue strengths of reduced pressure mixed bone cement is greater for some mixing devices. The variation in fatigue strengths for the different mixing techniques is explained by the different porosity distributions. The design of the reduced pressure mixing system and the technique employed during mixing strongly contribute to the porosity distribution within the acrylic bone cement. The level of reduced pressure applied during cement mixing has an effect on the fatigue strength of bone cement, but the mixing mechanism is significantly more influential.  相似文献   

5.
The beneficial effect of porosity reduction on the fatigue life of bone cement has been demonstrated in numerous experimental studies. Clinically, however, it seems that the beneficial effect of porosity reduction of cement around total hip replacement components can only be found in large follow-up studies. Little is known about the actual mechanical effect of a pore on fatigue crack formation in cement mantles. We studied the effect of pores on the crack formation process in a finite element model of a transverse slice of a total hip reconstruction. We created models with a single large pore and models with multiple pores at levels of 2, 4, and 9%. The models were cyclically torque-loaded, causing macrocracks to appear in the cement mantle. In all models, we found that pores acted as microcrack initiators. However, pores could have both a detrimental and a beneficial effect on the macrocrack propagation in the cement mantle. Both effects were seen in the models with a single large pore and in the models with multiple pores. Pores would either accelerate, deviate, or decelerate the macrocrack propagation in the cement mantle. The effect of the pores depended on the location of the pores with respect to the stress intensities in the model, but was independent of the pore size or the level of porosity. The results may explain why the beneficial effect of vacuum mixing is difficult to demonstrate clinically. Stress intensities that are present in a cement mantle in an in vivo situation may overshadow the detrimental effect of a pore, while the beneficial effect may become more pronounced.  相似文献   

6.
The fatigue properties of Simplex P and Palacos R bone cements were compared to their antibiotic impregnated counterparts AKZ* and Palacos R with gentamycin. The effect of porosity reduction by centrifugation of all four cement types was also assessed. Fifteen specimens of each cement type were prepared according to manufacturer's instructions and 15 additional specimens of each cement type were prepared by mixing the powder with chilled monomer (0 degrees C) and then centrifuging the cement immediately after mixing. Fifteen fully reversed tension-compression fatigue tests were performed at 15 MPa in stress control for each cement preparation in vitro while simulating the in vivo state (37 degrees C and 100% humidity). The number of cycles to failure were recorded. There was no significant difference in the fatigue life of Palacos R and Simplex P when both cements were prepared in the standard fashion. The addition of 1/2 g of gentamycin to Palacos R did not significantly alter its fatigue properties. The addition of 0.5 g of erythromycin and 0.24 g of colistin did not decrease the fatigue life of Simplex P. Centrifugation significantly improved the fatigue properties of Simplex P and AKZ. The fatigue lives of Palacos R and Palacos R with gentamycin were not improved by centrifugation. The fatigue life of centrifuged Simplex P was significantly greater than the fatigue life of Palacos R and of Palacos R with gentamycin, whether the Palacos R based cements were centrifuged or not.  相似文献   

7.
The long-term survival of cemented hip replacements depends on the ability of the cemented fixation to resist fatigue damage. Damage has been assumed to accumulate linearly (Miner's law) even though it is unlikely to be the case in such a porous brittle material. This study addresses the nonlinear stress-dependent nature of fatigue damage accumulation in acrylic bone cement. Specimens were subjected to a zero-to-tension fatigue load in water at 37 degrees C. A total of 15 specimens were tested, i.e., five specimens at each of three stress levels. The specimens were cyclically loaded to a certain fraction of their fatigue lives and the amount of microcracking present at that time was quantified by counting each crack and measuring its length. This procedure was repeated until the specimen failed. A total of 801 cracks formed in the 15 specimens. All cracks were found to initiate at pores. Crack propagation directions were distributed normally about the direction perpendicular to the applied load at the lower stress levels, but at higher stress, the distribution tended to be broader. At higher stresses, more cracks were produced per pore. The damage accumulation process in acrylic bone cement was found to be nonlinear with the degree of nonlinearity increasing with stress. Furthermore, great variability was found which was attributed to the differences in porosity between specimens. A power law equation is given which describes the predicted relationship between damage accumulation and number of loading cycles as a function of the stress level.  相似文献   

8.
Microtomography assessment of failure in acrylic bone cement   总被引:2,自引:0,他引:2  
Micromechanical studies of fatigue and fracture processes in acrylic bone cement have been limited to surface examination techniques and indirect signal analysis. Observations may then be mechanically unrepresentative and/or affected by the presence of the free surface. To overcome such limiting factors the present study has utilised synchrotron X-ray microtomography for the observation of internal defects and failure processes that occurred within a commercial bone cement during loading. The high resolution and the edge detection capability (via phase contrast imaging) have enabled clear microstructural imaging of both strongly and weakly absorbing features, with an effective isotropic voxel size of 0.7 microm. Detailed assessment of fatigue damage processes in in vitro fatigue test specimens is also achieved. Present observations confirm a link with macroscopic failure and the presence of larger voids, at which crack initiation may be linked to the mechanical stress concentration set up by adjacent beads at pore surfaces. This study does not particularly support the suggested propensity for failure to occur via the inter-bead matrix; however crack deflections at matrix/bead interfaces and the incidence of crack arrest within beads do imply locally increased resistance to failure and potential improvements in global crack growth resistance via crack tip shielding.  相似文献   

9.
Lewis G  Sadhasivini A 《Biomaterials》2004,25(18):4425-4432
In the literature on fatigue testing of acrylic bone cements, data sets of various sizes have been used in different test series for the same cement formulation. There are two important consequences of this situation. First, it means that some test series last much longer than others, with all the implications for the cost of testing. Second, it makes drawing conclusions about the fatigue performance of a cement, based on the results of different literature series, a problematic issue. Clearly then, a recommendation as to what should be the minimum number of test specimens to use that would allow for confidence in the results of the statistical treatment of the test results (Gmin) would be desirable. In the present work, a method that could be used to culminate in such a recommendation is described. This method involves (i) obtaining experimental fatigue test results and (ii) analyzing those results using the Weibull probability distribution function and other statistical methods. This methodology is illustrated using fatigue life results obtained from uniaxial tension-compression fatigue tests on specimens fabricated from the polymerizing dough of one commercially available acrylic bone cement. For a tolerable error of 5%, we estimated Gmin to be either 7 (if the fatigue life results are treated using the two-parameter Weibull distribution function) or 11 (if the fatigue life results are treated using the three-parameter Weibull distribution function). To be on the conservative side, we therefore recommend that Gmin be 11. Three key limitations of the methodology presented here are discussed.  相似文献   

10.
文题释义:3D打印:3D打印技术开创了增材制造的生产方式,即依照3D设计蓝图可将金属粉末等原材料逐层堆积而制成最终产品,擅长构建形状结构复杂的产品与个体化定制,制作特异性假体或植入物,供植入以达到重建等目的,在骨科领域得到了广泛应用。 钛合金骨小梁:是以钛合金粉末为原材料,采用金属3D打印技术通过金属微粒逐层熔融叠加生成的一种类人体骨小梁三维空间网孔结构,其力学性能和生物学性能和人体的松质骨骨小梁极为相似,作为人工植入假体的表面结构,具有非常出色的骨长入效果。 背景:3D打印钛合金多孔结构以其良好的机械性能和生物相容性已经在骨科植入假体设计与临床应用方面得到了快速发展,与涂层假体相比,钛合金骨小梁结构具有骨长入快和骨长入好的优点。为了保证骨科植入物的安全,目前多采用实验方式确定骨小梁结构的拉伸、剪切疲劳和弯曲疲劳强度。 目的:通过力学实验和有限元数值模拟方法研究骨小梁多孔结构的力学性能。 方法:①3D打印钛合金骨小梁拉伸试件实验:设计并制备3D打印钛合金骨小梁拉伸试件,骨小梁结构的丝径为0.28-0.35 mm、孔径为0.71 mm、孔隙率为73%。检测钛合金骨小梁结构的拉伸强度,分析其失效机制,同时分析不同打印位置对骨小梁拉伸强度的影响。②数值模拟实验:利用有限元方法建立包括骨小梁理论结构的拉伸试件实体模型,模拟骨小梁试件的拉伸破坏过程。 结果与结论:①3D打印钛合金骨小梁拉伸试件的极限载荷分布在39.55-47.11 kN之间,等效极限拉伸应力分布在62.79-74.53 MPa之间,拉伸破坏的结果为网状结构断裂,说明钛合金骨小梁具有较高的拉伸强度;②3D打印钛合金骨小梁拉伸试件实验与数值模拟实验均显示,骨小梁试件受到拉伸破坏时的破坏形式为丝径断裂,不会在骨小梁与钛合金实体的结合面发生断裂;③数值模拟实验中骨小梁试件的拉伸破坏载荷低于3D打印钛合金骨小梁拉伸试件,造成该差异的原因主要为:3D打印骨小梁试件的丝径(280-350 μm之间)大于骨小梁的理论丝径(142 μm),而孔径(孔隙率75%)小于骨小梁的理论孔径(孔隙率96%)。 ORCID: 0000-0001-7000-2093(张兰) 中国组织工程研究杂志出版内容重点:生物材料;骨生物材料; 口腔生物材料; 纳米材料; 缓释材料; 材料相容性;组织工程  相似文献   

11.
Augmentation of acrylic bone cement with multiwall carbon nanotubes   总被引:1,自引:0,他引:1  
Acrylic bone cement, based on polymethylmethacrylate (PMMA), is a proven polymer having important applications in medicine and dentistry, but this polymer continues to have less than ideal resistance to mechanical fatigue and impact. A variety of materials have been added to bone cement to augment its mechanical strength, but none of these augmentative materials has proven successful. Carbon nanotubes, a new hollow multiwalled tubular material 10-40 nm in diameter, 10-100 microm long, and 50-100 times the strength of steel at 1/6 the weight, have emerged as a viable augmentation candidate because of their large surface area to volume ratio. The objective of this study was to determine if the addition of multiwall carbon nanotubes to bone cement can alter its static or dynamic mechanical properties. Bar-shaped specimens made from six different (0-10% by weight) concentrations of multiwall carbon nanotubes were tested to failure in quasi-static 3-point bending and in 4-point bending fatigue (5 Hz). Analyses of variance and the 3-Parameter Weibull model were used to analyze the material performance data. The 2 wt % MWNT concentration enhanced flexural strength by 12.8% (p=0.003) and produced a 13.1% enhancement in yield stress (p=0.002). Bending modulus increased slightly with the smaller (<5 wt % MWNT) concentrations, but increased 24.1% (p<0.001) in response to the 10 wt % loading. While the 2 wt % loading produced slightly improved quasi-static test results, it was associated with clearly superior fatigue performance (3.3x increase in the Weibull mean fatigue life). Weibull minimum fatigue life (No), Weibull modulus (alpha), and characteristic fatigue life (beta) for bone cement augmented with carbon nanotubes were enhanced versus that observed in the control group. These data unambiguously showed that the bone cement-MWNT polymer system has an enhanced fatigue life compared to "control" bone cement (no added nanotubes). It is concluded that specific multiwall carbon nanotube loadings can favorably improve the mechanical performance of bone cement.  相似文献   

12.
The microcracking and damage accumulation process in human cortical bone was characterized by performing cyclic loading under four-point bending at ambient temperature. A non-destructive nuclear magnetic resonance (NMR) spin-spin (T(2)) relaxation technique was applied to quantify the apparent changes in bone porosity as a function of cyclic loading and prior damage accumulation, first to unloaded cortical bone to quantify the initial porosity and then to fatigued cortical bone that was subjected to cyclic loading to various levels of modulus degradation and microdamage in the form of microcracks. The NMR T(2) relaxation time and amplitude data of the fatigued bone were compared against the undamaged state. The difference in the T(2) relaxation time data was taken as a measure of the increase in pore size, bone porosity or microcrack density due to microdamage induced by cyclic loading. A procedure was developed to deduce the number and size distributions of microcracks formed in cortical bone. Serial sectioning of the fatigued bone showed the formation of microcracks along the cement lines or within the interstitial tissue. The results on the evolution of microdamage derived from NMR measurements were verified by independent experimental measurements of microcrack density using histological characterization techniques. The size distribution and population of the microcracks were then utilized in conjunction with an analytical model to predict the degradation of the elastic modulus of cortical bone as a function of damage accumulation.  相似文献   

13.
Mechanical failure of poly(methyl methacrylate) (PMMA) bone cement is linked to failure of cemented total joint prostheses. An essential step to minimize, if not eliminate, cement fracture is to understand the material characteristics controlling fracture resistance. At least four phases of bone cement can be identified that may affect the damage zone formation: pre-polymerized beads, interbead matrix polymer, BaSO4, and porosity. Gel permeation chromatography (GPC) was used to determine the molecular weight (MW) distributions of the two polymer phases. Mechanical testing, scanning electron microscopy and light microscopy were used to analyse fracture mechanisms. Fatigue crack propagation of bone cement was distinctly different from rapid crack propagation. Microcracks defined the damage zone for fatigue fracture. The microcracks developed in the interbead matrix and not through the pre-polymerized beads. Light microscopy revealed evidence of craze formation on surfaces of fractured beads during rapid fracture, but not on fatigue surfaces. GPC analysis indicated an increase in MW from the bead phase alone to the fully cured bone cement, indicating a greater MW in the interbead matrix polymer. Increases of 36 and 176% were measured for two different bone cements, but the bulk of the polymer has an MW of less than 1 × 106. Three factors were suggested to explain why the microcracks seem to prefer to grow in the interbead matrix: the presence of BaSO4, shrinkage during the curing process, and the different polymerization processes of the bead and the interbead polymers. Pores had an affect on the microcrack formation as well, and did not need to be directly in front of the crack tip to interact with the damage zone. The pores seemed to act as nucleation sites for microcracks. The porosity-microcrack nucleation interaction may explain and reconcile the apparently disparate results concerning the effect of porosity on fracture toughness and fatigue life. Porosity may, however, also provide positive contributions to the fracture properties of bone cement by dispersing the energy at the crack tip, forming a larger damage zone, and effectively blunting the crack. The crack propagation mechanisms revealed by this research indicated the importance of microstructure in the fatigue failure of PMMA.  相似文献   

14.
Poly(methyl methacrylate) (PMMA) bone cements have a long and successful history of use for implant fixation, but suffer from a relatively low fracture and fatigue resistance which can result in failure of the cement and the implant. Fiber or particulate reinforcement has been used to improve mechanical properties, but typically at the expense of the pre-cured cement viscosity, which is critical for successful integration with peri-implant bone tissue. Therefore, the objective of this study was to investigate the effects of zirconia fiber reinforcement on the fatigue life of acrylic bone cements while maintaining a relatively low pre-cured cement viscosity. Sintered straight or variable diameter fibers (VDFs) were added to a PMMA cement and tested in fully reversed uniaxial fatigue until failure. The mean fatigue life of cements reinforced with 15 and 20 vol% straight zirconia fibers was significantly increased by ~40-fold, on average, compared to a commercial benchmark (Osteobond?) and cements reinforced with 0–10 vol% straight zirconia fibers. The mean fatigue life of a cement reinforced with 10 vol% VDFs was an order of magnitude greater than the same cement reinforced with 10 vol% straight fibers. The time-dependent viscosity of cements reinforced with 10 and 15 vol% straight fibers was comparable to the commercial benchmark during curing. Therefore, the addition of relatively small amounts of straight and variable diameter zirconia fibers was able to substantially improve the fatigue resistance of acrylic bone cement while exhibiting similar handling characteristics compared to current commercial products.  相似文献   

15.
The influence of the storage temperature of the cement constituents prior to mixing (21 vs. 4 degrees C) and the mixing method (hand mixing vs. vacuum mixing) on the uniaxial tension-compression fatigue performance and porosity of Palacos R acrylic bone cement was studied. The fatigue results were analyzed using the three-parameter Weibull equation. The fatigue performance was expressed as an index I, which was defined as the product of the Weibull characteristic fatigue life and the square root of the Weibull slope. Statistical analyses of these results show that although the mixing method (for a given storage temperature) exerts a significant influence on the fatigue performance and areal porosity, the effect of storage temperature (for a given mixing method) on either of these parameters is not significant.  相似文献   

16.
Cementing with poly(methyl methacrylate) (PMMA) is a common means of fixing total hip prostheses. Bone cement fails mechanically, and subsequent loosening frequently requires correction via revision surgery. An initial step in optimizing bone cement properties is to establish which properties are critical to the material's in vivo performance. The objectives were to discern the critical in vivo failure mechanisms of bone cement. Fracture surfaces of bone cement specimens that failed in vivo were compared with fatigue and rapid fracture surfaces created in vitro. In vivo fracture processes of bone cement were positively identified and explained by the elucidation of PMMA fracture micromechanisms. The ex vivo fracture surfaces are remarkably similar to in vitro fatigue fracture surfaces. The fractographic data document that the primary in vivo failure mechanism of bone cement is fatigue, and the fatigue cracks grow by developing a microcraze shower damage zone. Agglomerates of BaSO4 particles can be implicated in some bone cement failures, large flaws or voids in vivo can lead to a rapid, unstable fracture, pores in the PMMA mass have a clear influence on a propagating crack, and wear of the fracture surfaces occurs, and may produce PMMA debris, exacerbating bone destruction.  相似文献   

17.
Failure of the bone cement mantle has been implicated in the loosening process of cemented hip stems. Current methods of investigating degradation of the cement mantle in vitro often require sectioning of the sample to confirm failure paths. The present research investigates acoustic emission as a passive experimental method for the assessment of bone cement failure. Damage in bone cement was monitored during four point bending fatigue tests through an analysis of the peak amplitude, duration, rise time (RT) and energy of the events emitted from the damage sections. A difference in AE trends was observed during failure for specimens aged and tested in (i) air and (ii) Ringer's solution at 37 degrees C. It was noted that the acoustic behaviour varied according to applied load level; events of higher duration and RT were emitted during fatigue at lower stresses. A good correlation was observed between crack location and source of acoustic emission, and the nature of the acoustic parameters that were most suited to bone cement failure characterisation was identified. The methodology employed in this study could potentially be used as a pre-clinical assessment tool for the integrity of cemented load bearing implants.  相似文献   

18.
The resistance of macroporous calcium phosphate ceramics to compressive strength generally is low and depends on, among other factors, porosity percentage and pore size. A compromise always is adopted between high porosity, required for a good integration, and mechanical strength, which increases with material density. We improved the strength of macroporous calcium phosphate ceramics of interconnected porosity by filling the pores with a highly soluble, self-setting calcium phosphate cement made of TCP and DCPD. Cylinders of the resulting material were implanted in sheep condyles and subjected to histological analysis after 20, 60, and 120 days. Microradiographs were made of the histological sections. The control material consisted of ceramic that had not been loaded with cement. Progressive ingrowth of bone into the ceramic pores occurred as the cement was degraded during the first implantation period. Marked degradation of the cement was apparent after 2 months, with fragmentation of the cement in most of the pores and the presence of bone tissue between the fragments. All the cement had been replaced by bone after 4 months. Some fragments of cement still were embedded in the newly formed bone. There was no significant difference between the integration of loaded and nonloaded ceramics. Filling the macroporous ceramic pores with a calcium phosphate cement significantly improved the mechanical strength of these ceramics without modifying their integration in the healing bone.  相似文献   

19.
The weight-average molecular weight (MW(w)) of a cement and the method used to mix its powder and liquid monomer constituents have been identified in the literature as key variables that affect mechanical properties of the fully polymerized cement that are relevant to its performance as a grouting agent in cemented arthroplasties. The goal of the present work was to identify which of these two variables exerts the greater effect in the case of fully reversed tension-compression fatigue performance. A judicious choice of cement brands, Surgical Simplex P and Osteopal, and the use of hand versus vacuum mixing, permitted this identification to be achieved. Three key observations were made in this work. First, for a given cement, the fatigue performance of vacuum-mixed specimens is far superior to that of hand-mixed ones, which may be a consequence of the substantially lower percentage areal porosity of the former specimens. Second, regardless of the mixing method, the fatigue performance of Osteopal outstrips that of Simplex P, a result that is attributed to the much higher MW(w) of the former cement. Third, hand-mixed Osteopal outperforms vacuum-mixed Simplex P (especially at low alternating stress levels), indicating that MW(w) of a bone cement is more influential than mixing method on its fatigue performance.  相似文献   

20.
The influence of porosity on release profiles of antibiotics from calcium phosphate composites was investigated to optimize the duration of treatment. We hypothesized, that by the encapsulation of vancomycin-HCl into biodegradable microspheres prior admixing to calcium phosphate bone cement, the influence of porosity of the cement matrix on vancomycin release could be reduced. Encapsulation of vancomycin into a biodegradable poly(lactic co-glycolic acid) copolymer (PLGA) was performed by spray drying; drug-loaded microparticles were added to calcium phosphate cement (CPC) at different powder to liquid ratios (P/L), resulting in different porosities of the cement composites. The effect of differences in P/L ratio on drug release kinetics was compared for both the direct addition of vancomycin-HCl to the cement liquid and for cement composites modified with vancomycin-HCl-loaded microspheres. Scanning electron microscopy (SEM) was used to visualize surface and cross section morphology of the different composites. Brunauer, Emmett, and Teller-plots (BET) was used to determine the specific surface area and pore size distribution of these matrices. It could be clearly shown, that variations in P/L ratio influenced both the porosity of cement and vancomycin release profiles. Antibiotic activity during release study was successfully measured using an agar diffusion assay. However, vancomycin-HCl encapsulation into PLGA polymer microspheres decreased porosity influence of cement on drug release while maintaining antibiotic activity of the embedded substance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号