首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Acta biomaterialia》2014,10(5):2333-2340
In this study the loss of mechanical properties and the interface strength of coated AZ31B magnesium alloy (a magnesium–aluminum alloy) screws with surrounding host tissues were investigated and compared with non-coated AZ31B, degradable polymer and biostable titanium alloy screws in a rabbit animal model after 1, 4, 12 and 21 weeks of implantation. The interface strength was evaluated in terms of the extraction torque required to back out the screws. The loss of mechanical properties over time was indicated by one-point bending load loss of the screws after these were extracted at different times. AZ31B samples with a silicon-containing coating had a decreased degradation rate and improved biological properties. The extraction torque of Ti6Al4V, poly-l-lactide (PLLA) and coated AZ31B increased significantly from 1 week to 4 weeks post-implantation, indicating a rapid osteosynthesis process over 3 weeks. The extraction torque of coated AZ31B increased with implantation time, and was higher than that of PLLA after 4 weeks of implantation, equalling that of Ti6Al4V at 12 weeks and was higher at 21 weeks. The bending loads of non-coated AZ31B and PLLA screws degraded sharply after implantation, and that of coated AZ31B degraded more slowly. The biodegradation mechanism, the coating to control the degradation rate and the bioactivity of magnesium alloys influencing the mechanical properties loss over time and bone–implant interface strength are discussed in this study and it is concluded that a suitable degradation rate will result in an improvement in the mechanical performance of magnesium alloys, making them more suitable for clinical application.  相似文献   

2.
The key to manufacturing magnesium-based alloys that are suitable as biodegradable orthopaedic implants is how to adjust their degradation rates and mechanical integrity in the physiological environment. In this study, to solve this challenge, a soluble Ca-deficient hydroxyapatite (Ca-def HA) coating was deposited on an Mg–Zn–Ca alloy substrate by pulse eletrodeposition. This deposition can be demonstrated by X-ray diffractometry and energy dispersion spectroscopy analyses, and the Ca/P atomic ratio of as-deposited coating is about 1.33 (within the range from 1.33 to 1.65). By regulating the appropriate pulse amplitude and width, the Ca-def HA coating shows better adhesion to Mg–Zn–Ca alloy, whose lap shear strength is increased to 41.8 ± 2.7 MPa. Potentiodynamic polarization results in Kokubo’s simulated body fluid (SBF) indicate that the corrosion potential of Mg alloy increases from ?1645 to ?1414 mV, while the corrosion current density decreases from 110 to 25 μA/cm2, which illustrates that the Ca-def HA coating improves the substrate corrosion resistance significantly. Since orthopaedic implants generally serve under conditions of stress corrosion, the mechanical integrity of the Mg–Zn–Ca alloy was measured using the slow strain rate tensile (SSRT) testing technique in SBF. The SSRT results show that the ultimate tensile strength and time of fracture for the coated Mg–Zn–Ca alloy are higher than those of the uncoated one, which is beneficial in supporting fractured bone for a longer time. Thus Mg–Zn–Ca alloy coated with Ca-def HA is be a promising candidate for biodegradable orthopaedic implants, and is worthwhile to further investigate the in vivo degradation behavior.  相似文献   

3.
Long and uniform HA whiskers with high crystallinity, controlled morphology and high aspect ratio were successfully synthesized by hydrothermal homogeneous precipitation using acetamide. Compared with the additive urea, which is commonly used to raise the pH to drive nucleation and growth of HA crystals, acetamide has a low hydrolysis rate under the required hydrothermal conditions. This allows better and easier control, giving rise to rapid growth of whiskers at a low supersaturation. Whisker length and width were in turn determined by solution conditions, including the concentration of Ca and PO4. Whiskers had a mean length of 60–116 μm and an aspect ratio of 68–103 for starting solutions containing 42–84 mmol L?1 Ca and 25–50 mmol L?1 PO4 with a fixed Ca/P ratio of 1.67. Such whiskers are favourable for their improved bone bonding and bioactivity, as well as their mechanical properties. Whiskers were slightly Ca-deficient with Ca/P = 1.60–1.65, with the preferred direction of growth along the c-axis. Variation of acetamide concentration did not affect the constitution, the crystallinity or the crystal growth habit.  相似文献   

4.
In this study, we report a hybrid organic–inorganic TEOS–MTES (tetraethylorthosilicate–methyltriethoxysilane) sol–gel-made coating as a potential solution to improve the in vivo performance of AISI 316L stainless steel, which is used as permanent bone implant material. These coatings act as barriers for ion migration, promoting the bioactivity of the implant surface. The addition of SiO2 colloidal particles to the TEOS–MTES sol (10 or 30 mol.%) leads to thicker films and also acts as a film reinforcement. Also, the addition of bioactive glass–ceramic particles is considered responsible for enhancing osseointegration. In vitro assays for bioactivity in simulated body fluid showed the presence of crystalline hydroxyapatite (HA) crystals on the surface of the double coating with 10 mol.% SiO2 samples on stainless steel after 30 days of immersion. The HA crystal lattice parameters are slightly different from stoichiometric HA. In vivo implantation experiments were carried out in a rat model to observe the osteointegration of the coated implants. The coatings promote the development of newly formed bone in the periphery of the implant, in both the remodellation zone and the marrow zone. The quality of the newly formed bone was assessed for mechanical and structural integrity by nanoindentation and small-angle X-ray scattering experiments. The different amount of colloidal silica present in the inner layer of the coating slightly affects the material quality of the newly formed bone but the nanoindentation results reveal that the lower amount of silica in the coating leads to mechanical properties similar to cortical bone.  相似文献   

5.
Novel multi-functional P(3HB) microsphere/45S5 Bioglass®-based composite scaffolds exhibiting potential for drug delivery were developed for bone tissue engineering. 45S5 Bioglass®-based glass–ceramic scaffolds of high interconnected porosity produced using the foam-replication technique were coated with biodegradable microspheres (size < 2 μm) made from poly(3-hydroxybutyrate), P(3HB), produced using Bacillus cereus SPV. A solid-in-oil-in-water emulsion solvent extraction/evaporation technique was used to produce these P(3HB) microspheres. A simple slurry-dipping method, using a 1 wt.% suspension of P(3HB) microspheres in water, dispersed by an ultrasonic bath, was used to coat the scaffold, producing a uniform microsphere coating throughout the three-dimensional scaffold structure. Compressive strength tests confirmed that the microsphere coating slightly enhanced the scaffold mechanical strength. It was also confirmed that the microsphere coating did not inhibit the bioactivity of the scaffold when immersed in simulated body fluid (SBF) for up to 4 weeks. The hydroxyapatite (HA) growth rate on P(3HB) microsphere-coated 45S5 Bioglass® composite scaffolds was very similar to that on the uncoated control sample, qualitatively indicating similar bioactivity. However, the surface topography of the HA surface layer was affected as shown by results obtained from white light interferometry. The roughness of the surface was much higher for the P(3HB) microsphere-coated scaffolds than for the uncoated samples, after 7 days in SBF. This feature would facilitate cell attachment and proliferation. Finally, gentamycin was successfully encapsulated into the P(3HB) microspheres to demonstrate the drug delivery capability of the scaffolds. Gentamycin release kinetics was determined using liquid chromatography–mass spectrometry. The release of the drug from the coated composite scaffolds was slow and controlled when compared to the observed fast and relatively uncontrolled drug release from the bone scaffold (without microsphere coating). Thus, this unique multifunctional bioactive composite scaffold has the potential to enhance cell attachment and to provide controlled delivery of relevant drugs for bone tissue engineering.  相似文献   

6.
The aim of this study was to investigate whether the extruded magnesium alloy LAE442 reacts in vivo with an appropriate host response and to investigate how an additional magnesium fluoride (MgF2) coating influences the in vivo corrosion rate. Forty cylinders were machined from extruded LAE442 and 20 of these were coated additionally with MgF2 and implanted into the medial femur condyle of adult rabbits. Synchrotron-radiation-based X-ray computed micro-tomography (SRμCT) was used to quantitatively analyse corrosion non-destructively in vivo and comparisons were made to magnesium degradation rates based on area measurements of the remaining metal on uncalcified sections. Blood concentrations of the alloying elements were measured below toxicological limits. The MgF2 layer was no longer detected after 4 weeks of implantation by particle-induced gamma emission, and the MgF2 coating reduced the blood content of alloying elements during the first 6 weeks of implantation with no elevated fluoride concentration in the adjacent bone. Histopathological examinations of liver showed in 9 out of 40 cases minimal infiltrations of heterophil granulocytes of unknown origin (5 LAE442, 4 LAE442 + MgF2). The kidneys were mainly regular in structure. The synovial tissue showed a granular cell infiltration as a temporary observation in the LAE442 + MgF2 group after 2 weeks. No subcutaneous gas cavities were observed clinically and on postoperative X-rays in all animals. All specimens were scanned by SRμCT at 2, 4, 6 and 12 weeks postoperatively before uncalcified sections were performed. All magnesium implants have been observed in direct bone contact and without a fibrous capsule. Localized pitting corrosion occurred in coated and uncoated magnesium implants. This study shows that the extruded magnesium alloy LAE442 provides low corrosion rates and reacts in vivo with an acceptable host response. The in vivo corrosion rate can be further reduced by additional MgF2 coating.  相似文献   

7.
Electrically polarized bulk sintered hydroxyapatite (HAp) compacts have been shown to accelerate mineralization and bone tissue ingrowth in vivo. In this work, a comprehensive study has been carried out to investigate the influence of surface charge and polarity on in vitro bone cell adhesion, proliferation and differentiation on electrically polarized HAp-coated Ti. Uniform and crack free sol–gel derived HAp coatings of 20 ± 1.38 μm thickness were polarized by application of an external d.c. field of 2.0 kV cm?1 at 400 °C for 1h. In vitro bioactivity of polarized HAp coatings was evaluated by soaking in simulated body fluid, and bone cell–material interactions were studied by culturing with human fetal osteoblast cells (hFOB) for a maximum period of 11 days. Scanning electron microscopic observation showed that accelerated mineralization on negatively charged surfaces favored rapid cell attachment and faster tissue ingrowth over non-polarized HAp coating surfaces, while positive charge on HAp coating surfaces restricted apatite nucleation with limited cellular response. Immunochemistry and confocal microscopy confirmed that the cell adhesion and early stage differentiation were more pronounced on negatively charged coating surfaces as hFOB cells expressed higher vinculin and alkaline phosphatase proteins on negatively charged surface compared to cells grown on all other surfaces. Our results in this study are process independent and potentially applicable to any other commercially available coating techniques.  相似文献   

8.
Equal channel angular pressing results in ultrafine-grained (~200–500 nm) Ti with superior mechanical properties without harmful alloying elements, which benefits medical implants. To further improve the bioactivity of Ti surfaces, Ca/P-containing porous titania coatings were prepared on ultrafine-grained and coarse-grained Ti by micro-arc oxidation (MAO). The phase identification, composition, morphology and microstructure of the coatings and the thermal stability of ultrafine-grained Ti during MAO were investigated subsequently. The amounts of Ca, P and the Ca/P ratio of the coatings formed on ultrafine-grained Ti were greater than those on coarse-grained Ti. Nanocrystalline hydroxyapatite and α-Ca3(PO4)2 phases appeared in the MAO coating formed on ultrafine-grained Ti for 20 min (E20). Incubated in a simulated body fluid, bone-like apatite was completely formed on the surface of E20 after 2 days, thus evidencing preferable bioactivity. Compared with initial ultrafine-grained Ti, the microhardness of the E20 substrate was reduced by 8% to 2.9 GPa, which is considerably more than that of coarse-grained Ti (~1.5 GPa).  相似文献   

9.
Porous titanium with a pore size of 150–600 μm and a porosity of 67% was prepared by fiber sintering. The porous titanium had a complete three-dimensional (3D) interconnected structure and a high yield strength of 100 MPa. Si-substituted hydroxyapatite (Si-HA) was coated on the surface by a biomimetic process to improve the surface bioactivity. X-ray diffraction results showed that Si-HA coating was not well crystallized. New bone tissue was found in the uncoated porous titanium after 2 weeks of implantation and a significant increase (p < 0.05) in the bone ingrowth rate (BIR) was found after 4 weeks of implantation, indicating the good osteoconductivity of the porous structure. The HA-coated and Si-HA-coated porous titanium exhibited a significantly higher BIR than the uncoated titanium at all intervals, highlighting the better surface bioactivity and osteoconductivity of the HA- and Si-HA coatings. Also, the Si-HA-coated porous titanium demonstrated a significantly higher BIR than the HA-coated porous titanium, showing that silicon plays an active role in the surface bioactivity. For Si-HA-coated porous titanium, up to 90% pore area was covered by new bone tissue after 4 weeks of implantation in cortical bone. In the bone marrow cavity, the pore spaces were filled with bone marrow, displaying that the interconnected pore structure could provide a channel for body fluid. It was concluded that both the 3D interconnected pore structure and the Si-HA coating contributed to the high BIR.  相似文献   

10.
Composite coatings of electrostatically assembled layer-by-layer anionic and cationic polymers combined with an Mg(OH)2 surface treatment serve to provide a protective coating on AZ31 magnesium alloy substrates. These ceramic conversion coating and layer-by-layer polymeric coating combinations reduced the initial and long-term corrosion progression of the AZ31 alloy. X-ray diffraction and Fourier transform infrared spectroscopy confirmed the successful application of coatings. Potentiostatic polarization tests indicate improved initial corrosion resistance. Hydrogen evolution measurements over a 2 week period and magnesium ion levels over a 1 week period indicate longer range corrosion protection and retention of the Mg(OH)2 passivation layer in comparison to the uncoated substrates. Live/dead staining and DNA quantification were used as measures of biocompatibility and proliferation while actin staining and scanning electron microscopy were used to observe the cellular morphology and integration with the coated substrates. The coatings simultaneously provided improved biocompatibility, cellular adhesion and proliferation in comparison to the uncoated alloy surface utilizing both murine pre-osteoblast MC3T3 cells and human mesenchymal stem cells. The implementation of such coatings on magnesium alloy implants could serve to improve the corrosion resistance and cellular integration of these implants with the native tissue while delivering vital drugs or biological elements to the site of implantation.  相似文献   

11.
Mg/Ca (1 wt.%, 5 wt.%, 10 wt.% Ca) composites were prepared from pure magnesium and calcium powders using the powder metallurgy method, aiming to enlarge the addition of Ca content without the formation of Mg2Ca. The microstructures, mechanical properties and cytotoxicities of Mg/Ca composite samples were investigated. The corrosion of Mg/Ca composites in Dulbecco’s modified Eagle’s medium (DMEM) for various immersion intervals was studied by electrochemical impedance spectroscopy measurements and environmental scanning electron microscope, with the concentrations of released Mg and Ca ions in DMEM for various immersion time intervals being measured. It was shown that the main constitutional phases were Mg and Ca, which were uniformly distributed in the Mg matrix. The ultimate tensile strength (UTS) and elongation of experimental composites decreased with increasing Ca content, and the UTS of Mg/1Ca composite was comparable with that of as-extruded Mg–1Ca alloy. The corrosion potential increased with increasing Ca content, whereas the current density and the impedance decreased. It was found that the protective surface film formed quickly at the initial immersion stage. With increasing immersion time, the surface film became compact, and the corrosion rate of Mg/Ca composites slowed down. The surface film consisted mainly of CaCO3, MgCO3·3H2O, HA and Mg(OH)2 after 72 h immersion in DMEM. Mg/1Ca and Mg/5Ca composite extracts had no significant toxicity (p > 0.05) to L-929 cells, whereas Mg/10Ca composite extract induced ~40% reduced cell viability.  相似文献   

12.
Ulvan, extracted from the green algae Ulva lactuca, and chitosan, extracted from Loligo forbesis squid-pen, were carboxymethylated, yielding polysaccharides with an average degree of substitution of ~98% (carboxymethyl ulvan, CMU) and ~87% (carboxymethyl chitosan, N,O-CMC). The carboxymethylation was confirmed by Fourier transform infrared spectroscopy and quantified by conductimetric titration and 1H nuclear magnetic resonance. The average molecular weight increased with the carboxymethylation (chitosan, Mn 145→296 kDa and Mw 227→416 kDa; ulvan, Mn 139→261 kDa and Mw 368→640 kDa), indicating successful chemical modifications. Mixtures of the modified polysaccharides were tested in the formulation of polyacrylic acid-free glass-ionomer bone cements. Mechanical and in vitro bioactivity tests indicate that the inclusion of CMU in the cement formulation, i.e. 0.50:0.50 N,O-CMC:CMU, enhances its mechanical performance (compressive strength 52.4 ± 8.0 MPa and modulus 2.3 ± 0.3 GPa), generates non-cytotoxic cements and induces the diffusion of Ca and/or P-based moieties from the surface to the bulk of the cements.  相似文献   

13.
Repeated observations of enhanced bone growth around various degradable magnesium alloys in vivo raise the question: what is the major mutual origin of this biological stimulus? Several possible origins, e.g. the metal surface properties, electrochemical interactions and biological effects of alloying elements, can be excluded by investigating the sole bone response to the purified major corrosion product of all magnesium alloys, magnesium hydroxide (Mg(OH)2). Isostatically compressed cylinders of pure Mg(OH)2 were implanted into rabbit femur condyles for 2–6 weeks. We observed a temporarily increased bone volume (BV/TV) in the vicinity of Mg(OH)2 at 4 weeks that returned to a level that was equal to the control at 6 weeks. The osteoclast surface (OcS/BS) was significantly reduced during the first four weeks around the Mg(OH)2 cylinder, while an increase in osteoid surface (OS/BS) was observed at the same time. At 6 weeks, the OcS/BS adjacent to the Mg(OH)2 cylinder was back within the same range of the control. The mineral apposition rate (MAR) was extensively enhanced until 4 weeks in the Mg(OH)2 group before matching the control. Thus, the enhanced bone formation and temporarily decreased bone resorption resulted in a higher bone mass around the slowly dissolving Mg(OH)2 cylinder. These data support the hypothesis that the major corrosion product Mg(OH)2 from any magnesium alloy is the major origin of the observed enhanced bone growth in vivo. Further studies have to evaluate if the enhanced bone growth is mainly due to the local magnesium ion concentration or the local alkalosis accompanying the Mg(OH)2 dissolution.  相似文献   

14.
A monoclinic zirconia coating with a nanostructural surface was prepared on the Ti–6Al–4V substrate by an atmospheric plasma-spraying technique, and its microstructure and composition, as well as mechanical and biological properties, were investigated to explore potential application as a bioactive coating on bone implants. X-ray diffraction, transmission electron microscopy, scanning electron microscopy and Raman spectroscopy revealed that the zirconia coating was composed of monoclinic zirconia which was stable at low temperature, and its surface consists of nano-size grains 30–50 nm in size. The bond strength between the coating and the Ti–6Al–4V substrate was 48.4 ± 6.1 MPa, which is higher than that of plasma-sprayed HA coatings. Hydrothermal experiments indicated that the coating was stable in a water environment and the phase composition and Vickers hardness were independent of the hydrothermal treatment time. Bone-like apatite is observed to precipitate on the surface of the coating after soaking in simulated body fluid for 6 days, indicating excellent bioactivity in vitro. The nanostructured surface composed of monoclinic zirconia is believed to be crucial to its bioactivity. Morphological observation and the cell proliferation test demonstrated that osteoblast-like MG63 cells could attach to, adhere to and proliferate well on the surface of the monoclinic zirconia coating, suggesting possible applications in hard tissue replacements.  相似文献   

15.
This study investigated the surface characteristics, in vitro and in vivo biocompatibility of Ti–6Al–4V alloy implants incorporating strontium ions (Sr), produced by hydrothermal treatment using a Sr-containing solution, for future biomedical applications. The surface characteristics were evaluated by scanning electron microscopy, thin-film X-ray diffractometry, X-ray photoelectron spectroscopy, optical profilometry, contact angle and surface energy measurement and inductively coupled plasma-mass spectroscopy (ICP-MS). Human osteoblast-like cell (MG63) attachment, proliferation, alkaline phosphatase (ALP) activity, and quantitative analysis of osteoblastic gene expression on Sr-containing Ti–6Al–4V surfaces were compared with untreated Ti–6Al–4V surfaces. Fifty-six screw implants (28 control and 28 experimental) were placed in the tibiae and femoral condyles of seven New Zealand White rabbits. The osteoconductivity of Sr-containing Ti–6Al–4V implants was evaluated by removal torque testing and histomorphometric analysis after 4 weeks implantation. Hydrothermal treatment produced a crystalline SrTiO3 layer. ICP-MS analysis showed that Sr ions were released from treated surfaces into the solution. Significant increases in ALP activity (P = 0.000), mRNA expressions of key osteoblast genes (osterix, bone sialoprotein, and osteocalcin), removal torque values (P < 0.05) and bone–implant contact percentages (P < 0.05) in both cortical and cancellous bone were observed for Sr-containing Ti–6Al–4V surfaces. The results indicate that the Sr-containing oxide layer produced by hydrothermal treatment may be effective in improving the osseointegration of Ti–6Al–4V alloy implants by enhancing differentiation of osteoblastic cells, removal torque forces and bone apposition in both cortical and cancellous bone.  相似文献   

16.
Recombinant human BMP-2 (rhBMP-2) was immobilized non-covalently and covalently as a monolayer on plasma vapour deposited (PVD) porous commercially pure titanium surfaces in amounts of 5–8 μg cm?2, providing a ca. 10-fold increase vs. previously reported values [37]. Dissociation of the immobilized [125I]rhBMP-2 from the surface occurred in a two-phase exponential decay: a first rapid phase (ca. 15% of immobilized BMP-2) with a half-life of 1–2 days and a second slow sustained release phase (ca. 85% of immobilized BMP-2) with a half-life of 40–60 days. Dissociation rate constants of sustained release of k?1 = 1.3–1.9 × 10?7 s?1 were determined, allowing an estimation of the binding constants (KA) for the adsorbed rhBMP-2 monolayer, to be around 1012 M?1. The rhBMP-2-coated surfaces showed a high level of biological activity, as demonstrated by in vitro epifluorescence tests for alkaline phosphatase with MC3T3-E1 cells and in vivo experiments. In vivo osteoinductivity of rhBMP-2-coated implants was investigated in a gap-healing model in the trabecular bone of the distal femur condylus of sheep. Healing occurred without inflammation or capsule formation. The calculated concentration of released rhBMP-2 in the 1 mm gap ranged from 20 to 98 nM – well above the half-maximal response concentration (K0.5) for inducing alkaline phosphatase in MC3T3-E1 cells. After 4, 9 and 12 weeks the bone density (BD) and bone-to-implant contact (BIC) of the explanted implants were assessed histomorphometrically. Implants with immobilized rhBMP-2 displayed a significant (2- to 4-fold) increase in BD and BIC values vs. negative controls after 4–9 weeks. Integration of implants by trabecular bone was achieved after 4 weeks, indicating a mean “gap-filling rate” of ~250 μm week?1. Integration of implants by cortical bone was observed after 9 weeks. Control implants without rhBMP-2 were not osseointegrated. This study demonstrates the feasibility of enhancing peri-implant osseointegration and gap bridging by immobilized rhBMP-2 on implant surfaces which may serve as a model for future clinical applications.  相似文献   

17.
A major problem which hinders the applications of neural prostheses is the inconsistent performance caused by tissue responses during long-term implantation. The study investigated a new approach for improving the electrode–neural tissue interface. Hydrogel poly(vinyl alcohol)/poly(acrylic acid) interpenetrating polymer networks (PVA/PAA IPNs) were synthesized and tailored as coatings for poly(dimethylsiloxane) (PDMS) based neural electrodes with the aid of plasma pretreatment. Changes in the electrochemical impedance and maximum charge injection (Qinj) limits of the coated iridium oxide microelectrodes were negligible. Protein adsorption on PDMS was reduced by ~85% after coating. In the presence of nerve growth factor (NGF), neurite extension of rat pheochromocytoma (PC12) cells was clearly greater on PVA/PAA IPN films than on PDMS substrates. Furthermore, the tissue responses of PDMS implants coated with PVA/PAA IPN films were studied by 6-week implantation in the cortex of rats, which found that the glial fibrillary acidic protein (GFAP) immunoreactivity in animals (n = 8) receiving coated implants was significantly lower (p < 0.05) compared to that of uncoated implants (n = 7) along the entire distance of 150 μm from the outer skirt to the implant interface. The coated film remained on the surface of the explanted implants, confirmed by scanning electron microscopy (SEM). All of these suggest the hydrogel coating is feasible and favorable to neural electrode applications.  相似文献   

18.
《Acta biomaterialia》2014,10(5):2282-2289
A nanostructured sodium hydrogen titanate layer ∼1 μm in thickness was initially produced on the surface of titanium metal (Ti) by soaking in NaOH solution. When the metal was subsequently soaked in a mixed solution of CaCl2 and SrCl2, its Na ions were replaced with Ca and Sr ions in an Sr/Ca ratio in the range 0.18–1.62. The metal was then heat-treated at 600 °C to form strontium-containing calcium titanate (SrCT) and rutile on its surface. The treated metal did not form apatite in a simulated body fluid (SBF) even after 7 days. When the metal formed with SrCT was subsequently soaked in water at 80 °C, the treated metal formed bone-like apatite on its surface within 1 day in SBF since the Ca ions were partially replaced with H3O+ ions. However, it released only 0.06 ppm of Sr ions even after 7 days in phosphate-buffered saline. When the metal was soaked after the heat treatment in 1 M SrCl2 solution instead of water, the treated metal released 0.92 ppm of Sr ions within 7 days while maintaining its apatite-forming ability. The Ti formed with this kind of bioactive SrCT layer on its surface is expected to be highly useful for orthopedic and dental implants, since it should be able to promote bone growth by releasing Sr ions and tightly bond to the bone through the apatite formed on its surface.  相似文献   

19.
The objective of the study was to investigate the influence of long-term storage (up to 1 year) and coating on the variation of micro-mechanical properties of four conventional restorative glass ionomer cements (GICs) within 3.5 mm deep class I cavities. Four commercially available GICs (Riva Self Cure (SDI), ChemFil Rock (Dentsply), Fuji IX Fast and Fuji IX GP Extra/Equia (GC)) were applied to 100 teeth. In each tooth, two similar 3.5 mm deep class I cavities were prepared and filled with the GICs, with and without resin coating. The samples were stored in artificial saliva at 37 °C for 1 week, 1 month, 3 months, 6 months and 1 year. The variation in mechanical properties (indentation modulus (E) and Vickers hardness (HV)) were determined in 100 μm steps starting from the filling surface, through the intermediate layer in between dentine and GIC, and ending 100 μm in dentin. HV and E were strongly influenced by the material (P < 0.05, partial eta-squared ηP2 = 0.31 and 0.23) but less by aging duration (P < 0.05, ηP2 = 0.02 and 0.12) and resin coating (P < 0.05, ηP2 = 0.02 and 0.03). The depth of measurement (0–2 mm) has no influence on HV (P = 0.789). HV shows a gentle increase over the 1 year storage period (P = 0.002). A ~300 μm GIC zone at the areas close to dentin with weaker properties as those measured in dentin or GIC was identified in all fillings, irrespective of the presence of coating, and at all storage periods. The thickness of this zone is more strongly influenced by storage (P < 0.05, ηP2 = 0.081) than by material type (P < 0.05, ηP2 = 0.056), while coating showed no influence (P = 0.869). Filler morphology and dimension were similar to upper parts of the GIC filling; however, the amount of low cations was higher. We concluded that the development of an intermediate layer in between dentine and GIC with lower mechanical properties might be responsible for the bond quality of GIC to dentine. Moreover, class I GIC restorations are unlikely to feature constant mechanical properties throughout the cavity, regardless of conditions such as aging and coating.  相似文献   

20.
In this paper, chemically synthesized Mg2SiO4 (MS) powder was plasma-sprayed onto a titanium alloy substrate to evaluate its application potentials in biomedicine. The phase composition and surface morphology of the MS coating were analyzed. Results showed that the MS coating was composed mainly of Mg2SiO4 phase, with a small amount of MgO and glass phases. Mechanical testing showed that the coating exhibited good adhesion strength to the substrate due to the close thermal expansion coefficient between the MS ceramic and the titanium alloy substrate. The measured bonding strength was as high as 41.5 ± 5.3 MPa, which is much higher than the traditional HA coating. In vitro cytocompatibility evaluation of the MS coating was performed using canine bone marrow stem cells (MSCs). The MSCs exhibited good adhesion, proliferation and differentiation behavior on the MS coating surface, which can be explained by the high protein adsorption capability of the MS coating, as well as the stimulatory effects of Mg and Si ions released from the coating. The proliferation rate of the MSCs on MS coating was very close to that on the hydroxylapatite (HA) coating. Alkaline phosphatase (ALP) activity analysis demonstrated that the ALP level of the MSCs on the MS coating remained high even after 21 days, implying that the surface characteristics of the coating are beneficial for the differentiation of MSCs. In summary, our results suggest that MS coating might be a new approach to prepare bone implants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号