首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Novel functional biodegradable gene vectors, poly(l-succinimide)-g-polyethylenimines-g-poly(ethylene glycol) (PSI-g-PEI-g-PEGs) were synthesized by conjugating methoxy poly(ethylene glycol) (mPEG, Mw = 750 Da) to PEI segments (Mw = 800 Da) of PSI-g-PEI. The physicochemical properties of PSI-g-PEI-g-PEGs, including buffering capability, pDNA binding ability, cytotoxicity, zeta potential and the particle size of polymer/pDNA complexes, were explored. The influence of PEGylation was discussed based on a comparative study of PSI-g-PEI-g-PEGs, PSI-g-PEI and PEI25k (Mw = 25 kDa). SEM images revealed that PSI-g-PEI-g-PEG/pDNA particles have a regular shape with the diameter ranging from 70 to 170 nm. PEGylation could suppress the aggregation occurrence between complexes, resulting in a reduction of the polymer/pDNA complex size. PSI-g-PEI-g-PEGs exhibited remarkably lower cytotoxicity compared to PSI-g-PEI and PEI25k. In 293T and HeLa cells, the obtained PSI-g-PEI-g-PEGs showed very high transfection efficiency compared to PEI25k. Fluorescent confocal microscopy demonstrated that PSI-g-PEI-g-PEGs could effectively transport pGL-3 plasmids into the nuclei of HeLa cells. Taking into account the continued high transfection efficacy and decreased toxicity after PEG modification, PSI-g-PEI-g-PEGs show great potential as the non-viral vectors for gene transfection.  相似文献   

2.
Amphiphilic polymers are effective in complexing and delivering therapeutic nucleic acids, such as plasmid DNA (pDNA) and short interfering RNA (siRNA). However, long-term stability of the complexes is not desirable, as it may have an impact on the transfection efficiency in vivo. To develop a method to preserve complex stability we first showed that pDNA complexes formed with the amphiphilic polymer linoleic acid-substituted polyethylenimine (PEI–LA) and incubated at 37 °C lost ~90% of their transfection efficiency after only 24 h of complex formation. Polyethyleneglycol modification of complexes to control the increase in complex size and incubation in scaffolds used for implantation did not preserve the transfection ability of the complexes. Among a variety of approaches explored, gelatin coating of complexes was found to be the best at maintaining the original transfection efficiency. Mechanistic studies suggested that improved complex uptake, not size stability, was responsible for retention of the transfection efficiency. Similarly to the results with pDNA, gelatin coating also prevented the decreases in uptake and silencing efficiency of siRNA complexes observed following incubation at 37 °C. Gelatin-stabilized complexes were, furthermore, effective in vivo and led to subcutaneous transgene expression with a low pDNA dose that was otherwise ineffective. We conclude that a simple gelatin coating approach offers an efficient means to preserve the transfection efficiency of polyplexes.  相似文献   

3.
A novel functional diblock polymer P(PEGMA-b-MAH) is prepared and incorporated to improve the gene delivery efficiency of poly(ethyleneimine) PEI via non-covalent assembly strategy. First, P(PEGMA-b-MAH) is prepared from l-methacrylamidohistidine methyl ester (MAH) by reversible addition fragmentation chain transfer polymerization, with poly[poly(ethylene glycol) methyl ether methacrylate] (P(PEGMA)) as the macroinitiator. Then P(PEGMA-b-MAH) is assembled with plasmid DNA (pDNA) and PEI (Mw = 10 kDa) to form PEI/P(PEGMA-b-MAH)/pDNA ternary complexes. The agarose gel retardation assay shows that the presence of P(PEGMA-b-MAH) does not interfere with DNA condensation by the PEI. Dynamic light scattering tests show that PEI/P(PEGMA-b-MAH)/pDNA ternary complexes have excellent serum stability. In vitro transfection indicates that, compared to the P(PEGMA-b-MAH) free PEI-25k/pDNA binary complexes, PEI-10k/P(PEGMA-b-MAH)/pDNA ternary complexes have lower cytotoxicity and higher gene transfection efficiency, especially under serum conditions. The ternary complexes proposed here can inspire a new strategy for the development of gene and drug delivery vectors.  相似文献   

4.
Macrophages are key orchestrators of inflammation as they secrete proteases and inflammatory cytokines. To date, therapies aimed at modulating macrophage phenotype have failed due to the short half-life of biomolecules in the body. Therefore, inhibition of inflammation by gene therapy constitutes a new hope.In the present study, we have assessed collagen hollow spheres as a reservoir system for polyplexes in order to transfect human macrophages while preserving cell viability. Polyplexes were formed by complexing G-Luc plasmid with a poly(2-dimethylaminoethyl methacrylate) poly(ethylene glycol) based hyperbranched polymer. Several ratios of polymer/pDNA (5:1, 8:1, 10:1 w/w) complexes in two different sphere sizes (1.24 and 4.5 μm) were tested. Collagen hollow spheres were loaded with polyplexes up to 80 μg of pDNA per mg of microspheres. The release of polyplexes from the spheres was delayed and prolonged i.e. 20% of the initial amount released in 5 days. Following incubation with polyplex-loaded microspheres, macrophages were transfected (polyplex pDNA:polymer ratio 1:10 w/w). In addition, collagen hollow spheres maintained cell viability as more than 80% of cells were viable after 4 days in culture. In contrast, when used alone, polyplexes were seen to be toxic, while there was no transfection detected. Taken together, these results show that collagen hollow spheres may be used as a reservoir for controlled gene delivery to macrophages. Unlike existing gene delivery systems, this system allows for macrophage transfection with minimal toxicity. Hence, this system has a potential for the delivery of a therapeutic gene in order to modulate inflammation.  相似文献   

5.
Polyethyleneimine (PEI)-g-All-trans-retinoic acid (ATRA) (designated as PRA) was synthesized as a gene carrier. ATRA at its low concentration is known to be linked to nuclear translocation and cell cycle control (either proliferation or growth arrest) depending on its binding protein in cells. The cytotoxicity of PRA conjugates was lower than that of PEI and was gradually reduced as increasing ATRA graft ratios. The resulting nanosized and positively charged PRA/pDNA complexes showed lower transfection efficiency than the PEI/pDNA complexes (N/P = 10) against NIH3T3 which is less sensitive to ATRA in cell growth and more sensitive HeLa cells. However, when a mixed gene complex of PEI and PRA was applied in an effort to reduce the ATRA contents, their NIH3T3 transfection evidenced effective nuclear translocation and induced 2- to 4-fold better transfection efficiency as compared with the PEI/pDNA complexes. When the PEI/pDNA complexes were utilized to transfect HeLa cells, free ATRA treatment reduced their cellular uptake and transfection efficiency. These findings show that the NIH3T3 cells against ATRA-mediated growth arrest would not damage the PRA-mediated transfection enhancement resulting from the facilitated nuclear translocation of polyplexes or pDNA. The more ATRA-sensitivity in growth arrest of HeLa cells would reduce the transfection efficiency of ATRA-incorporated polyplexes. The transfection capability of gene by newly synthesized PRA conjugates to cells is differentiated by their ATRA-sensitivity to nuclear translocation and cell growth control.  相似文献   

6.
A novel class of non-viral gene vectors consisting of low molecular weight poly(ethylene imine) (PEI) (molecular weight 800 Da) grafted onto degradable linear poly(ethylene glycol) (PEG) analogs was synthesized. First, a Michael addition reaction between poly(ethylene glycol) diacrylates (PEGDA) (molecular weight 258 Da) and d,l-dithiothreitol (DTT) was carried out to generate a linear polymer (PEG–DTT) having a terminal thiol, methacrylate and pendant hydroxyl functional groups. Five PEG–DTT analogs were synthesized by varying the molar ratio of diacrylates to thiols from 1.2:1 to 1:1.2. Then PEI (800 Da) was grafted onto the main chain of the PEG–DTTs using 1,1′-carbonyldiimidazole as the linker. The above reaction gave rise to a new class of non-viral gene vectors, (PEG–DTT)–g-PEI copolymers, which can effectively complex DNA to form nanoparticles. The molecular weights and structures of the copolymers were characterized by gel permeation chromatography, 1H nuclear magnetic resonance and Fourier transform infrared spectroscopy. The size of the nanoparticles was <200 nm and the surface charge of the nanoparticles, expressed as the zeta potential, was between +20 and +40 mV. Cytotoxicity assays showed that the copolymers exhibited much lower cytotoxicities than high molecular weight PEI (25 kDa). Transfection was performed in cultured HeLa, HepG2, MCF-7 and COS-7 cells. The copolymers showed higher transfection efficiencies than PEI (25 kDa) tested in four cell lines. The presence of serum (up to 30%) had no inhibitory effect on the transfection efficiency. These results indicate that this new class of non-viral gene vectors may be a promising gene carrier that is worth further investigation.  相似文献   

7.
While an effective non-viral gene carrier, 25 kDa branched polyethylenimine (PEI) is cytotoxic, and decreasing its toxicity while maintaining its functionality is vital. Conjugation of carriers with polyethylene glycol (PEG) is a common approach to decreasing toxicity and improving biodistribution; however, the effect of PEGylation on PEI transfection efficacy is contradictory at present. The aim of this work was to reveal the details of this dependence. Polymers were synthesized by grafting 2 kDa PEG to 25 kDa PEI at multiple ratios. Unlike typical investigations, parallel studies based on either total polymer weight or PEI-backbone weight were employed at the same time for accurate investigation into the specific effects of PEGylation. Polymers were assessed for toxicity and plasmid DNA (pDNA) binding, while polyplexes were formed at various polymer/pDNA weight ratios and monitored by dynamic light scattering (DLS) in the presence of serum. The efficacy of the polyplexes for pDNA delivery and transgene expression in HEK293 cells was assessed by flow cytometry. This approach unexpectedly revealed that increased PEG substitution caused lower toxicity and pDNA-binding on a per total polymer weight basis, but not on a per PEI-backbone weight basis. DLS indicated that high PEGylation prevents an increase in polyplex size in the presence of serum. Plasmid uptake and transgene expression were found to have a complex relationship with PEG substitution, dependent on the polymer/plasmid-DNA weight ratio. PEGylation generally decreased the transfection efficacy of PEI, but under ideal conditions of PEG substitution and polymer/pDNA ratio, PEGylation provided more effective carrier formulations than the native PEI itself.  相似文献   

8.
The foreign body reaction often interferes with the long-term functionality and performance of implanted biomedical devices through fibrous capsule formation. While many implant modification techniques have been adopted in attempts to control fibrous encapsulation, the outcomes remained sub-optimal. Nanofiber scaffold-mediated RNA interference may serve as an alternative approach through the localized and sustained delivery of siRNA at implant sites. In this study, we investigated the efficacy of siRNA–poly(caprolactone-co-ethylethylene phosphate) nanofibers in controlling fibrous capsule formation through the down-regulation of collagen type I (COL1A1) in vitro and in vivo. By encapsulating complexes of COL1A1 siRNA with a transfection reagent (Transit TKO) or the cell penetrating peptides CADY or MPG within the nanofibers (550–650 nm in diameter), a sustained release of siRNA was obtained for at least 28 days (loading efficiency ~60–67%). Scaffold-mediated transfection significantly enhanced cellular uptake of oligonucleotides and prolonged in vitro gene silencing duration by at least 2–3 times as compared to conventional bolus delivery of siRNA (14 days vs. 5–7 days by bolus delivery). In vivo subcutaneous implantation of siRNA scaffolds revealed a significant decrease in fibrous capsule thickness at weeks 2 and 4 as compared to plain nanofibers (p < 0.05). Taken together, the results demonstrated the efficacy of scaffold-mediated siRNA gene-silencing in providing effective long-term control of fibrous capsule formation.  相似文献   

9.
Kun Ma  Minxin Hu  Yan Qi  Liyan Qiu  Yi Jin  Jingmou Yu  Bo Li 《Biomaterials》2009,30(22):3780-3789
Efficient nuclear gene delivery is essential for successful gene therapy. It was previously reported that the transport of DNA into nucleus may be facilitated by glucocorticoid (GC). In this study, five glucocorticoids with different structures and potencies were conjugated with low molecular weight PEI 1800, and the degree of substitution of glucocorticoids was controlled to be close to each other. The glucocorticoid–polyethylenimine (GC–PEI)/pDNA complexes were prepared and their physico-chemical properties and transfection efficiency were investigated. The results showed that the complexes had similar physico-chemical properties, but their transfection activities were different statistically. In order to explore the reason of this difference, the affinity of GC–PEI polymer with GC receptor was analyzed by the application of molecular docking, and the correlation between transfection activity and the potency of five GC was investigated. The result showed that receptor binding of five GC was different and transgene expression enhanced linearly with the increasing GC potency, but log P. In addition, confocal microscopy examination confirmed that GC–PEI/DNA complexes were more effectively translocated in the nucleus than PEI 25 K or PEI 1800 complexes and the cytotoxicities of the GC–PEI polymers were lower than that of PEI 25 K. These results demonstrated that transfection activity of GC–PEI polymer correlated with its GC potency, and this regularity might be useful for the development of more efficient GC substituted polymer as promising nuclear-targeting carrier.  相似文献   

10.
The present work describes nanoparticles made of ultra low molecular weight chitosan (ULMWCh)/hyaluronic acid (HA) as novel potential carriers for gene delivery. Small and monodispersed nanoparticles with high in vitro transfection capabilities have been obtained by the complexation of these two polyelectrolytes. ULMWCh (<10 kDa) presents more advantageous characteristics over the higher molecular weight chitosan for clinical applications, namely increased solubility at physiological pH and improved DNA release. The ULMWCh:HA ratio and the HA molecular weights were varied with the aim of obtaining particles in the 100 nm range. Using chitosan (Ch) with a molecular weight of 5 kDa, HA with a molecular weight of 64 kDa, and a weight ratio of 4:1, nanoparticles with a Z-average size of 146 ± 1 nm and narrow size distribution (polydispersity index: 0.073 ± 0.030) were obtained. Nanoparticle images taken in dry conditions by SEM and AFM showed spherical particles. The optimal pH for transfection ranged from 6.4 to 6.8 for 0.25 μg of EGFP plasmid per well, with an incubation time of 4 h. Using these optimized parameters, DNA/ULMWCh:HA nanoparticles successfully transfected 25 ± 1% of the 293T cells with pEGFP, compared to 0.7% obtained for DNA/ULMWCh under the same conditions. This high transfection efficiency of our non-viral gene delivery system could be attributed to the synergic effect of ULMWCh and low charge density of the HA chain for easy release of DNA which makes the system suitable for targeted gene delivery.  相似文献   

11.
Porous polylactide constructs were prepared by stereolithography, for the first time without the use of reactive diluents. Star-shaped poly(d,l-lactide) oligomers with 2, 3 and 6 arms were synthesised, end-functionalised with methacryloyl chloride and photo-crosslinked in the presence of ethyl lactate as a non-reactive diluent. The molecular weights of the arms of the macromers were 0.2, 0.6, 1.1 and 5 kg/mol, allowing variation of the crosslink density of the resulting networks. Networks prepared from macromers of which the molecular weight per arm was 0.6 kg/mol or higher had good mechanical properties, similar to linear high-molecular weight poly(d,l-lactide). A resin based on a 2-armed poly(d,l-lactide) macromer with a molecular weight of 0.6 kg/mol per arm (75 wt%), ethyl lactate (19 wt%), photo-initiator (6 wt%), inhibitor and dye was prepared. Using this resin, films and computer-designed porous constructs were accurately fabricated by stereolithography. Pre-osteoblasts showed good adherence to these photo-crosslinked networks. The proliferation rate on these materials was comparable to that on high-molecular weight poly(d,l-lactide) and tissue culture polystyrene.  相似文献   

12.
Inorganic–organic hydrogels based on methacrylated star polydimethylsiloxane (PDMSstar-MA) and diacrylated poly(ethylene glycol) (PEG-DA) macromers were prepared via solvent-induced phase separation (SIPS). The macromers were combined in a dichloromethane precursor solution and sequentially photopolymerized, dried and hydrated. The chemical and physical properties of the hydrogels were further tailored by varying the number average molecular weight (Mn) of PEG-DA (Mn = 3.4k and 6k g mol?1) as well as the weight percent ratio of PDMSstar-MA (Mn = 7k g mol?1) to PEG-DA from 0:100 to 20:80. Compared to analogous hydrogels fabricated from aqueous precursor solutions, SIPS produced hydrogels with a macroporous morphology, a more even distribution of PDMSstar-MA, increased modulus and enhanced degradation rates. The morphology, swelling ratio, mechanical properties, bioactivity, non-specific protein adhesion, controlled introduction of cell adhesion, and cytocompatibility of the hydrogels were characterized. As a result of their tunable properties, this library of hydrogels is useful to study material-guided cell behavior and ultimate tissue regeneration.  相似文献   

13.
Nonviral gene transfer to neurons remains unreliable due to a lack of effective and nontoxic vectors. Here, we achieved effective neuronal gene delivery through salt-free complexation of plasmid DNA and pullulan–spermine, a conjugate prepared from a naturally derived polysaccharide and polyamine. Specifically, at low spermine nitrogen:DNA phosphate (N:P) ratios, complexes formed with ζ-potential and diameter of approximately?40 mV and 350 nm, respectively. Higher N:P ratios increased the ζ-potential to approximately +10 mV. All complexes were stable for at least 1 week and protected DNA from degradation. In vitro transfection of rat sensory neurons occurred at all N:P ratios, but uniquely, efficiency was highest for anionic complexes (anioplexes). Subsequent analyses revealed the inhibition of reporter gene expression by asialofetuin (1 mg/ml) and methyl-beta-cyclodextrin (5 mm), indicating utilization of glycoprotein-specific interactions and lipid rafts for uptake and intracellular trafficking. In marked contrast to a commercial cationic lipid reagent, anioplexes did not exhibit measurable cytotoxicity at up to 20 μg/ml DNA. Additionally, transfection efficiency was maintained in the presence of serum and antibiotics. Based on these favorable properties, we successfully established two transfection methods for cultured adult sensory neurons and tissue explants. Collectively, these data suggest that negatively charged pullulan–spermine/DNA anioplexes could represent an effective gene delivery technology, particularly for neurons.  相似文献   

14.
Novel reducible and degradable brushed poly(2-(dimethylamino) ethyl methacrylate) (PDMAEMA) derivatives were synthesized and evaluated as non-viral gene delivery vectors. First, alkyne-functionalized poly(aspartic acid) with a disulfide linker between the propargyl group and backbone poly([(propargyl carbamate)-cystamine]-α,β-aspartamide) (P(Asp-SS-AL)) was synthesized. Second, linear low molecular weight (LMW) monoazido-functionalized PDMAEMAs synthesized via atom transfer radical polymerization were conjugated to the polypeptide side-chains of P(Asp-SS-AL) via click chemistry to yield high molecular weight (HMW) polyaspartamide-based disulfide-containing brushed PDMAEMAs (PAPDEs). The PAPDEs were able to condense plasmid DNA to form 100 to 200 nm polyplexes with positive ζ-potentials. Moreover, in the presence of dithiothreitol the PAPDEs degraded into LMW PDAMEMA, resulting in disintegration of the PAPDE/DNA polyplexes and subsequent release of plasmid DNA. In vitro experiments revealed that the PAPDEs were less cytotoxic and more effective in gene transfection than control 25 kDa poly(ethyleneimine) and HMW linear PDMAEMA. In conclusion, reducible and degradable polycations composed of LMW PDMAEMAs coupled to a polypeptide backbone via reduction-sensitive disulfide bonds are effective gene vectors with an excellent cytocompatibility.  相似文献   

15.
Localized controlled release of nucleic acid therapeutics could be an effective way to reduce the extracellular barriers associated with systemic delivery. Herein, we have used the layer-by-layer film deposition approach to construct ultrathin multilayer assemblies for in vitro controlled release of plasmid DNA (pDNA). Layer-by-layer assemblies containing alternate layers of cationic poly(l-tartaramidopentaethylenetetramine) (T4), and anionic pDNA were fabricated. The film thickness and the absorbance at 260 nm for different T4/pDNA multilayer assemblies were characterized by ellipsometry and UV–vis spectrophotometry, respectively. The results indicated an increased loading capacity of pDNA with respect to an increase in the number of T4/pDNA bilayers deposited. For the controlled-release studies we incubated the bilayers coated on quartz slides in phosphate-buffered saline (PBS) at 37 °C and collected the media at different incubation time points. The collected PBS samples were characterized for pDNA release by complexing solutions containing the released pDNA with Lipofectamine 2000 and following cellular pDNA uptake via flow cytometry and GFP gene expression assays with HeLa cells. The study showed that the multilayer films started to release pDNA after 1 day of incubation and increased after 7 days of incubation. Assays monitoring green fluorescent protein (GFP) expression in HeLa cells indicated that about 20% of the cells were positive for GFP expression at all sample time points up to 11 days. Although an increase in cells positive for Cy5-pDNA was found as the incubation time increased, the number of cells positive for GFP expression remained constant over the same time frame.  相似文献   

16.
Wet spun microfibers have great potential for the design of multifunctional controlled release scaffolds. Understanding aspects of drug delivery and mechanical strength, specific to protein molecular weight, may aid in the optimization and development of wet spun fiber platforms. This study investigated the intrinsic material properties and release kinetics of poly(l-lactic acid) (PLLA) and poly(lactic-co-glycolic acid) (PLGA) wet spun microfibers encapsulating proteins with varying molecular weights. A cryogenic emulsion technique developed in our laboratory was used to encapsulate insulin (5.8 kDa), lysozyme (14.3 kDa) and bovine serum albumin (BSA, 66.0 kDa) within wet spun microfibers (~100 μm). Protein loading was found to significantly influence mechanical strength and drug release kinetics of PLGA and PLLA microfibers in a molecular-weight-dependent manner. BSA encapsulation resulted in the most significant decrease in strength and ductility for both PLGA and PLLA microfibers. Interestingly, BSA-loaded PLGA microfibers had a twofold increase (8 ± 2 MPa to 16 ± 1 MPa) in tensile strength and a fourfold increase (3 ± 1% to 12 ± 6%) in elongation until failure in comparison to PLLA microfibers. PLGA and PLLA microfibers exhibited prolonged protein release up to 63 days in vitro. Further analysis with the Korsmeyer–Peppas kinetic model determined that the mechanism of protein release was dependent on Fickian diffusion. These results emphasize the critical role protein molecular weight has on the properties of wet spun filaments, highlighting the importance of designing small molecular analogues to replace growth factors with large molecular weights.  相似文献   

17.
Herein, we report the efficient synthesis of high molecular weight polymers (up to 331 kDa) that contain β-cyclodextrin within the polymer backbone and the examination of these structures for pDNA delivery within cultured mammalian cells. Two series of polymers were synthesized, one with variation in oligoethyleneamine stoichiometry, Cd146, Cd244, Cd349, and Cd447 (1-4 oligoethyleneamines in the repeat unit, respectively and similar degree of polymerization, nw = 44–49) and another with variation in polymer length (four ethyleneamines in the repeat unit), Cd427, Cd447, Cd493, and Cd4200 [nw = 27, 47, 93, 200] via the “click reaction”. The two series of polymers revealed efficient pDNA binding and compaction through gel electrophoresis, dynamic light scattering, and transmission electron microscopy experiments. The DNase protection assay showed a decrease in pDNA degradation with an increase in the polymer amine stoichiometry, where polymer Cd349 and all of the Cd4 analogs completely protected pDNA for up to 8 h in serum. The cellular uptake and gene expression profiles were examined in HeLa cells, which similarly demonstrated that both the series of polymers had high pDNA delivery where, Cd349 and Cd493 had the most effective luciferase gene expression. In addition, the cell viability profiles were quite high with all of the structures.  相似文献   

18.
A non-viral siRNA carrier composed of mono-methoxy-poly (3-hydroxybutyrate-co-4-hydroxybutyrate)-block-polyethylene glycol-block-linear polyethyleneimine (mP3/4HB-b-PEG-b-lPEI) was synthesized using 1800 Da linear polyethyleneimine and evaluated for siRNA delivery. Our study demonstrated that siRNA could be efficiently combined with mP3/4HB-b-PEG-b-lPEI (mAG) co-polymer and was protected from nuclease degradation. The combined siRNA were released from the complexes easily under heparin competition. The particle size of the mAG/siRNA complexes was 158 nm, with a ζ-potential of around 28 mV. Atomic force microscopy images displayed spherical and homogeneously distributed complexes. The mAG block co-polymer displayed low cytotoxicity and efficient cellular uptake of Cy3–siRNA in A549 cells by flow cytometry and confocal microscopy. In vitro transfection efficiency of the block co-polymer was assessed using siRNA against luciferase in cultured A549-Luc, HeLa-Luc, HLF-Luc, A375-Luc and MCF-7-Luc cells. A higher transfection efficiency and lower cytotoxicity was obtained by mAG block co-polymer in five cell lines. Furthermore, a remarkable improvement in luciferase gene silencing efficiency of the mAG complex (up to 90–95%) over that of Lipofectamine? 2000 (70–82%) was observed in HLF-Luc and A375-Luc cells. Additionally, a mAG/p65-siRNA complex also showed a better capability than Lipofectamine? 2000/p65-siRNA complex to drastically reduce the p65 mRNA level down to 10–16% in HeLa, U251 and HUVEC cells at an N/P ratio of 70.  相似文献   

19.
《Acta biomaterialia》2014,10(3):1392-1402
A novel methoxy poly(ethylene glycol)-b-poly(l-glutamic acid)-b-poly(l-phenylalanine) (mPEG-b-P(Glu)-b-P(Phe)) triblock copolymer was prepared and explored as a micelle carrier for the co-delivery of paclitaxel (PTX) and cisplatin (cis-diamminedichlo-platinum, CDDP). PTX and CDDP were loaded inside the hydrophobic P(Phe) inner core and chelated to the middle P(Glu) shell, respectively, while mPEG provided the outer corona for prolonged circulation. An in vitro release profile of the PTX + CDDP-loaded micelles showed that the CDDP chelation cross-link prevented an initial burst release of PTX. The PTX + CDDP-loaded micelles exhibited a high synergism effect in the inhibition of A549 human lung cancer cell line proliferation over 72 h incubation. For the in vivo treatment of xenograft human lung tumor, the PTX + CDDP-loaded micelles displayed an obvious tumor inhibiting effect with a 83.1% tumor suppression rate (TSR%), which was significantly higher than that of a free drug combination or micelles with a single drug. In addition, more importantly, the enhanced anti-tumor efficacy of the PTX + CDDP-loaded micelles came with reduced side-effects. No obvious body weight loss occurred during the treatment of A549 tumor-bearing mice with the PTX + CDDP-loaded micelles. Thus, the polypeptide-based combination of PTX and CDDP may provide useful guidance for effective and safe cancer chemotherapy.  相似文献   

20.
New adjuvants and delivery strategies are needed to optimize the ability of protein-based vaccines to elicit CD8+ T cell responses. We have developed a model vaccine formulation containing ovalbumin (OVA) and the double-stranded RNA analog poly(inosinic acid)–poly(cytidylic acid) (poly(I:C)), a TLR3 agonist. OVA and poly(I:C) were each ion-paired to cetyltrimethylammonium bromide (CTAB) to produce hydrophobic complexes, which were co-encapsulated in pH-sensitive polyketal (PK3) microparticles (1–3 μm) using a single emulsion method. Loading levels ranged from 13.6 to 18.8 μg/mg OVA and 4.8 to 10.3 μg/mg poly(I:C). Murine splenic dendritic cells (DCs) pulsed with PK3-OVA–poly(I:C) microparticles, at antigen doses of 0.01 and 0.1 μg/mL, induced a higher percentage of IFNγ-producing CD8+ T cells than DCs treated with PK3-OVA particles or soluble OVA/poly(I:C). A higher antigen dose (1 μg/mL) was less effective, which can be attributed to CTAB toxicity. At the lowest antigen dose (0.01 μg/mL), PK3-OVA–poly(I:C) microparticles also enhanced TNF-α and IL-2 production in CD8+ T cells. These data demonstrate the potential of polyketal microparticles in formulating effective CD8+ T cell-inducing vaccines comprising protein antigens and dsRNA adjuvants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号