首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVE: A possible mechanism for N-(2-mercaptopropionyl)-glycine (MPG) underlying the improvement of contractile function and mitochondrial activity of ischemic-reperfused rat hearts was examined. METHODS: Isolated, perfused hearts were subjected to 35 min ischemia-60 min reperfusion. At the end of ischemia or reperfusion, myocardial Na(+) content and mitochondrial oxygen consumption rate (OCR) were examined. The perfused heart was treated with 0.1-1 mM MPG for 30 min prior to ischemia or for the first 30 min of reperfusion. RESULTS: Ischemia increased myocardial Na(+) content (sodium overload) and decreased mitochondrial OCR. The left ventricular developed pressure (LVDP) of the untreated heart recovered to 19.8+/-3.8% of the preischemic value and the infarct area amounted to 23.3+/-1.7% of the left ventricle. The thiobarbiturate-reacting substance (TRS) was also increased in the reperfused, but not ischemic, myocardium. Pretreatment of the perfused heart with 0.3-1 mM MPG attenuated the ischemia-induced sodium overload and decrease in the OCR. Pretreatment with the agent also enhanced the postischemic recovery of LVDP, attenuated reperfusion-induced increase in TRS, and reduced the infarct area. Although the postischemic treatment with MPG suppressed the increase in TRS in the reperfused myocardium, a LVDP recovery of reperfused hearts was not observed. Cardiac mitochondria were isolated and examined for the direct effect of MPG on their function. Incubation with either 12.5 mM sodium lactate or 1 microM phenylarsine oxide neither altered the mitochondrial membrane potential nor induced mitochondrial swelling, whereas incubation with a combination of these agents elicited the membrane potential depolarization and swelling. Incubation of mitochondria with 1 mM MPG attenuated these events. CONCLUSION: These results suggest that both attenuation of sodium overload and preservation of the mitochondrial function may largely contribute to cardioprotection of MPG in the ischemic-reperfused heart.  相似文献   

2.
Increased resistance to myocardial ischemia in chronically hypoxic immature rabbit hearts is associated with activation of ATP-sensitive K(+) (K(ATP)) channels. We determined whether chronic hypoxia from birth alters the function of the mitochondrial K(ATP) channel. The K(ATP) channel opener bimakalim (1 micromol/L) increased postischemic recovery of left ventricular developed pressure in isolated normoxic (FIO(2)=0.21) hearts to values (42+/-4% to 67+/-5% ) not different from those of hypoxic controls but did not alter postischemic recovery of developed pressure in isolated chronically hypoxic (FIO(2)=0.12) hearts (69+/-5% to 72+/-5%). Conversely, the K(ATP) channel blockers glibenclamide (1 micromol/L) and 5-hydroxydecanoate (5-HD, 300 micromol/L) attenuated the cardioprotective effect of hypoxia but had no effect on postischemic recovery of function in normoxic hearts. ATP synthesis rates in hypoxic heart mitochondria (3.92+/-0.23 micromol ATP. min(-1). mg mitochondrial protein(-1)) were significantly greater than rates in normoxic hearts (2.95+/-0.08 micromol ATP. min(-1). mg mitochondrial protein(-1)). Bimakalim (1 micromol/L) decreased the rate of ATP synthesis in normoxic heart mitochondria consistent with mitochondrial K(ATP) channel activation and mitochondrial depolarization. The effect of bimakalim on ATP synthesis was antagonized by the K(ATP) channel blockers glibenclamide (1 micromol/L) and 5-HD (300 micromol/L) in normoxic heart mitochondria, whereas glibenclamide and 5-HD alone had no effect. In hypoxic heart mitochondria, the rate of ATP synthesis was not affected by bimakalim but was attenuated by glibenclamide and 5-HD. We conclude that mitochondrial K(ATP) channels are activated in chronically hypoxic rabbit hearts and implicate activation of this channel in the improved mitochondrial bioenergetics and cardioprotection observed.  相似文献   

3.
BACKGROUND: Recent studies have postulated that mitochondrial ATP-sensitive potassium (mitoK(ATP)) channel activation may modulate mitochondrial function with the resultant induction of a preconditioning phenotype in the heart. We hypothesized that the modulation of mitochondrial homeostasis might confer preconditioning-like cardioprotection. METHODS: We used a model of regional ischemia in Langendorff-perfused isolated rat hearts. Short-term administration of 2,4-dinitrophenol (DNP), an uncoupler of oxidative phosphorylation and cyclosporin A (CSA), an inhibitor of mitochondrial respiration, was used in an attempt to elicit preconditioning-like cardioprotection. The anti-ischemic drug trimetazidine, known to attenuate CSA-induced disruption in mitochondrial function, and the mitoK(ATP) channel blocker 5-hydroxydecanoic acid (5-HD) were used to inhibit the effects of DNP and CSA. Finally, we studied the effect of trimetazidine on adenosine-induced and ischemic preconditioning. Risk zone and infarct size were measured and expressed as a percentage of the risk zone (I/R ratio). RESULTS: DNP, CSA and adenosine pretreatment reduced infarct size (I/R ratio: DNP 9.0+/-2.4%, CSA 12.5+/-1.4%, adenosine 11.9+/-3.6%, all P<0.001 vs. control, 30.2+/-1.3%) similarly to ischemic preconditioning (9.5+/-0.6%, P<0.001 vs. control). Trimetazidine limited the effect of ischemic preconditioning (22.2+/-2.0%, P<0.001 vs. ischemic preconditioning) and completely reversed the DNP, CSA, and the adenosine-mediated reduction in infarct size. 5-HD abolished the effect of ischemic preconditioning and CSA. CONCLUSION: DNP and CSA trigger preconditioning-like cardioprotection in the isolated rat heart. Trimetazidine, a known mitochondrial 'protector', attenuated both drug-induced and ischemic preconditioning. These data support the hypothesis that modulation of mitochondrial homeostasis may be a common downstream cellular event linking different triggers of preconditioning.  相似文献   

4.
目的观察阿托伐他汀(ATV)预处理的心肌保护效应,探讨诱导型一氧化氮合酶(iNOS)和线粒体膜ATP敏感性钾通道(KATP)在其中的作用以及这两个环节的相互关系。方法将兔随机分成缺血再灌注模型对照组(对照组)、ATV组、ATV复合iNOS阻断剂S-甲基异琉脲硫酸盐组(ATV+SMT组)、S-甲基异琉脲硫酸盐组(SMT组)、ATV复合线粒体膜KATP通道阻断剂5-羟癸酸组(ATV+5-HD组)、5-羟癸酸组(5-HD)组。进行40min局部缺血和240min再灌注,观察各组心肌梗死范围、血液生物化学、一氧化氮合酶、线粒体ATP合成能力。结果3天阿托伐他汀预处理(10mg·kg^-1·d^-1)使心肌梗死范围、肌酸激酶同工酶(CK—MB)、乳酸脱氢酶同工酶(LDH-1)分别下降26.3%、31.4%、19.1%,使iNOS、线粒体ATP合成能力分别提高102.6%和46.8%。ATV+SMT组心肌梗死范围、CK-MB、LDH-1、iNOS、线粒体ATP合成能力和对照组无明显差异。ATV+5-HD组心肌梗死范围、CK-MB、LDH-1、线粒体ATP合成能力和对照组无明显差异,ATV+5-HD组iNOS和ATV组相似,均明显高于对照组(P〈0.01)。结论阿托伐他汀预处理通过上调iNOS和激活线粒体膜KATP产生心肌保护作用,且iNOS是线粒体膜KATP的上游途径。  相似文献   

5.
Both glycogen synthase kinase 3beta (GSK3beta) and the ATP-dependant potassium channel (K(ATP)) mediate opioid-induced cardioprotection (OIC). However, whether direct K(ATP) channel openers induce cardioprotection prior to reperfusion and their signaling cascade position with respect to GSK3beta inhibition is unknown. Therefore, we investigated the role of K(ATP) channel opening at reperfusion in OIC, and the interaction between the GSK signaling axis and K(ATP) channels in cardioprotection.Male Sprague-Dawley rats underwent 30 minutes ischemia with 2 hours of reperfusion and infarct size was determined. Rats given the nonselective opioid agonist, morphine (0.3 mg/kg), or the selective delta opioid agonist, BW373U86 (1.0 mg/kg), 5 minutes prior to reperfusion reduced infarct size (40.3+/-1.6*, 39.7+/-1.9* versus 60.0+/-1.1%, respectively, * P<0.001%). This protection was abrogated with prior administration of the putative sarcolemmal K(ATP) antagonist, HMR-1098 (6 mg/kg), or the putative mitochondrial K(ATP) antagonist, 5-HD (10 mg/kg). The putative sK(ATP) channel opener, P-1075 (1microg/kg) or the putative mK(ATP) channel opener, BMS-191095 (1 mg/kg) given 5 minutes prior to reperfusion also reduced infarct size (41.8+/-2.4*, 43.4+/-1.4*) and protection was abrogated by prior administration of the PI3k inhibitor wortmannin (60.0+/-1.7, 64.0+/-2.6%, respectively, * P<0.001). Cardioprotection afforded by the GSK inhibitor SB216763 (0.6 mg/kg) given 5 minutes prior to reperfusion was also partially blocked by either HMR or 5-HD and completely blocked when HMR and 5-HD were given in combination (40.8+/-1.6*, 50.4+/-1.6;; 49.4+/-1.7;, 61.6+/-1.6%, respectively, * or ; P<0.001). These data indicate that both the sK(ATP) and mK(ATP) channel are involved in acute OIC and the GSK signaling axis regulates cardioprotection via K(ATP) channel opening.  相似文献   

6.
BACKGROUND: It is still unclear whether celiprolol, a beta(1)-selective blocker, reduces myocardial infarct size. This study will examine whether celiprolol reduces myocardial infarct size, as well as investigate the mechanisms for its infarct size-reducing effect in rabbits. METHODS AND RESULTS: Japanese white rabbits underwent 30 min of ischemia and 48 h of reperfusion. Celiprolol (1 or 10 mg x kg (-1) x h(-1) for 60 min, iv) was administered 20 min before ischemia with or without pretreatment with N(omega)-nitro-L-arginine methylester (L-NAME, 10 mg/kg, iv, a nitric oxide synthase inhibitor) or 5-hydroxydecanoic acid sodium salt (5-HD, 5 mg/kg, iv, a mitochondrial K(ATP) channel blocker). The area at risk as a percentage of the left ventricle was determined by using Evans blue dye, and the infarct size was determined as a percentage of the area at risk by triphenyl tetrazolium chloride staining. Celiprolol 1 and 10 mg x kg(-1) x h(-1) significantly reduced the infarct size in a dose-dependent manner (36.4+/-1.7%, n=7 and 25.4+/-2.9%, n=7, respectively) compared with the control (46.2+/-3.1%, n=8). The infarct size-reducing effect of celiprolol was completely blocked by L-NAME (40.4 +/-2.8%, n=8) but not by 5-HD (27.3+/-1.0%, n=8). Celiprolol 1 mg x kg(-1) x h (-1) increased the myocardial interstitial levels of NOx, an indicator of nitric oxide, and reduced the intensity of dihydro-ethidium staining of myocardium, an indicator of superoxide, during reperfusion after 30 min of ischemia. CONCLUSION: Celiprolol reduces myocardial infarct size and also increases nitric oxide production and reduces superoxide levels but not mitochondrial K(ATP) channels in rabbits.  相似文献   

7.
It has been assumed that all G(i)-coupled receptors trigger the protective action of preconditioning by means of an identical intracellular signaling pathway. To test this assumption, rabbit hearts were isolated and perfused with Krebs buffer. All hearts were subjected to a 30-minute coronary artery occlusion followed by 120 minutes of reperfusion. Risk area was measured with fluorescent particles and infarct size with triphenyltetrazolium chloride staining. Control hearts showed 29.1+/-2.8% infarction of the risk zone. A 5-minute infusion of acetylcholine (0.55 mmol/L) beginning 15 minutes before the 30-minute occlusion resulted in significant protection (9.2+/-2.7% infarction). This protection could be blocked by administration of 300 micromol/L N-2-mercaptopropionyl glycine (MPG), a free radical scavenger, or by 200 micromol/L 5-hydroxydecanoate (5-HD), a mitochondrial K(ATP) antagonist, for 15 minutes beginning 5 minutes before the acetylcholine infusion (35.2+/-3.9% and 27.8+/-2.4% infarction, respectively). Similar protection was observed with other known triggers, ie, bradykinin (0.4 micromol/L), morphine (0.3 micromol/L), and phenylephrine (0.1 micromol/L), and in each case protection was completely abrogated by either MPG or 5-HD. In contrast, protection by adenosine or its analog N(6)-(2-phenylisopropyl) adenosine could not be blocked by either MPG or 5-HD. Therefore, whereas most of the tested agonists trigger protection by a pathway that requires opening of mitochondrial K(ATP) channels and production of free radicals, the protective action of adenosine is not dependent on either of these steps. Hence, it cannot be assumed that all G(i)-coupled receptors use the same signal transduction pathways to trigger preconditioning.  相似文献   

8.
We have previously demonstrated the effects of estrogen on modulation of myocardial ATP-sensitive K(+)(K(ATP)) channel. Previous studies have demonstrated that activation of mitochondrial K(ATP)channel is a major contributor of ischemic cardioprotection. The purpose of the present study was to investigate the role of K(ATP)channel in estrogen-induced myocardial protection after ischemia/reperfusion in dogs. Anaesthetized dogs were subjected to 60 min of left anterior descending coronary artery occlusion followed by 2 h of reperfusion. In a first study to characterize effects of sex and the dose-response profile of estrogen on infarct size, the drug was intravenously administered at 10 or 20 microg/kg. In a second study to investigate the cardioprotective mechanisms of estrogen, vehicle, preconditioning or 17 beta -estradiol (10 microg/kg) was given, beginning 15 min prior to the 60 min occlusion period in the presence or absence of 5-hydroxydecanoate (5-HD). In the first study, administration of 17 beta -estradiol resulted in a significant, dose-dependent limitation of infarct size. Estrogen administration provided myocardial protection of similar magnitude in both males and females. In the second study, infarct size in control animals averaged 39+/-5% of the risk region, compared with 14+/-5% of the risk region in estrogen-treated dogs and 6+/-5% of the risk region in preconditioning dogs (both P<0.0001 v controls). Pretreatment with 5-HD completely abolished preconditioning- and estrogen-induced cardioprotection. Estrogen limits myocardial infarction size resulting from coronary artery occlusion and reperfusion in a dose-dependent fashion, irrespective of gender difference. The infarct size-limiting effect of estrogen++ was abolished by 5-HD, suggesting that the cardioprotective effect of estrogen may result from activation of myocardial mitochondrial K(ATP)channels.  相似文献   

9.
We have previously demonstrated that K(ATP)channel openers administered just prior to and throughout reperfusion induce cardioprotection in the blood-perfused canine heart. However, a recent report suggests that the mitochondrial K(ATP)channel is only a trigger of ischemic preconditioning (IPC). These recent data are, however, in contrast to most previous investigations that suggested that activation of the mitochondrial K(ATP)channel is an important downstream mediator of cardioprotection. Therefore, we examined the role of the mitochondrial K(ATP)channel as a downstream mediator of IPC in a rat model by administering the selective mitochondrial K(ATP)channel antagonist, 5-hydroxydecanoate (5-HD), at several points during IPC. Infarct size (IS) was determined by tetrazolium chloride staining and expressed as a percent of the area at risk (AAR). Control animals had an IS/AAR of 58.4+/-0.6 and IS/AAR was reduced to 6.2+/-1.7 following IPC. 5-HD (10 mg/kg), attenuated cardioprotection when administered either 5 min prior to the IPC stimulus (40.4+/-1.4), during the reperfusion phase of the IPC stimulus (39.7+/-5.9), or 5 min prior to reperfusion during prolonged ischemia (34.3+/-6.9). Additionally, when 5-HD was administered at 5 mg/kg during the reperfusion phase of index ischemia plus 5 min prior to IPC or plus during the reperfusion phase of IPC, cardioprotection was also attenuated (36.3+/-5.5 and 43.8+/-6.9, respectively). These data suggest that activation of the mitochondrial K(ATP) channel is an important downstream regulator of myocardial protection with effects lasting into the reperfusion period following prolonged ischemia.  相似文献   

10.
OBJECTIVES: Signaling in adenosine-mediated preconditioning is controversial. We examined roles of mitochondrial (mito) K(ATP) channels, protein kinase C (PKC) and nitric oxide (NO). METHODS: Langendorff perfused C57/Bl6 mouse hearts were subjected to 20 min ischemia and 45 min reperfusion. Effects of adenosine-mediated preconditioning were assessed in the absence and presence of signaling inhibitors. RESULTS: Control hearts recovered 70+/-2 mmHg ventricular pressure, and released 18.1+/-2.0 IU/g lactate dehydrogenase (LDH). Preconditioning with 10 microM adenosine limited necrosis (10.6+/-1.4 IU/g) without modifying contractility (72+/-2 mmHg) whereas 50 microM adenosine reduced necrosis (10.3+/-1.6 IU/g) and contractile dysfunction (91+/-2 mmHg). All protective effects of 10 and 50 microM adenosine were abrogated by mito K(ATP) channel blockade with 100 microM 5-hydroxydecanoate (5-HD) during the 'trigger' phase, but unaltered by PKC or NO synthase inhibition with 3 microM chelerythrine or 100 microM N(G)-nitro-L-arginine methyl ester (L-NAME), respectively. Protection against necrosis was eliminated by 5-HD but unaltered by chelerythrine or L-NAME during the 'mediation' phase (ischemia-reperfusion). Reduced contractile dysfunction with 50 microM adenosine was partially sensitive to 5-HD and chelerythrine, and only eliminated by co-infusion of the inhibitors. CONCLUSIONS: Adenosine-mediated preconditioning is dose-dependent with high level stimulation reducing contractile dysfunction in addition to necrosis. Preconditioning is triggered by a mito K(ATP) channel dependent process independently of PKC and NO. Subsequent protection against necrosis is also mediated by a mito K(ATP) channel dependent process independent of PKC and NO. In contrast, functional protection may be mediated by parallel mito K(ATP) and PKC dependent paths.  相似文献   

11.
OBJECTIVE: Both K(ATP) channel opening drugs and ischaemic preconditioning have been suggested to protect the ischaemic heart by acting on K(ATP) channels in the inner mitochondrial membrane, uncoupling the proton gradient and partially dissipating the mitochondrial membrane potential. The aim of these studies was to use low concentrations of FCCP, a mitochondrial protonophore, to bypass the mitochondrial K(ATP) channel and partially uncouple the mitochondria and establish whether this activates protective pathways within the rat heart analogous to K(ATP) channel openers or preconditioning. METHODS: Isolated, Langendorff-perfused rat hearts were subjected to 25 min global zero-flow ischaemia and functional recovery assessed. Hearts were pretreated with FCCP (30-300 nM) in the presence or absence of glibenclamide (1 microM), 5-hydroxydecanoate (5-HD: 100 microM), N-acetyl cysteine (4 mM), or N-2-mercaptopropionyl glycine (1 mM). The metabolic consequences of FCCP perfusion in isolated hearts were studied using (31)P NMR, and reactive oxygen species (ROS) production was measured using DCF fluorescence in isolated rat ventricular myocytes. RESULTS: FCCP exerted a dose-dependent cardioprotective effect, with 100 nM FCCP being the optimal concentration. This effect could not be blocked by glibenclamide or 5-HD, but was completely attenuated by N-acetyl cysteine and N-2-mercaptopropionyl glycine. Perfusion with FCCP (100 nM) did not deplete bulk ATP during the pretreatment period but significantly depleted phosphocreatine. In ventricular myocytes, FCCP caused an antioxidant-sensitive increase in ROS production but diazoxide was without effect. CONCLUSIONS: In the isolated rat heart, partial mitochondrial uncoupling with low-dose FCCP significantly improves post-ischaemic functional recovery via a ROS-dependent pathway. This cardioprotection is not mediated via the depletion of cellular ATP or mitochondrial K(ATP) channel activation.  相似文献   

12.
OBJECTIVE: The opening of the mitochondrial permeability transition pore (mPTP) in the first few minutes of post-ischaemic reperfusion is a critical determinant of reperfusion-induced cell death. We hypothesised that the novel immunosuppressant, sanglifehrin-A (SFA), given at the time of reperfusion, protects the myocardium from ischaemia-reperfusion injury, by suppressing mPTP opening. METHODS: Isolated perfused rat hearts were subjected to 35 min ischaemia/120 min reperfusion, and were treated with (1) SFA (1.0 microM) or (2) DMSO vehicle for the first 15 min of reperfusion or (3) SFA (1.0 microM) after the first 15 min of reperfusion. We examined the effect of SFA on mPTP opening directly, using a myocyte model of oxidative stress. Laser illumination of adult rat myocytes loaded with the fluorophore, TMRM, generates oxidative stress, which induces mPTP opening (represented by mitochondrial membrane depolarisation) followed by rigour contracture. RESULTS: In the isolated perfused heart model, SFA, given during the first 15 min of post-ischaemic reperfusion, reduced the infarct-risk volume ratio from 43.9+/-2.5% in the control group to 23.8+/-4.2% with SFA (p=0.001). However, when SFA was given after the first 15 min of reperfusion, there was no change in infarct size (43.8+/-5.7% with SFA vs. 43.9+/-2.5% in control; p=NS), suggesting that SFA has to be present during the first 15 min of reperfusion to induce protection. In the isolated adult myocyte model, SFA was shown to inhibit mPTP opening in the setting of oxidative stress, represented by an increase in the ROS threshold required to induce: mitochondrial membrane depolarisation (from 269+/-21 to 777+/-100 s; p<0.001) and rigour contracture (from 613+/-14 to 1329+/-129 s; p<0.001). CONCLUSIONS: Inhibiting mPTP opening during the first few minutes of reperfusion, using sanglifehrin-A, limits infarct size and protects myocytes from oxidative stress.  相似文献   

13.
The anti-anginal drug nicorandil has been shown to inhibit apoptosis by activating mitochondrial ATP-sensitive potassium (K(ATP)) channels. The possible contribution of the nitrate moiety of this drug to its anti-apoptotic effect has now been investigated in neonatal rat ventricular myocytes subjected to oxidative stress. Exposure of cultured myocytes to 100 micromol/l hydrogen peroxide (H(2)O(2)) increased the number of nuclei stained by the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling technique as well as induced internucleosomal DNA fragmentation, loss of mitochondrial membrane potential, cytochrome c release into the cytosol, and activation of caspases-3 and -9, all of which are characteristics of apoptosis. Pretreatment of cells with nicorandil (100 micromol/l) inhibited these effects of H(2)O(2). Both the mitochondrial K(ATP) channel antagonist 5-hydroxydecanoate (5-HD) and 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), an inhibitor of soluble guanylyl cyclase, attenuated the anti-apoptotic effect of nicorandil in concentration-dependent manners. Coapplication of ODQ (10 micromol/l) and 5-HD (500 micromol/l) completely abolished nicorandil-induced cytoprotection. The effect of nicorandil was also reduced by an inhibitor of cGMP-dependent protein kinase (KT5823, 1 micromol/l). The nitric oxide donor (+/-)-S-nitroso-N-acetylpenicillamine (SNAP, 50 micromol/l) mimicked the protective effect of nicorandil in a manner sensitive to ODQ but not to 5-HD. A cell-permeable cGMP analog, 8-bromo-cGMP, also reduced H(2)O(2)-induced apoptosis. The inhibition of the H(2)O(2)-induced activation of caspase-3, but not that of caspase-9, by nicorandil in the presence of 5-HD or by SNAP was reversed by the addition of dithiothreitol to the enzyme assay. Nicorandil inhibits oxidative stress-induced apoptosis in cardiac myocytes through a nitric oxide/cGMP-dependent mechanism as well as by activating mitochondrial K(ATP) channels.  相似文献   

14.
Phosphodiesterase-5 (PDE-5) inhibitors including sildenafil and vardenafil induce powerful preconditioning-like cardioprotective effect against ischemia/reperfusion injury through opening of mitochondrial K(ATP) channels in the heart. The goal of these studies was to demonstrate the protective effect of sildenafil and vardenafil on reperfusion injury and to compare it with the antianginal vasodilator nitroglycerin (NTG). In addition, we determined the role of mitochondrial K(ATP) channels in protection. Adult male New Zealand white rabbits were anesthetized and subjected to ischemia by 30 min of coronary artery occlusion followed by 3 h of reperfusion. Seven groups were studied. 1-Controls; 2-Sildenafil (total dose: 0.71 mg/kg; i.v.) infused for 65 min starting 5 min before reperfusion; 3-Sildenafil+5-hydroxydecanoate (5-HD, blocker of mitochondrial K(ATP) channel, total dose: 5 mg/kg) administered as 2 bolus injections; 4-Vardenafil (total dose: 0.014 mg/kg; iv) administered as in group 2; 5-Vardenafil+5-HD administered as in group 3; 6-5-HD administered as two bolus injections and 7-Nitroglycerin (NTG, total dose: 2 microg kg(-1) min(-1)) administered as in group 2. Infarct size was reduced in sildenafil (19.19+/-1.3%) as well as vardenafil (17.0+/-2.0%) treated groups as compared to controls (33.8+/-1.7%). However, NTG failed to confer similar cardioprotection (31.5+/-0.8%). 5-HD blocked the cardioprotective effects of sildenafil and vardenafil as shown by an increase in infarct size (34.0+/-1.1% and 28.3+/-1.9%, respectively). Both sildenafil and vardenafil protect the ischemic myocardium against reperfusion injury through a mechanism dependent on mitochondrial K(ATP) channel opening.  相似文献   

15.
OBJECTIVES: We examined whether nicorandil, a clinically useful drug for the treatment of ischemic syndromes, inhibits myocardial apoptosis. BACKGROUND: Nicorandil has been reported to have a cardioprotective action through activation of mitochondrial ATP-sensitive potassium (mitoK(ATP)) channels. Based on our recent observation that mitoK(ATP) channel activation has a remarkable antiapoptotic effect in cultured cardiac cells, we hypothesized that the protective effects of nicorandil may be at least partially due to an antiapoptotic effect. METHODS: Cultured neonatal rat cardiac myocytes were exposed to hydrogen peroxide to induce apoptosis. Effects of nicorandil were evaluated using a number of apoptotic markers. RESULTS: Exposure to 100 microM hydrogen peroxide resulted in apoptotic cell death as shown by TUNEL positivity, cytochrome c translocation, caspase-3 activation and dissipation of mitochondrial inner membrane potential (Delta(Psi)(m)). Nicorandil (100 microM) suppressed all of these markers of apoptosis. Notably, nicorandil prevented Delta(Psi)(m) depolarization in a concentration-dependent manner (EC(50) approximately 40 microM, with saturation by 100 microM), as shown by fluorescence-activated cell sorter analysis of cells stained with a fluorescent Delta(Psi)(m)-indicator, tetramethylrhodamine ethyl ester (TMRE). Time-lapse confocal microscopy of individual cells loaded with TMRE shows that nicorandil suppresses Delta(Psi)(m) loss. Subcellular calcein localization revealed inhibition of the mitochondrial permeability transition by nicorandil. These protective effects of nicorandil were blocked by the mitoK(ATP) channel antagonist 5-hydroxydecanoate. CONCLUSIONS: Our findings identify nicorandil as an inhibitor of apoptosis induced by oxidative stress in cardiac myocytes, and confirm the critical role of mitoK(ATP) channels in inhibiting apoptosis.  相似文献   

16.
Reduced mitochondrial membrane potential (Delta(Psi)m), which is considered as an initial and irreversible step towards apoptosis, as well as cell death regulating proteins, such as Fas, Hsp70, or Bcl-2, may play an important role in sepsis. We studied the relationship between sepsis severity and peripheral blood monocyte Delta(Psi)m, cell death (necrosis and apoptosis), soluble Fas ligand, Hsp70, and Bcl-2 expression over time in 18 patients with sepsis, and compared these data with those of a group of 17 healthy control subjects. All measurements were performed within 3 d of the onset of severe sepsis (T1), then 7 to 10 d later (T2), and finally at hospital discharge (T3). Delta(Psi)m was expressed as the percent monocytes with altered Delta(Psi)m (%Delta(Psi)m). Patients with sepsis had greater %Delta(Psi)m at T1 and T2 but not at T3 (14.6 +/- 2.6% and 15.9 +/- 2%, respectively, versus control 6.6 +/- 0.2%, p < 0.01). Septic patients exhibited greater cell death in their monocytes and had greater Hsp70 expression only at T1. Bcl-2 levels were similar in septic and control subjects. Comparing survivors with non-survivors of sepsis, nonsurvivors had a greater %Delta(Psi)m at T1 (26.4 +/- 5.3% versus 10.1 +/- 2.7%, p < 0.01) and a significant decrease in Bcl-2 expression, whereas no difference was found in Hsp70 levels. These results indicate that mitochondrial dysfunction and subsequent cell death occur in severe sepsis and suggest that %Delta(Psi)m is a marker of severity in human sepsis. Keywords: mitochondria; apoptosis; sepsis; heat-shock protein 70; proto-oncogene protein c-Bcl-2  相似文献   

17.
Modest cardiac-overexpression of constitutively active PKCepsilon (aPKCepsilon) in transgenic mice evokes cardioprotection against ischemia. As aPKCepsilon interacts with mitochondrial respiratory-chain proteins we hypothesized that aPKCepsilon modulates respiration to induce cardioprotection. Using isolated cardiac mitochondria wild-type and aPKCepsilon mice display similar basal mitochondrial respiration, rate of ATP synthesis and adenosine nucleotide translocase (ANT) functional content. Conversely, the aPKCepsilon mitochondria exhibit modest hyperpolarization of their inner mitochondrial membrane potential (DeltaPsi(m)) compared to wild-type mitochondrial by flow cytometry. To assess whether this hyperpolarization engenders resilience to simulated ischemia, anoxia-reoxygenation experiments were performed. Mitochondria were exposed to 45 min anoxia followed by reoxygenation. At reoxygenation, aPKCepsilon mitochondria recovered ADP-dependent respiration to 44 +/- 3% of baseline compared to 28 +/- 2% in WT controls (P = 0.03) in parallel with enhanced ATP synthesis. This preservation in oxidative phosphorylation is coupled to greater ANT functional content [42% > concentration of atractyloside for inhibition in the aPKCepsilon mitochondria vs. WT control (P < 0.0001)], retention of mitochondrial cytochrome c and conservation of DeltaPsi(m). These data demonstrate that mitochondria from PKCepsilon activated mice are intrinsically resilient to anoxia-reoxygenation compared to WT controls. This resilience is in part due to enhanced recovery of oxidative phosphorylation coupled to maintained ANT activity. As maintenance of ATP is a prerequisite for cellular viability we conclude that PKCepsilon activation augmented mitochondrial respiratory capacity in response to anoxia-reoxygenation may contribute to the PKCepsilon cardioprotective program.  相似文献   

18.
OBJECTIVES: This study intended to assess the role of mitochondrial ATP-sensitive potassium (mitoK ATP) channels and the sequence of signal transduction with protein kinase C (PKC) and adenosine A1 receptors in rabbits. BACKGROUND: To our knowledge, the link between trigger receptors of preconditioning, PKC and mitoK ATP channels has not been examined in a whole heart model of infarction. METHODS: In the first series of experiments, myocardial infarction was induced in isolated buffer-perfused rabbit hearts by 30-min global ischemia and 2-h reperfusion. Infarct size in the left ventricle was determined by tetrazolium staining and expressed as a percentage of area at risk (i.e., the whole left ventricle) (%IS/AR). In the second series of experiments, mitochondria were isolated from the heart, and their respiratory function was examined using glutamate as a substrate. RESULTS: Pretreatment with R-phenylisopropyladenosine (R-PIA, 1 micromol/liter), an A1-receptor agonist, reduced %IS/AR from 49.8 +/- 6.5% to 13.4 +/- 2.9%. This protection was abolished by calphostin C, a PKC inhibitor, and by 5-hydroxydecanoate (5-HD), a selective inhibitor of mitoK ATP channels. A selective mitoK ATP channel opener, diazoxide (100 micromol/liter), mimicked the effect of R-PIA on infarct size (%IS/AR = 11.6 +/- 4.0%), and this protective effect was also abolished by 5-HD. However, calphostin C failed to block the infarct size-limiting effect of diazoxide. Neither calphostin C nor 5-HD alone modified %IS/AR. State III respiration (QO2) and respiratory control index (RCI) were reduced after 30 min of ischemia (QO2 = 147.3 +/- 5.3 vs. 108.5 +/- 12.3, RCI = 22.3 +/- 1.1 vs. 12.1 +/- 1.8, p < 0.05). This mitochondrial dysfunction was persistent after 10 min of reperfusion (QO2 = 96.1 +/- 15.5, RCI = 9.5 +/- 1.9). Diazoxide significantly attenuated the respiratory dysfunction after 30 min of ischemia (QO2 = 142.8 +/- 9.7, RCI = 16.2 +/- 0.8) and subsequent 10-min reperfusion (QO2 = 135.3 +/- 7.2, RCI = 19.1 +/- 0.8). CONCLUSIONS: These results suggest that mitoK ATP channels are downstream of PKC in the mechanism of infarct-size limitation by A1-receptor activation and that the anti-infarct tolerance afforded by opening of mitoK ATP channels is associated with preservation of mitochondrial function during ischemia/reperfusion.  相似文献   

19.
OBJECTIVES: The possible role of the ATP-sensitive potassium (KATP) channel in cardioprotection by Na+-H+ exchange (NHE) inhibition was examined. BACKGROUND: The KATP channel is suggested to be involved not only in ischemic preconditioning but also in some pharmacological cardioprotection. METHODS: Infarction was induced by 30-min coronary occlusion in rabbit hearts in situ or by 30-min global ischemia in isolated hearts. Myocardial stunning was induced by five episodes of 5-min ischemia/5-min reperfusion in situ. In these models, the effects of NHE inhibitors (cariporide and ethylisopropyl-amiloride [EIPA]) and the changes caused by KATP channel blockers were assessed. In another series of experiments, the effects of EIPA on mitochondrial KATP (mito-KATP) and sarcolemmal KATP (sarc-KATP) channels were examined in isolated cardiomyocvtes. RESULTS: Cariporide (0.6 mg/kg) reduced infarct size in situ by 40%, and this effect was abolished by glibenclamide (0.3 mg/kg), a nonselective KATP channel blocker. In vitro, 1 microM cariporide limited infarct size by 90%, and this effect was blocked by 5-hydroxydecanoate (5-HD), a mito-KATP channel blocker but not by HMR1098, a sarc-KATP channel blocker. Infarct size limitation by 1 microM EIPA was also prevented by 5-HD. Cariporide attenuated regional contractile dysfunction by stunning, and this protection was abolished by glibenclamide and 5-HD. Ethylisopropyl amiloride neither activated the mito-KATP channel nor enhanced activation of this channel by diazoxide, a KATP channel opener. CONCLUSIONS: Opening of the mito-KATP channel contributes to cardioprotection by NHE inhibition, though the interaction between NHE and this KATP channel remains unclear.  相似文献   

20.
OBJECTIVES: The mechanism by which the mitochondrial K(ATP) channel openers confer protection against ischemia/reperfusion injury is debated. Evidence suggests that rather than solely being an end effector, opening of these channels may act by a trigger mechanism. We examined the effects of the mitochondrial K(ATP) channel opener, diazoxide on parameters of mitochondrial function with specific reference to reactive oxygen species (ROS) generation in a human atrial derived cell line model of simulated ischemia/reperfusion (LSI/R). METHODS AND RESULTS: Propidium iodide (PI) exclusion was used to assess survival. Diazoxide treatment conferred protection against LSI/R (13.9+/-0.9% vs. 36.9+/-4.5% controls) that was abolished by pre-treatment with the mitoK(ATP) channel blocker, 5-hydroxydecanoate (5-HD) (33.3+/-3.6%) and with the free radical scavenger, 2-mercaptopropionylglycine (MPG) (29+/-4.0%). Diazoxide caused increased oxidation of the ROS probe, reduced mitotracker orange (1.3 vs. 1.0 arbitrary units for control; P<0.01 vs. control) that was abrogated by either 5-HD or MPG (1.07 and 1.07 arbitrary units, respectively). At the same time there was no change in orange fluorescent signal from the membrane potential sensitive probe, JC-1 indicating no change in mitochondrial membrane potential. Changes in light scattering, reflecting changes in mitochondrial volume, occurred during treatment with diazoxide. CONCLUSION: These results demonstrate for the first time that the mitoK(ATP) channel opener diazoxide can act as a trigger of preconditioning by a mechanism involving mitochondrial swelling and the generation of ROS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号