首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In mammals, the inducible cytokine interleukin 10 is a feedback negative regulator of inflammation. To determine the extent to which this function is conserved in birds, recombinant chicken IL-10 was expressed as a secreted human Ig Fc fusion protein (chIL-10-Fc) and used to immunise mice. Five monoclonal antibodies (mAb) which specifically recognise chicken IL-10 were generated and characterised. Two capture ELISA assays were developed which detected native chIL-10 secreted from chicken bone marrow-derived macrophages (chBMMs) stimulated with lipopolysaccharide (LPS). Three of the mAbs detected intracellular IL-10. This was detected in only a subset of the same LPS-stimulated chBMMs. The ELISA assay also detected massive increases in circulating IL-10 in chickens challenged with the coccidial parasite, Eimeria tenella. The same mAbs neutralised the bioactivity of recombinant chIL-10. The role of IL-10 in feedback control was tested in vitro. The neutralising antibodies prevented IL-10-induced inhibition of IFN-γ synthesis by mitogen-activated lymphocytes and increased nitric oxide production in LPS-stimulated chBMMs. The results confirm that IL-10 is an inducible feedback regulator of immune response in chickens, and could be the target for improved vaccine efficacy or breeding strategies.  相似文献   

2.
Activation of the TLR3 pathway regulates IFNbeta production in chickens   总被引:1,自引:0,他引:1  
Toll-like receptors (TLRs) play key roles in the response to pathogens and in mammals the host response to virus critically relies on TLR3 to detect viral-derived dsRNA. However, in chickens there is a paucity of information about this pathway, and in view of the recent concerns with regard to highly pathogenic avian influenza, there is a clear need for understanding these antiviral pathways. Furthermore, TLR3 engagement is important to the outcome of viral infection because of its role in the induction of interferons (IFNs) and the diverse antiviral effects that these molecules induce. With this in mind, we have investigated the role of TLR3 and its impact on the production of IFNs. We show that in the chicken, poly(I:C), a dsRNA analogue, rapidly induces type 1 IFN similar to that seen in mammals. Furthermore, IFN can activate the upregulation of TLR3, which in some cell types induces them to become responsive to dsRNA. These data highlight the similar function that TLR3 plays in chickens and mammals. To determine the role of chicken TLR3 in response to poly(I:C), we used RNAi-mediated gene silencing to show that poly(I:C)-stimulated IFNbeta expression involves TLR3 signalling. The interrelationship between TLR3 and interferon as well as the observed increase in TLR3 and IFNbeta expression during H5N1 avian influenza infection indicates the importance of these molecules in viral infections in chickens.  相似文献   

3.
4.
Chronic periodontitis is a local inflammatory disease induced by a dysbiotic microbiota and leading to destruction of the tooth-supporting structures. Microbial nucleic acids are abundantly present in the periodontium, derived through release after phagocytic uptake of microbes and/or from biofilm-associated extracellular DNA. Binding of microbial DNA to its cognate receptors, such as Toll-like receptor 9 (TLR9), can trigger inflammation. In this study, we utilized TLR9 knockout (TLR9−/−) mice and wild-type (WT) controls in a murine model of Porphyromonas gingivalis-induced periodontitis and report the first in vivo evidence that TLR9 signaling mediates the induction of periodontal bone loss. P. gingivalis-infected WT mice exhibited significantly increased bone loss compared to that in sham-infected WT mice or P. gingivalis-infected TLR9−/− mice, which were resistant to bone loss. Consistent with this, the expression levels of interleukin 6 (IL-6), tumor necrosis factor (TNF), and receptor-activator of nuclear factor kappa B ligand (RANKL) were significantly elevated in the gingival tissues of the infected WT mice but not in infected TLR9−/− mice compared to their levels in controls. Ex vivo studies using splenocytes and bone marrow-derived macrophages revealed significantly diminished cytokine production in TLR9−/− cells relative to the cytokine production in WT cells in response to P. gingivalis, thereby implicating TLR9 in inflammatory responses to this organism. Intriguingly, compared to the cytokine production in WT cells, TLR9−/− cells exhibited significantly decreased proinflammatory cytokine production upon challenge with lipopolysaccharide (LPS) (TLR4 agonist) or Pam3Cys (TLR2 agonist), suggesting possible cross talk between TLR9, TLR4, and TLR2. Collectively, our results provide the first proof-of-concept evidence implicating TLR9-triggered inflammation in periodontal disease pathogenesis, thereby identifying a new potential therapeutic target to control periodontal inflammation.  相似文献   

5.
The adaptive immune system is not completely developed when chickens hatch, so the innate immune system has evolved a range of mechanisms to deal with early pathogenic assault. Avian β-defensins (AvBDs) and cathelicidins (CTHLs) are two major sub-classes of antimicrobial peptides (AMPs) with a fundamental role in both innate and adaptive immune responses. In this study, we demonstrate distinct expression patterns of innate immune genes including – Toll-like receptors (TLRs) (TLR2, TLR15 and TLR21, but not TLR4), the complete repertoire of AvBDs, CTHLs and both pro- and anti-inflammatory cytokines (IL1B, IL8, IFNG and IL10) during early chicken embryonic development. AvBD9 was significantly increased by over 150 fold at day 9; and AvBD10 was increased by over 100 fold at day 12 in the abdomen of the embryo, relative to day 3 expression levels (P < 0.01). In contrast, AvBD14 was preferentially expressed in the head of the embryo. This is the first study to demonstrate differential patterns of AMP gene expression in the sterile environment of the developing embryo. Our results propose novel roles for AMPs during development and reveal the innate preparedness of developing embryos for pathogenic assault in ovo, or post-hatching.  相似文献   

6.
Toll-like receptors (TLRs) are involved in the induction of an adequate immune response on infection. We hypothesized that genetic variation in TLR4 and TLR2 genes could influence this response and lead to variability in cytokine production and survival. We tested this hypothesis in 4292 participants who were followed up for all-cause mortality for 6 years and live under adverse environmental conditions in the Upper-East region of Ghana, where malaria is endemic. In 605 participants, tumor necrosis factor-α and interleukin-10 (IL10) production, after stimulation with lipopolysaccharide and zymosan, was measured. In addition, 34 single-nucleotide polymorphisms (SNPs) in TLR4 and 12 SNPs in TLR2 were genotyped and tested for association with cytokine production, malaria infection and mortality. In this comprehensive gene-wide approach, we identified novel SNPs in the TLR4 gene that influence cytokine production. From the analyzed SNPs, rs7860896 associated the strongest with IL10 production (P=0.0005). None of the SNPs in this study associated with malaria or overall mortality risks. In conclusion, we demonstrate that genetic variation within the TLR4 gene influences cytokine production capacity, but in an endemic area does not influence the susceptibility to malaria infection or mortality.  相似文献   

7.
The identification of immune pathways that protect against pathogens may lead to novel molecular therapies for both livestock and human health. Interferon (IFN) is a major response pathway that stimulates multiple genes targeted towards reducing virus. Viperin is one such interferon stimulated gene (ISG) that helps protect mammals from virus and may be critical to protecting chickens in the same way. In chickens, ISGs are not generally well characterised and viperin, in concert with other ISGs, may be important in protecting against virus. Here we identify chicken viperin (ch-viperin) and show that ch-viperin is upregulated in response to viral signature molecules. We further show that viperin is upregulated in response to virus infection in vivo. This data will benefit investigators targeting the antiviral pathways in the chicken.  相似文献   

8.
Toll-like receptors (TLRs) orchestrate a repertoire of immune responses in macrophages against various pathogens. Fusobacterium nucleatum and Aggregatibacter actinomycetemcomitans are two important periodontal pathogens. In the present study, we investigated TLR signaling regulating cytokine production of macrophages in response to F. nucleatum and A. actinomycetemcomitans. TLR2 and TLR4 are redundant in the production of cytokines (interleukin-6 [IL-6] and tumor necrosis factor alpha [TNF-α]) in F. nucleatum- and A. actinomycetemcomitans-infected macrophages. The production of cytokines by macrophages in response to F. nucleatum and A. actinomycetemcomitans infection was impaired in MyD88-deficient macrophages. Moreover, cytokine concentrations were lower in MyD88-deficient macrophages than in TLR2/TLR4 (TLR2/4) double-deficient cells. An endosomal TLR inhibitor, chloroquine, reduced cytokine production in TLR2/4-deficient macrophages in response to F. nucleatum and A. actinomycetemcomitans, and DNA from F. nucleatum or A. actinomycetemcomitans induced IL-6 production in bone marrow-derived macrophages (BMDMs), which was abolished by chloroquine. Western blot analysis revealed that TLR2/4 and MyD88 were required for optimal activation of NF-κB and mitogen-activated protein kinases (MAPKs) in macrophages in response to F. nucleatum and A. actinomycetemcomitans, with different kinetics. An inhibitor assay showed that NF-κB and all MAPKs (p38, extracellular signal-regulated kinase [ERK], and Jun N-terminal protein kinase [JNK]) mediate F. nucleatum-induced production of cytokines in macrophages, whereas NF-κB and p38, but not ERK and JNK, are involved in A. actinomycetemcomitans-mediated cytokine production. These findings suggest that multiple TLRs may participate in the cytokine production of macrophages against periodontal bacteria.  相似文献   

9.
Neisseria meningitidis is a leading cause of meningitis and sepsis. The pathogenesis of meningococcal disease is determined by both bacterial virulence factors and the host inflammatory response. Toll-like receptors (TLRs) are prominent activators of the inflammatory response, and TLR2, -4, and -9 have been reported to be involved in the host response to N. meningitidis. While TLR4 has been suggested to play an important role in early containment of infection, the roles of TLR2 and TLR9 in meningococcal disease are not well described. Using a model for meningococcal sepsis, we report that TLR9−/− mice displayed reduced survival and elevated levels of bacteremia compared to wild-type mice. In contrast, TLR2−/− mice controlled the infection in a manner comparable to that of wild-type mice. TLR9 deficiency was also associated with reduced bactericidal activity in vitro, which was accompanied by reduced production of nitric oxide by TLR9-deficient macrophages. Interestingly, TLR9−/− mice recruited more macrophages to the bloodstream than wild-type mice and produced elevated levels of cytokines at late time points during infection. At the cellular level, activation of signal transduction and induction of cytokine gene expression were independent of TLR2 or TLR9 in macrophages and conventional dendritic cells. In contrast, plasmacytoid dendritic cells relied entirely on TLR9 to induce these activities. Thus, our data demonstrate an important role for TLR9 in host defense against N. meningitidis.  相似文献   

10.
Chickens possess toll-like receptor (TLR15), a pattern recognition receptor (PRR) absent in mammals. We characterized the regulation and mechanism of CpG responsiveness via TLRs in chicken macrophage HD11 cells. TLR15 was significantly upregulated after induction with B- and C-type CpG oligonucleotides (ODN), tripalmitoylated lipopeptide (PAM3CSK4), Escherichia coli- and Salmonella enteritidis-derived lipopolysaccharide (LPS). In response to CpG-ODN inhibitor, TLR15 and IL1B were downregulated, but TLR21 was upregulated. IL1B was upregulated with CpG-ODN and downregulated after inhibitor treatment. The results suggest that responsiveness to different types of CpG-ODN in chicken macrophages requires multiple receptors, each with unique variation in expression. We utilized RNA interference (RNAi) technology to examine myeloid differentiation primary response gene (MyD88) dependency of TLR15 and TLR21. HD11 macrophages transfected with multiple MyD88-target siRNAs exhibited 70% decrease in MyD88 mRNA expression. IL1B was upregulated with CpG induction in cells with no reduction of MyD88 mRNA levels, but not in cells with 70% MyD88 reduction. Therefore, induction through TLR15 in response to CpG-ODN operates via the MyD88-dependent pathway in chicken macrophages.  相似文献   

11.
12.
Primary Sjögren's syndrome (pSS) is a chronic, inflammatory autoimmune disease characterised by lymphocytic infiltrations in the exocrine glands, resulting in destruction of salivary and lacrimal glands. B cells have an important role in the disease, as detection of autoantibodies against SSA/Ro or SSB/La is one of the diagnostic criteria, being found in a majority of the patients. Toll‐like receptors (TLR) are pattern recognition receptors. TLR‐7 and ‐9 are found in endosomes and bind microbial nucleic acids. We have previously shown that pSS patients and healthy controls have similar expression pattern of TLR‐7 and ‐9 in various B‐cell populations. In this study we further analysed the responsiveness of B cells upon TLR stimulation. B cells isolated from peripheral blood of 21 pSS patients and 18 healthy controls were stimulated with TLR‐7 and ‐9 ligands for 24 h before being analysed for the expression of certain surface markers and intracellular cytokine levels by flow cytometry. Secreted cytokines were measured by a multiplex cytokine assay. Patients with pSS had more naïve and less preswitched memory B cells compared to controls in unstimulated as well as via TLR‐7 stimulated cells. Unstimulated and via TLR‐7 stimulated B cells from pSS patients also had fewer IL‐10+ preswitched memory B cells. Moreover, TLR‐7 and ‐9 stimulated B cells of pSS patients secreted increased amounts of several cytokines. B cells of pSS patients show a different responsiveness upon stimulation of TLR‐7 and ‐9 compared to controls.  相似文献   

13.
14.
Avian influenza virus is endemic in many regions around the world and remains a pandemic threat, a scenario tied closely to outbreaks of the virus in poultry. The innate immune system, in particular the nucleic acid-sensing toll-like receptors (TLRs) -3, -7, -8, and -9, play a major role in coordinating antiviral immune responses. In this study we have investigated the use of TLR ligands as antivirals against influenza A in chickens. The TLR7 ligand poly-C inhibited low-path influenza A growth in the chicken macrophage cell line HD-11 more effectively than poly(I:C), which acts via TLR3. The TLR7 ligand 7-allyl-8-oxoguanosine (loxoribine) inhibited influenza A replication in vitro and in ovo in a dose-dependent manner. Treatment of primary chicken splenocytes with loxoribine resulted in the induction of interferons-α, -β, and -λ, and interferon-stimulated genes PKR and Mx. These results demonstrate that nucleic acid-sensing TLR ligands show considerable potential as antivirals in chickens and could be incorporated into antiviral strategies.  相似文献   

15.
16.
The TNF superfamily cytokine BAFF has crucial roles in homoeostatic regulation of B cell populations in mammals. Similar effects on peripheral B cells have been reported for chicken as for mammalian BAFF. Unlike mammalian BAFF, chicken BAFF is produced by B cells, implying an autocrine loop and consequent differences in regulation of B cell homoeostasis. Understanding of these mechanisms requires investigation of BAFF-binding receptors in chickens. We identified and characterised chicken receptors BAFFR and TACI, but found that the gene encoding the third BAFF-binding receptor, BCMA, was disrupted, implying differences in mechanisms for maintenance of long-lived antibody responses. A BAFFR-Ig fusion protein expressed in vivo lowered B cell numbers, showing that it was functional under physiological conditions. We found changes in the ratio of BAFFR and TACI mRNAs in the bursa after hatch that may account for the altered requirements for B cell survival at this stage of development.  相似文献   

17.
Chicken raised under commercial conditions are vulnerable to environmental exposure to a number of pathogens. Therefore, regular vaccination of the flock is an absolute requirement to prevent the occurrence of infectious diseases. To combat infectious diseases, vaccines require inclusion of effective adjuvants that promote enhanced protection and do not cause any undesired adverse reaction when administered to birds along with the vaccine. With this perspective in mind, there is an increased need for effective better vaccine adjuvants. Efforts are being made to enhance vaccine efficacy by the use of suitable adjuvants, particularly Toll-like receptor (TLR)-based adjuvants. TLRs are among the types of pattern recognition receptors (PRRs) that recognize conserved pathogen molecules. A number of studies have documented the effectiveness of flagellin as an adjuvant as well as its ability to promote cytokine production by a range of innate immune cells. This minireview summarizes our current understanding of flagellin action, its role in inducing cytokine response in chicken cells, and the potential use of flagellin as well as its combination with other TLR ligands as an adjuvant in chicken vaccines.  相似文献   

18.
《Immunobiology》2013,218(2):192-200
Toll-like receptors (TLR) initiate innate and often affect adaptive immune response. This study aimed to determine if TLR response and T regulatory cell (Treg) function in peripheral blood mononuclear cells (PBMC) correlate with clinical severity in non-infectious asthma. TLR1–9 expression and representative response cytokine TNF-α, IL-6, and IFN-β secretions were analyzed after stimulation by TLR1–9 ligands from 17 non-infectious asthmatic children. TNF-α production was higher in TLR1/2 (median 385.4 vs. 250.3 pg/ml in 1 μg/ml Pam3CSK4, p = 0.0078), TLR4 (2392.4 vs. 1355.9 in 1 μg/ml LPS; p = 0.0005), and TLR7/8 (10,776.2 vs. 4237.0 pg/ml in 1 μg/ml R848, p = 0.0079) of patients in exacerbation than those in convalescence and healthy controls despite equal TLR expression. TNF-α production stimulated by TLR9 agonist was significantly lower in exacerbation (17.7 vs. 34.9 pg/ml in 1 μg/ml ODN2216, p = 0.0175), while IL-6 production had similar patterns but was significantly lower in TLR3 signaling (119.7 vs. 245.0 pg/ml in 0.1 μg/ml poly(I:C), p = 0.0033). IFN-β production by TLR3 agonist also decreased in exacerbation but not statistically significant. Six older children showed decreased FOXP3 percentage in CD4 + CD25high and decreased suppression capability in exacerbation but restored in stabilization (82.8% vs. 90.0%, p = 0.0061 and 60.9% vs. 81.7%, p = 0.0071; respectively). In conclusion, normalizing imbalanced TLR signaling and enhancing Treg cell capability may guide possible therapeutic strategies for non-infectious asthma in exacerbation.  相似文献   

19.
Acute Plasmodium falciparum infection is associated with strongly upregulated cytokine responses that are at least partly the result of activation of Toll-like receptors (TLRs). Whether and how TLR expression/responsiveness changes upon malarial infection is, however, currently not well understood. To assess this, we examined expression of TLRs and used the TLR ligand lipopolysaccharide (LPS) and Pam3Cys to stimulate peripheral blood mononuclear cells (PBMCs) from Ghanaian schoolchildren who live in a rural area where P. falciparum is endemic. Expression of TLR2 was higher, and responses to its ligand, Pam3Cys, were enhanced in P. falciparum-infected children compared to their uninfected counterparts. In cells from the same children, stimulation by Pam3Cys resulted in higher p38 mitogen-activated protein kinase activation and higher cytokine production. In vitro experiments confirmed that preincubation of PBMCs with P. falciparum-infected red blood cells enhanced responsiveness to TLR ligands. Taken together, the data indicate that P. falciparum-infected children in areas where malaria is endemic have an altered innate immune system, which might be important for the balance between immunity and pathology when new infections are encountered or when novel vaccines are introduced.  相似文献   

20.
Toll-like receptors (TLRs) signal through two main pathways: a myeloid differentiation factor (MyD)88-dependent pathway that acts via nuclear factor kappaB (NF-kappaB) to induce proinflammatory cytokines such as tumour necrosis factor-alpha (TNF-alpha) and a MyD88-independent pathway that acts via type I interferons to increase the expression of interferon-inducible genes. Repeated signalling through TLR4 and a number of other TLRs has been reported to result in a reduction in the subsequent proinflammatory cytokine response, a phenomenon known as TLR tolerance. In this study we have shown that, whilst NF-kappaB activation and production of TNF-alpha and interleukin-12 by murine RAW264.7 and J774.2 cells in response to stimulation by TLR4, -5, -7 or -9, was reduced by prior stimulation with TLR4, -5, -7 or -9 ligands, the primary stimulation of TLR3, which does not use the MyD88 pathway, did not reduce the TNF-alpha or interleukin-12 responses to subsequent TLR stimulation. The response to TLR3 stimulation was not diminished by prior TLR ligand exposure. Furthermore, the production of interferon-beta (IFN-beta) following stimulation of TLR3 or -4, which is MyD88-independent, was increased by prior activation of TLR4, -5, -7 or -9. In contrast, TLR9 ligand-induced IFN-beta production, which is MyD88-dependent, was tolerized by prior TLR stimulation. These results are consistent with differential regulation of MyD88-dependent and MyD88-independent cytokine production following serial activation of TLRs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号