首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The failure mechanisms of bone–implant constructs are still incompletely understood, because the role of the peri-implant bone in implant stability is unclear. We hypothesized that implant fixation failure is preceded by substantial peri-implant bone failure. A new device was developed that combines mechanical testing of large bone–implant constructs with high-resolution peripheral quantitative computed tomography, following the principles of image-guided failure assessment (IGFA). In this study, we investigated the push-in failure behavior of dynamic hip screws (DHS) implanted in human cadaveric femoral heads. For the first time the fixation failure of a clinically used implant in human trabecular bone could be experimentally visualized at the microstructural level. The ultimate force was highly correlated with the peri-implant bone volume fraction (R2 = 0.85). We demonstrated that primary fixation failure of DHS implants was accompanied by trabecular bone failure in the immediate peri-implant bone region only. Such experimental data are crucial to enhance the understanding on the quality of the bone–implant interface and of the trabecular bone in the process of implant fixation failure. We believe that this newly developed device will be beneficial for the development of new implant designs, especially for use in osteoporotic bone.  相似文献   

2.
Advances have been achieved in the design and biomechanical performance of orthopedic implants in the last decades. These include anatomically shaped and angle-stable implants for fracture fixation or improved biomaterials (e.g. ultra-high-molecular-weight polyethylene) in total joint arthroplasty. Future modifications need to address the biological function of implant surfaces. Functionalized surfaces can promote or reduce osseointegration, avoid implant-related infections or reduce osteoporotic bone loss. To this end, polyelectrolyte multilayer structures have been developed as functional coatings and intensively tested in vitro previously. Nevertheless, only a few studies address the effect of polyelectrolyte multilayer coatings of biomaterials in vivo. The aim of the present work is to evaluate the effect of polyelectrolyte coatings of titanium alloy implants on implant anchorage in an animal model. We test the hypotheses that (1) polyelectrolyte multilayers have an effect on osseointegration in vivo; (2) multilayers of chitosan/hyaluronic acid decrease osteoblast proliferation compared to native titanium alloy, and hence reduce osseointegration; (3) multilayers of chitosan/gelatine increase osteoblast proliferation compared to native titanium alloy, hence enhance osseointegration. Polyelectrolyte multilayers on titanium alloy implants were fabricated by a layer-by-layer self-assembly process. Titanium alloy (Ti) implants were alternately dipped into gelatine (Gel), hyaluronic acid (HA) and chitosan (Chi) solutions, thus assembling a Chi/Gel and a Chi/HA coating with a terminating layer of Gel or HA, respectively. A rat tibial model with bilateral placement of titanium alloy implants was employed to analyze the bones’ response to polyelectrolyte surfaces in vivo. 48 rats were randomly assigned to three groups of implants: (1) native titanium alloy (control), (2) Chi/Gel and (3) Chi/HA coating. Mechanical fixation, peri-implant bone area and bone contact were evaluated by pull-out tests and histology at 3 and 8 weeks. Shear strength at 8 weeks was statistically significantly increased (p < 0.05) in both Chi/Gel and Chi/HA groups compared to the titanium alloy control. No statistically significant difference (p > 0.05) in bone contact or bone area was found between all groups. No decrease of osseointegration of Chi/HA-coated implants compared to non-coated implants was found. The results of polyelectrolyte coatings in a rat model showed that the Chi/Gel and Chi/HA coatings have a positive effect on mechanical implant anchorage in normal bone.  相似文献   

3.
Statins are known to stimulate osteoblast activity and bone formation. This study examines whether local application of fluvastatin enhances osteogenesis around titanium implants in vivo. Ten-week-old rats received a vehicle gel (propylene glycol alginate (PGA)) or PGA containing fluvastatin (3, 15, 75 or 300 μg) in their tibiae just before insertion of the implants. For both histological and histomorphometric evaluations undecalcified ground sections were obtained and the bone–implant contact (BIC), peri-implant osteoid volume and mineralized bone volume (MBV) were calculated after 1, 2 and 4 weeks. Using the same models mechanical push-in tests were also performed to evaluate the implant fixation strength. After 1 week the MBV and push-in strength were significantly lower in the 300 μg fluvastatin-treated group than in the other groups (P < 0.01). At 2 weeks, however, the BIC and MBV were both significantly higher in the 75 μg fluvastatin-treated group than in the non-fluvastatin-treated groups (P < 0.01). Similar tendencies were observed at week 4. Furthermore, the data showed a good correlation between the MBV and the push-in strength. These results demonstrate positive effects of locally applied fluvastatin on the bone around titanium implants and suggest that this improvement in osseointegration may be attributed to calcification of the peri-implant bone.  相似文献   

4.
A method has recently been developed for producing fibre-reinforced composites (FRC) with porous surfaces, intended for use as load-bearing orthopaedic implants. This study focuses on evaluation of the bone-bonding behaviour of FRC implants. Three types of cylindrical implants, i.e. FRC implants with a porous surface, solid polymethyl methacrylate (PMMA) implants and titanium (Ti) implants, were inserted in a transverse direction into the intercondular trabeculous bone area of distal femurs and proximal tibias of New Zealand White rabbits. Animals were sacrificed at 3, 6 and 12 weeks post operation, and push-out tests (n = 5–6 per implant type per time point) were then carried out. At 12 weeks the shear force at the porous FRC–bone interface was significantly higher (283.3 ± 55.3 N) than the shear force at interfaces of solid PMMA/bone (14.4 ± 11.0 N; p < 0.001) and Ti/bone (130.6 ± 22.2 N; p = 0.001). Histological observation revealed new bone growth into the porous surface structure of FRC implants. Solid PMMA and Ti implants were encapsulated mostly with fibrous connective tissue. Finite element analysis (FEA) revealed that porous FRC implants had mechanical properties which could be tailored to smooth the shear stress distribution at the bone–implant interface and reduce the stress-shielding effect.  相似文献   

5.
Recombinant human BMP-2 (rhBMP-2) was immobilized non-covalently and covalently as a monolayer on plasma vapour deposited (PVD) porous commercially pure titanium surfaces in amounts of 5–8 μg cm?2, providing a ca. 10-fold increase vs. previously reported values [37]. Dissociation of the immobilized [125I]rhBMP-2 from the surface occurred in a two-phase exponential decay: a first rapid phase (ca. 15% of immobilized BMP-2) with a half-life of 1–2 days and a second slow sustained release phase (ca. 85% of immobilized BMP-2) with a half-life of 40–60 days. Dissociation rate constants of sustained release of k?1 = 1.3–1.9 × 10?7 s?1 were determined, allowing an estimation of the binding constants (KA) for the adsorbed rhBMP-2 monolayer, to be around 1012 M?1. The rhBMP-2-coated surfaces showed a high level of biological activity, as demonstrated by in vitro epifluorescence tests for alkaline phosphatase with MC3T3-E1 cells and in vivo experiments. In vivo osteoinductivity of rhBMP-2-coated implants was investigated in a gap-healing model in the trabecular bone of the distal femur condylus of sheep. Healing occurred without inflammation or capsule formation. The calculated concentration of released rhBMP-2 in the 1 mm gap ranged from 20 to 98 nM – well above the half-maximal response concentration (K0.5) for inducing alkaline phosphatase in MC3T3-E1 cells. After 4, 9 and 12 weeks the bone density (BD) and bone-to-implant contact (BIC) of the explanted implants were assessed histomorphometrically. Implants with immobilized rhBMP-2 displayed a significant (2- to 4-fold) increase in BD and BIC values vs. negative controls after 4–9 weeks. Integration of implants by trabecular bone was achieved after 4 weeks, indicating a mean “gap-filling rate” of ~250 μm week?1. Integration of implants by cortical bone was observed after 9 weeks. Control implants without rhBMP-2 were not osseointegrated. This study demonstrates the feasibility of enhancing peri-implant osseointegration and gap bridging by immobilized rhBMP-2 on implant surfaces which may serve as a model for future clinical applications.  相似文献   

6.
The intention of this study was to establish a new critical size animal model that represents clinically relevant situations with osteoporotic bone status and internally fixated metaphyseal defect fractures in which biomaterials for the enhancement of fracture healing in osteoporotic fracture defects can be studied. Twenty-eight rats were ovariectomized (OVX) and treated with a calcium-, phosphorus-, vitamin D3-, soy- and phytoestrogen-free diet. After 3 months Dual-energy X-ray absorptiometry measurements showed statistically significant reductions in bone mineral density of the spine of ?25.9% and of the femur of ?21.3% of the OVX rats compared with controls, confirming osteoporosis in the OVX rats. The OVX rats then underwent either 3 or 5 mm wedge-shaped osteotomy of the distal metaphyseal area of the femur that was internally stabilized with a T-shaped mini-plate. After 42 days biomechanical testing yielded completely unstable conditions in the 5 mm defect femora (bending stiffness 0 N mm?2) and a bending stiffness of 12,500 N mm?2 in the 3 mm defects, which showed the beginning of fracture consolidation. Micro-computed tomography showed statistically significant more new bone formation in the 3 mm defects (4.83 ± 0.37 mm2), with bridging of the initial fracture defect area, compared with the 5 mm defects (2.68 ± 0.34 mm2), in which no bridging of the initial defect was found. These results were confirmed by histology. In conclusion, the 5 mm defect can be considered as a critical size defect model in which biomaterials can be tested.  相似文献   

7.
Secure fracture fixation is still a major challenge in orthopedic surgery, especially in osteoporotic bone. While numerous studies have investigated the effect of implant loading on the peri-implant bone after screw insertion, less focus has been put on bone damage that may occur due to the screw insertion process itself. Therefore, the aim of this study was to localize and quantify peri-implant bone damage caused by screw insertion.We used non-invasive three-dimensional micro-computed tomography to scan twenty human femoral bone cores before and after screw insertion. After image registration of the pre- and post-insertion scans, changes in the bone micro-architecture were identified and quantified. This procedure was performed for screws with a small thread size of 0.3 mm (STS, N = 10) and large thread size of 0.6 mm (LTS, N = 10).Most bone damage occurred within a 0.3 mm radial distance of the screws. Further bone damage was observed up to 0.6 mm and 0.9 mm radial distance from the screw, for the STS and LTS groups, respectively. While a similar amount of bone damage was found within a 0.3 mm radial distance for the two screw groups, there was significantly more bone damage for the LTS group than the STS group in volumes of interest between 0.3–0.6 mm and 0.6–0.9 mm.In conclusion, this is the first study to localize and quantify peri-implant bone damage caused by screw insertion based on a non-invasive, three-dimensional, micro-CT imaging technique. We demonstrated that peri-implant bone damage already occurs during screw insertion. This should be taken into consideration to further improve primary implant stability, especially in low quality osteoporotic bone. We believe that this technique could be a promising method to assess more systematically the effect of peri-implant bone damage on primary implant stability. Furthermore, including peri-implant bone damage due to screw insertion into patient-specific in silico models of implant-bone systems could improve the accuracy of these models.  相似文献   

8.
This study tested the hypothesis that osteoporosis drug-loaded mesoporous TiO2 implant coatings can be used to improve bone–implant integration. Two osteoporosis drugs, Alendronate (ALN) and Raloxifene (RLX), were immobilized in nanoporous oxide films prepared on Ti screws and evaluated in vivo in rat tibia. The drug release kinetics were monitored in vitro by quartz crystal microbalance with dissipation and showed sustained release of both drugs. The osteogenic response after 28 days of implantation was evaluated by quantitative polymerase chain reaction (qPCR), removal torque, histomorphometry and ultrastructural interface analysis. The drug-loaded implants showed significantly improved bone fixation. In the case of RLX, stronger bone-remodelling activity was observed compared with controls and ALN-loaded implants. The ultrastructural interface analysis revealed enhanced apatite formation inside the RLX coating and increased bone density outside the ALN coating. Thus, this novel combination of a thin mesoporous TiO2 carrier matrix and appropriate drugs can be used to accelerate implant fixation in trabecular bone.  相似文献   

9.
Previous studies have shown that bone-to-implant attachment of titanium implants to cortical bone is improved when the surface is modified with hydrofluoric acid. The aim of this study was to investigate if biological factors are involved in the improved retention of these implants. Fluoride was implemented in implant surfaces by cathodic reduction with increasing concentrations of HF in the electrolyte. The modified implants were placed in the cortical bone in the tibias of New Zealand white rabbits. After 4 weeks of healing, wound fluid collected from the implant site showed lower lactate dehydrogenase activity and less bleeding in fluoride-modified implants compared to control. A significant increase in gene expression levels of osteocalcin and tartrate-resistant acid phosphatase (TRAP) was found in the cortical bone attached to Ti implants modified with 0.001 and 0.01 vol.% HF, while Ti implants modified with 0.1% HF showed only induced TRAP mRNA levels. These results were supported by the performed micro-CT analyses. The volumetric bone mineral density of the cortical bone hosting Ti implants modified with 0.001% and 0.01% HF was higher both in the newly woven bone (<100 μm from the interface) and in the older Haversian bone (>100 μm). In conclusion, the modulation of these biological factors by surface modification of titanium implants with low concentrations of HF using cathodic reduction may explain their improved osseointegration properties.  相似文献   

10.
This study tested the effectiveness of low-level laser therapy (LLLT) in preventing and/or treating osteoporotic trabecular bone. Mice were ovariectomized (OVX) to induce osteoporotic bone loss. The tibiae of eight OVX mice were treated for 5 days each week for 2 weeks by LLLT (660 nm, 3 J) using a minimally invasive laser needle system (MILNS) which is designed to minimize loss of laser energy before reaching bone (LASER group). Another eight mice received a sham treatment (SHAM group). Structural parameters of trabecular bone were measured with in vivo micro-computed tomography images before and after laser treatment. After LLLT for 2 weeks, the percentage reduction (%R) was significantly lower in BV/TV (bone volume fraction) and Tb.N (trabecular number, p < 0.05 and p < 0.05) and significant higher in Tb.Sp (trabecular separation) and SMI (structure model index, p < 0.05 and p < 0.05) than in the SHAM group. The %R in BV/TV at sites directly treated by LLLT was significantly lower in the LASER group than the SHAM group (p < 0.05, p < 0.05). These results indicated that LLLT using MILNS may be effective for preventing and/or treating trabecular bone loss and the effect may be site-dependent in the same bone.  相似文献   

11.
Implant loading can create micromotion at the bone–implant interface. The interfacial strain associated with implant micromotion could contribute to regulating the tissue healing response. Excessive micromotion can lead to fibrous encapsulation and implant loosening. Our objective was to characterize the influence of interfacial strain on bone regeneration around implants in mouse tibiae. A micromotion system was used to create strain under conditions of (1) no initial contact between implant and bone and (2) direct bone–implant contact. Pin- and screw-shaped implants were subjected to displacements of 150 or 300 μm for 60 cycles per day for 7 days. Pin-shaped implants placed in five animals were subjected to three sessions of 150 μm displacement per day, with 60 cycles per session. Control implants in both types of interfaces were stabilized throughout the healing period. Experimental strain analyses, microtomography, image-based displacement mapping, and finite element simulations were used to characterize interfacial strain fields. Calcified tissue sections were prepared and Goldner trichrome stained to evaluate the tissue reactions in higher and lower strain regions. In stable implants bone formation occurred consistently around the implants. In implants subjected to micromotion bone regeneration was disrupted in areas of high strain concentrations (e.g. >30%), whereas lower strain values were permissive of bone formation. Increasing implant displacement or number of cycles per day also changed the strain distribution and disturbed bone healing. These results indicate that not only implant micromotion but also the associated interfacial strain field contributes to regulating the interfacial mechanobiology at healing bone–implant interfaces.  相似文献   

12.
In the present study, the effects of implant design and surface properties on peri-implant bone response were evaluated with both conventional histomorphometry and micro-computed tomography (micro-CT), using two geometrically different dental implants (Screw type, St; Push-in, Pi) either or not surface-modified (non-coated, CaP-coated, or CaP-coated + TGF-β1). After 12 weeks of implantation in a goat femoral condyle model, peri-implant bone response was evaluated in three different zones (inner: 0–500 μm; middle: 500–1000 μm; and outer: 1000–1500 μm) around the implant. Results indicated superiority of conventional histomorphometry over micro-CT, as the latter is hampered by deficits in the discrimination at the implant/tissue interface. Beyond this interface, both analysis techniques can be regarded as complementary. Histomorphometrical analysis showed an overall higher bone volume around St compared to Pi implants, but no effects of surface modification were observed. St implants showed lowest bone volumes in the outer zone, whereas inner zones were lowest for Pi implants. These results implicate that for Pi implants bone formation started from two different directions (contact- and distance osteogenesis). For St implants it was concluded that undersized implantation technique and loosening of bone fragments compress the zones for contact and distant osteogenesis, thereby improving bone volume at the interface significantly.  相似文献   

13.
Recent trends in clinical implantology include the use of endosseous dental implant surfaces embellished with nano-sized modifications. The current study was initiated to evaluate the mechanical properties, as well as the potential beneficial effects, of electrosprayed CaP nanoparticle-coated (nano-CaP) implants on the in vivo osteogenic response, compared with grit-blasted, acid-etched (GAE) implant surfaces as controls. For this purpose nano-CaP coatings were deposited on cylindrical screw-type (St) implants and implanted bilaterally into the iliac crest of goats for 6 weeks. In addition to histological and histomorphometrical analyses, insertion torque and removal torque values were measured on implant placement and retrieval, respectively. The present study showed similar insertion and removal torque values for nano-CaP-coated and GAE control implants, with no statistically significant increase in torque value during the implant period for either group. With regard to bone–implant contact and peri-implant bone volume, no significant differences were found between nano-CaP-coated and GAE implants after 6 weeks implantation. In conclusion, this study has demonstrated that in situations in which implants are placed in a non-compromised situation using a standard press fit implantation strategy the performance of electrosprayed nano-CaP coatings is comparable with GAE implants, both with respect to implant fixation and bone healing response.  相似文献   

14.
A sandblasting process with round zirconia (ZrO2) particles might be an alternative surface treatment to enhance the osseointegration of titanium dental implants. Our previous study on sheep compared smooth surface titanium implants (control) with implant surfaces sandblasted with two different granulations of ZrO2. As the sandblasted surfaces proved superior, the present study further compared the ZrO2 surface implant with other surface treatments currently employed: machined titanium (control), titanium oxide plasma sprayed (TPS) and alumina sandblasted (Al-SL) at different times after insertion (2, 4 and 12 weeks). Twelve sheep were divided into three groups of four animals each and underwent implant insertion in tibia cortical bone under general anaesthesia. The implants with surrounding tissues were subjected to histology, histomorphometry, scanning electron microscopy and microhardness tests. The experimentation indicated that at 2 weeks Zr-SL implants had the highest significant bone ingrowth (p < 0.05) compared to the other implant surfaces, and a microhardness of newly formed bone inside the threads significantly higher than that of Ti. The present work shows that the ZrO2 treatment produces better results in peri-implant newly formed bone than Ti and TPS processing, whereas its performance is similar to the Al-SL surface treatment.  相似文献   

15.
The major functions required for load-bearing orthopaedic implants are load-bearing and mechanical or biological fixation with the surrounding bone. Porous materials with appropriate mechanical properties and adequate pore structure for fixation are promising candidates for load-bearing implant material. In previous work, the authors developed a novel titanium (Ti) foam sheet 1–2 mm thick by an original slurry foaming method. In the present work, novel Ti foam is developed with mechanical properties compatible with cortical bone and biological fixation capabilities by layer-by-layer stacking of different foam sheets with volumetric porosities of 80% and 17%. The resulting multilayer Ti foam exhibited a Young’s modulus of 11–12 GPa and yield strength of 150–240 MPa in compression tests. In vitro cell culture on the sample revealed good cell penetration in the higher-porosity foam (80% volumetric porosity), which reached 1.2 mm for 21 days of incubation. Cell penetration into the high-porosity layers of a multilayer sample was good and not influenced by the lower-porosity layers. Calcification was also observed in the high-porosity foam, suggesting that this Ti foam does not inhibit bone formation. Contradictory requirements for high volumetric porosity and high strength were attained by role-sharing between the foam sheets of different porosities. The unique characteristics of the present multilayer Ti foam make them attractive for application in the field of orthopaedics.  相似文献   

16.
《Acta biomaterialia》2014,10(3):1451-1462
Owing to its bio- and osteoconductivity, hydroxyapatite (HA) is a widely used implant material, but its osteogenic properties are only partly evaluated in vitro and in vivo. The present study focused on bone healing adjacent to HA-coated titanium (Ti) implants, with or without incorporated lithium ions (Li+). Special attention was given to the Wnt signaling pathway. The implants were inserted into rat tibia for 7 or 28 days and analyzed ex vivo, mainly by histomorphometry and quantitative real-time polymerase chain reaction (qPCR). HA-coated implants showed, irrespective of Li+ content, bone–implant contact (BIC) and removal torque values significantly higher than those of reference Ti. Further, the expression of OCN, CTSK, COL1A1, LRP5/6 and WISP1 was significantly higher in implant-adherent cells of HA-coated implants, with or without Li+. Significantly higher β-catenin expression and significantly lower COL2A1 expression were observed in peri-implant bone cells from HA with 14 ng cm−2 released Li+. Interestingly, Ti implants showed a significantly larger bone area (BA) in the threads than HA with 39 ng cm−2 released Li+, but had a lower BIC than any HA-coated implant. This study shows that HA, with or without Li+, is a strong activator of the Wnt signaling pathway, and may to some degree explain its high bone induction capacity.  相似文献   

17.
The enzyme alkaline phosphatase (ALP) was recently proposed as an implant coating material in order to improve the biological performance of orthopedic and dental implants. The present study evaluated the in vivo bone response to electrosprayed coatings, consisting of ALP, calcium phosphate (CaP) or a combination thereof (composite coating: ALP + CaP) compared to non-coated controls (gritblasted and acid etched). A total of 80 implants (n = 10) with a gap of 1.0 mm, was implanted intramedullary and bilaterally into the femurs of 80 rats. After 1 and 4 weeks, bone response was evaluated qualitatively (histology) and quantitatively (histomorphometry). The results of this study show that all electrosprayed coatings (ALP, CaP, ALP + CaP) significantly improve osteoconduction compared to non-coated controls after 4 weeks of implantation, without significant differences among these coated groups. Consequently, the results indicate that ALP-coatings improve the osteogenic response to a comparable extent as CaP-coatings or an ALP + CaP composite coating. In conclusion, the current study proofs that ALP-coatings have potential as bone implant coatings, though long-term data remain to be obtained. From a clinical perspective, it was observed that the process of osteoconduction is related to positional determinants, which needs to be taken into account when analyzing data on bone response.  相似文献   

18.
Dental implants are ideally placed in an orientation that allows vertical transfer of occlusal forces along their long axis. Nevertheless, optimal situations for implant placement are seldom encountered resulting in implants placement in angulated positions, which may affect their long-term success. The resonance frequency (RF) is an objective tool used to monitor stability of the implant tissue integration; however, little is known of the effect of the implant orientation in bone on the RF and its potential significance. The purpose of this research was to determine the relation between the dental implant orientation and the corresponding RF of implant. Three-dimensional (3D) modelling software was used to construct a 3D model of a pig mandible from computed tomography (CT) images. The RF of the implant was analysed using finite element (FE) modal analysis in software ANSYS (v.12). In addition, a cubical model was also developed in MIMICS to investigate the parameters affecting the relationship between RF and implant orientation in a simplified environment. The orientation angle was increased from 0 to 10 degrees in 1 degree increments and the resulting RF was analysed using correlation analysis and one-way ANOVA. Our analysis illustrated that the RF fluctuation following altering implant orientation was strongly correlated (r = 0.97) with the contacting cortical to cancellous bone ratio (CCBR) at the implant interface. The most extreme RF change (from 9.81 kHz to 10.07 kHz) occurred when the implant was moved 0.5 mm in positive z-direction, which resulted in the maximum change of CCBR from 52.9 to 54.8.  相似文献   

19.
Metallic biomaterials are widely used to restore the lost structure and functions of human bone. Due to the large number of joint replacements, there is a growing demand for new and improved orthopedic implants. More specifically, there is a need for novel load-bearing metallic implants with low effective modulus matching that of bone in order to reduce stress shielding and consequently increase the in vivo lifespan of the implant. In this study, we have fabricated porous Ti6Al4V alloy structures, using laser engineered net shaping (LENS?), to demonstrate that advanced manufacturing techniques such as LENS? can be used to fabricate low-modulus, tailored porosity implants with a wide variety of metals/alloys, where the porosity can be designed in areas based on the patient’s need to enhance biological fixation and achieve long-term in vivo stability. The effective modulus of Ti6Al4V alloy structures has been tailored between 7 and 60 GPa and porous Ti alloy structures containing 23–32 vol.% porosity showed modulus equivalent to human cortical bone. In vivo behavior of porous Ti6Al4V alloy samples in male Sprague–Dawley rats for 16 weeks demonstrated a significant increase in calcium within the implants, indicating excellent biological tissue ingrowth through interconnected porosity. In vivo results also showed that total amount of porosity plays an important role in tissue ingrowth.  相似文献   

20.
For the improvement of surface roughness and mechanical interlocking with bone, titanium prostheses are grit-blasted with Al2O3 particles during manufacturing. Dislocated Al2O3 particles are a leading cause of third-body abrasive wear in the articulation of endoprosthetic implants, resulting in inflammation, pain and ultimately aseptic loosening and implant failure. In the present study, a new treatment for the removal of residual Al2O3 particles from grit-blasted, cementless titanium endoprosthetic devices was investigated in a rabbit model. The cleansing process reduces residual Al2O3 particles on titanium surfaces by up to 96%. The biocompatibility of the implants secondary to treatment was examined histologically, the bone–implant contact area was quantified histomorphometrically, and interface strength was evaluated with a biomechanical push-out test. Conventional grit-blasted implants served as control. In histological and SEM analysis, the Al2O3-free implant surfaces demonstrated uncompromised biocompatibility. Histomorphometrically, Al2O3-free implants exhibited a significantly increased bone–implant contact area (p = 0.016) over conventional implants between both evaluation points. In push-out testing, treated Al2O3-free implants yielded less shear resistance than conventional implants at both evaluation points (p = 0.018). In conclusion, the new surface treatment effectively removes Al2O3 from implant surfaces. The treated implants demonstrated uncompromised biocompatibility and bone apposition in vivo. Clinically, Al2O3-free titanium prostheses could lead to less mechanical wear of the articulating surfaces and ultimately result in less aseptic loosening and longer implant life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号