首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effect of fatigue on knee kinetics and kinematics in stop-jump tasks   总被引:5,自引:0,他引:5  
BACKGROUND: Altered motor control strategies in landing and jumping maneuvers are a potential mechanism of noncontact anterior cruciate ligament injury. There are biomechanical differences between male and female athletes in the landing phase of stop-jump tasks. Fatigue is a risk factor in musculoskeletal injuries. HYPOTHESIS: Lower extremity muscle fatigue alters the knee kinetics and kinematics during the landing phase of 3 stop-jump tasks and increases an athlete's risk of anterior cruciate ligament injury. STUDY DESIGN: Controlled laboratory study. METHODS: Three-dimensional videography and force plate data were collected for 20 recreational athletes (10 male and 10 female athletes) performing 3 stop-jump tasks before and after completing a fatigue exercise. Knee joint angles and resultant forces and moments were calculated. RESULTS: Both male and female subjects had significantly increased peak proximal tibial anterior shear forces (P = .01), increased valgus moments (P = .03), and decreased knee flexion angles (P = .03) during landings of all 3 stop-jump tasks when fatigued. Fatigue did not significantly affect the peak knee extension moment for male or female athletes. CONCLUSION: Fatigued recreational athletes demonstrate altered motor control strategies, which may increase anterior tibial shear force, strain on the anterior cruciate ligament, and risk of injury for both female and male subjects. CLINIC RELEVANCE: Fatigued athletes may have an increased risk of noncontact anterior cruciate ligament injury.  相似文献   

2.
3.
BACKGROUND: Female athletes are more likely than male athletes to injure the anterior cruciate ligament. Causes of this increased injury incidence in female athletes remain unclear, despite numerous investigations. HYPOTHESIS: Female athletes will exhibit lower hamstring muscle activation and smaller knee flexion angles than male athletes during jump landings, especially when the knee muscles are fatigued. STUDY DESIGN: Controlled laboratory study. METHODS: Eight female and six male varsity college basketball athletes with no history of knee ligament injury performed jump landings on the dominant leg from a maximum height jump and from 25.4 cm and 50.8 cm high platforms under nonfatigued and fatigued conditions. Knee joint angle and surface electromyographic signals from the quadriceps, hamstring, and gastrocnemius muscles were recorded. RESULTS: Women landed with greater knee flexion angles and greater knee flexion accelerations than men. Knee muscle activation patterns were generally similar in men and women. CONCLUSION: As compared with male college basketball players, female college basketball players did not exhibit altered knee muscle coordination characteristics that would predispose them to anterior cruciate ligament injury when landing from jumps. This conclusion is made within the parameters of this study and based on the observation that hamstring muscle activation was similar for both groups. The greater knee flexion we observed in the female subjects would be expected to decrease their risk of injury. CLINICAL RELEVANCE: Factors other than those evaluated in this study need to be considered when attempting to determine the reasons underlying the increased incidence of anterior cruciate ligament injuries consistently observed in elite female athletes.  相似文献   

4.
BACKGROUND: A small knee flexion angle in landing tasks was identified as a possible risk factor for noncontact anterior cruciate ligament injuries that are common in sports. HYPOTHESIS: A specially designed knee brace with a constraint to knee extension would significantly increase the knee flexion angle at the landing of athletic tasks preceded with horizontal movement components, such as stop-jump tasks. STUDY DESIGN: Repeated measure design for brace effects. METHODS: Three-dimensional videographic and force plate data were collected for 10 male and 10 female recreational athletes performing a stop-jump task with and without the specially designed brace. Knee flexion angle at landing, maximum knee flexion angle, and peak ground reaction forces during the stance phase of the stop-jump task were determined for each subject with and without the knee brace. RESULTS: The knee brace decreased the knee flexion angle at the landing by 5 degrees for both genders but did not significantly affect the peak ground reaction forces during the landing. CONCLUSIONS: The specially designed knee brace may be a useful device in the prevention and rehabilitation of noncontact anterior cruciate ligament injuries in sports.  相似文献   

5.
ObjectivesMany studies have investigated the relationship between muscle activation and tensile force of the anterior cruciate ligament. These studies lacked a holistic representation of the muscle status. For instance, they were limited with respect to the peak muscle forces, number of muscles, and possible muscle activation patterns.DesignThis study used a knee surrogate including ten muscles with motor-controlled muscle force activation crossing the knee joint, thus providing a fully muscle-supported knee joint. Methods: Anterior cruciate ligament tensile force is measured in different knee flexion and extension movements to evaluate ratios of quadriceps/hamstring muscle activations in low hip angle setups.ResultsIncreasing the extension of the leg increased anterior cruciate ligament tension forces. Different quadriceps/hamstring ratios had different effects on anterior cruciate ligament tension forces during unrestricted flexion and extension movements. This was dependent on the direction of movement. Sole hamstring activation increased the anterior cruciate ligament tensile forces in extension movements compared with flexion movements. Sole quadriceps activation provoked greater anterior cruciate ligament tensile forces in flexion than in extension. This was not prominent in the test in which the other muscle groups counteracted the dominant muscle group.ConclusionsThe findings from the present study demonstrate that active hamstring activation can reduce the load on the anterior cruciate ligament, and the dominant quadriceps increase anterior cruciate ligament loads for knee flexions of less than 40°. Moreover, the anterior cruciate ligament is loaded differently in flexion or extension movements with flexion movements, resulting in higher anterior cruciate ligament loads.  相似文献   

6.
7.
Noncontact mechanisms, such as landing from a jump, account for over 70% of all anterior cruciate ligament injuries. Increased knee and hip flexion during landing has been suggested to decrease anterior cruciate ligament tension; however, current literature utilizing knee modeling approaches has not investigated this. Our purpose was to compare estimated anterior cruciate ligament tension in females between a typical and flexed knee and hip drop landing performance. A sagittal plane knee model based on kinematic, kinetic, electromyography, and cadaveric data was used to estimate forces on the anterior cruciate ligament during a typical and flexed drop landing for 23 females. Model estimated peak anterior cruciate ligament tension decreased by 10% during the flexed landing performance (p=0.008). This was accounted for by an increase in hamstring shear force by 6% of body weight and a reduction in patellar tendon shear force and femur-tibia shear force by 3% of body weight each. Results suggest that simple verbal cues for increased knee and hip flexion during landing may be effective in reducing anterior cruciate ligament tension and potential risk of injury during landing.  相似文献   

8.
The objective of this study was to qualitatively characterize quadriceps and hamstring muscle activation as well as to determine knee flexion angle during the eccentric motion of sidestep cutting, cross-cutting, stopping, and landing. Fifteen healthy collegiate and recreational athletes performed the four movements while knee angle and electromyographic activity (surface electrodes) of the vastus lateralis, vastus medialis obliquus, rectus femoris, biceps femoris, and medial hamstring (semimembranosus/semitendinosus) muscles were recorded. The results indicated that there is high-level quadriceps muscle activation beginning just before foot strike and peaking in mid-eccentric motion. In these maneuvers, the level of quadriceps muscle activation exceeded that seen in a maximum isometric contraction. Hamstring muscle activation was submaximal at and after foot strike. The maximum quadriceps muscle activation for all maneuvers was 161% maximum voluntary contraction, while minimum hamstring muscle activity was 14%. Foot strike occurred at an average of 22 degrees of knee flexion for all maneuvers. This low level of hamstring muscle activity and low angle of knee flexion at foot strike and during eccentric contraction, coupled with forces generated by the quadriceps muscles at the knee, could produce significant anterior displacement of the tibia, which may play a role in anterior cruciate ligament injury.  相似文献   

9.
BACKGROUND: Whether passive measures of isokinetic muscle strength deficits and knee laxity are related to the dynamic function of the anterior cruciate ligament-deficient knee remains unclear. HYPOTHESES: Arthrometer measurements are not predictive of peak external knee flexion moment (net quadriceps muscle moment), isokinetic quadriceps muscle strength correlates with peak external knee flexion moment (net quadriceps muscle moment), and isokinetic hamstring muscle strength correlates with peak external knee extension moment (net flexor muscle moment). STUDY DESIGN: Cross-sectional study. METHODS: Gait analysis was used to assess dynamic function during walking, jogging, and stair climbing in 44 subjects with unilateral anterior cruciate ligament deficiency and 44 control subjects. Passive knee laxity and isokinetic quadriceps and hamstring muscle strength were also measured. RESULTS: Arthrometer measurements did not correlate with peak external flexion or extension moments in any of the activities tested or with isokinetic quadriceps or hamstring muscle strength. Test subjects also had a significantly reduced peak external flexion moment during all three jogging activities and stair climbing compared with the control subjects and this was correlated with significantly reduced quadriceps muscle strength. CONCLUSIONS: Absolute knee laxity difference did not correlate with dynamic knee function as assessed by gait analysis and should not be used as a sole predictor for the outcome of treatment. Patients with greater than normal strength in the anterior cruciate ligament-deficient limb performed low- and high-stress activities in a more normal fashion than those with normal or less-than-normal strength.  相似文献   

10.
We compared the knee kinetics of 10 male and 10 female recreational athletes (aged 19 to 25 years) performing forward, vertical, and backward stop-jump tasks. Three-dimensional videography and force plate data were used to record the subjects' performance of the three stop-jump tasks, and an inverse dynamic procedure was used to estimate the knee joint resultant forces and moments. Women exhibited greater proximal anterior shear force than did men during the landing phase. All subjects exhibited greater proximal tibia anterior shear force during the landing phase of the backward stop-jump task than during the other two stop-jump tasks. Women also exhibited greater knee extension and valgus moments than did men during the landing phase of each stop-jump task. Men exhibited greater proximal tibia anterior shear force than did women during the takeoff phase of vertical and backward stop-jump tasks. These results indicate that female recreational athletes may have altered motor control strategies that result in knee positions in which anterior cruciate ligament injuries may occur. The landing phase was more stressful for the anterior cruciate ligament of both women and men than the takeoff phase in all stop-jump tasks. Technical training for female athletes may need to be focused on reducing the peak proximal tibia anterior shear force in stop-jump tasks. Further studies are needed to determine the factors associated with the increased peak proximal tibia anterior shear force in female recreational athletes.  相似文献   

11.
BACKGROUND: Minimising the likelihood of injury to the anterior cruciate ligament (ACL) during abrupt deceleration requires proper synchrony of the quadriceps and hamstring muscles. However, it is not known whether simple verbal instructions can alter landing muscle activity to protect the knee. OBJECTIVE: To assess the efficacy of verbal instructions to alter landing muscle activity. METHODS: Twenty four athletes landed abruptly in single limb stance. Sagittal plane motion was recorded with an optoelectric device, and ground reaction force and surface electromyographic data were recorded for the rectus femoris, vastus lateralis, biceps femoris, and semimembranosus muscles. Subjects performed 10 landings per condition: normal landing (N); repeat normal landing (R); landing after instruction to increase knee flexion (K); and landing after instruction to recruit hamstring muscles earlier (M). Muscle bursts immediately before landing were analysed relative to initial foot-ground contact (IC). RESULTS: The K condition resulted in significantly (p相似文献   

12.
BACKGROUND: Numerous studies have investigated anterior stability of the knee during the anterior drawer test after anterior cruciate ligament reconstruction. Few studies have evaluated anterior cruciate ligament reconstruction under physiological loads. PURPOSE: To determine whether anterior cruciate ligament reconstruction reproduced knee motion under simulated muscle loads. STUDY DESIGN: Controlled laboratory study. METHODS: Eight human cadaveric knees were tested with the anterior cruciate ligament intact, transected, and reconstructed (using a bone-patellar tendon-bone graft) on a robotic testing system. Tibial translation and rotation were measured at 0 degrees, 15 degrees, 30 degrees, 60 degrees, and 90 degrees of flexion under anterior drawer loading (130 N), quadriceps muscle loading (400 N), and combined quadriceps and hamstring muscle loading (400 N and 200 N, respectively). Repeated-measures analysis of variance and the Student-Newman-Keuls test were used to detect statistically significant differences between knee states. RESULTS: Anterior cruciate ligament reconstruction resulted in a clinically satisfactory anterior tibial translation. The anterior tibial translation of the reconstructed knee was 1.93 mm larger than the intact knee at 30 degrees of flexion under anterior load. Anterior cruciate ligament reconstruction overconstrained tibial rotation, causing significantly less internal tibial rotation in the reconstructed knee at low flexion angles (0 degrees-30 degrees) under muscle loads (P < .05). At 30 degrees of flexion, under muscle loads, the tibia of the reconstructed knee was 1.9 degrees externally rotated compared to the intact knee. CONCLUSIONS: Anterior cruciate ligament reconstruction may not restore the rotational kinematics of the intact knee under muscle loads, even though anterior tibial translation was restored to a clinically satisfactory level under anterior drawer loads. These data suggest that reproducing anterior stability under anterior tibial loads may not ensure that knee joint kinematics is restored under physiological loading conditions. CLINICAL RELEVANCE: Decreased internal rotation of the knee after anterior cruciate ligament reconstruction may lead to increased patellofemoral joint contact pressures. Future anterior cruciate ligament reconstruction techniques should aim at restoring 3-dimensional knee kinematics under physiological loads.  相似文献   

13.
Abstract

High school and collegiate female athletes have a significantly increased risk of sustaining a noncontact anterior cruciate ligament injury compared with male athletes participating in the same sport. This review summarizes the current knowledge of the risk factors hypothesized to influence this problem, and the neuromuscular training programs designed to correct certain biomechanical problems noted in female athletes. The risk factors include a genetic predisposition for sustaining a knee ligament injury, environmental factors, anatomical indices, hormonal influences, and neuromuscular factors. The greatest amount of research in this area has studied differences between female and male athletes in movement patterns during athletic tasks; muscle strength, activation, and recruitment patterns; and knee joint stiffness under controlled, preplanned, and reactive conditions in the laboratory. Neuromuscular retraining programs have been developed in an attempt to reduce these differences. The successful programs teach athletes to control the upper body, trunk, and lower body position; lower the center of gravity by increasing hip and knee flexion during activities; and develop muscular strength and techniques to land with decreased ground reaction forces. In addition, athletes are taught to preposition the body and lower extremity prior to initial ground contact to obtain the position of greatest knee joint stability and stiffness. Two published programs have significantly reduced the incidence of noncontact anterior cruciate ligament injuries in female athletes participating in basketball, soccer, and volleyball. Other programs were ineffective, had a poor study design, or had an insufficient number of participants, which precluded a true reduction in the risk of this injury. In order to determine which risk factors for noncontact anterior cruciate ligament ruptures are significant, future investigations should include larger cohorts of athletes in multiple sports, analyze factors from all of the major risk categories, and follow athletes for at least one full athletic season. Future risk assessment studies should incorporate reactive tasks under more realistic sports conditions.  相似文献   

14.
BACKGROUND: Female athletes participating in high-risk sports suffer anterior cruciate ligament injury at a 4- to 6-fold greater rate than do male athletes. HYPOTHESIS: Prescreened female athletes with subsequent anterior cruciate ligament injury will demonstrate decreased neuromuscular control and increased valgus joint loading, predicting anterior cruciate ligament injury risk. STUDY DESIGN: Cohort study; Level of evidence, 2. METHODS: There were 205 female athletes in the high-risk sports of soccer, basketball, and volleyball prospectively measured for neuromuscular control using 3-dimensional kinematics (joint angles) and joint loads using kinetics (joint moments) during a jump-landing task. Analysis of variance as well as linear and logistic regression were used to isolate predictors of risk in athletes who subsequently ruptured the anterior cruciate ligament. RESULTS: Nine athletes had a confirmed anterior cruciate ligament rupture; these 9 had significantly different knee posture and loading compared to the 196 who did not have anterior cruciate ligament rupture. Knee abduction angle (P<.05) at landing was 8 degrees greater in anterior cruciate ligament-injured than in uninjured athletes. Anterior cruciate ligament-injured athletes had a 2.5 times greater knee abduction moment (P<.001) and 20% higher ground reaction force (P<.05), whereas stance time was 16% shorter; hence, increased motion, force, and moments occurred more quickly. Knee abduction moment predicted anterior cruciate ligament injury status with 73% specificity and 78% sensitivity; dynamic valgus measures showed a predictive r2 of 0.88. CONCLUSION: Knee motion and knee loading during a landing task are predictors of anterior cruciate ligament injury risk in female athletes. CLINICAL RELEVANCE: Female athletes with increased dynamic valgus and high abduction loads are at increased risk of anterior cruciate ligament injury. The methods developed may be used to monitor neuromuscular control of the knee joint and may help develop simpler measures of neuromuscular control that can be used to direct female athletes to more effective, targeted interventions.  相似文献   

15.
Dynamic stability in the anterior cruciate ligament deficient knee   总被引:5,自引:5,他引:0  
Some individuals can stabilize their knees following anterior cruciate ligament rupture even during activities involving cutting and pivoting (copers), others have instability with daily activities (non-copers). Movement and muscle activation patterns of 11 copers, ten non-copers and ten uninjured subjects were studied during walking and jogging. Results indicate that distinct gait adaptations appeared primarily in the non-copers. Copers used joint ranges of motion, moments and muscle activation patterns similar to uninjured subjects. Non-copers reduced their knee motion, and external knee flexion moments that correlated well with quadriceps strength. Non-copers also achieved peak hamstring activity later in the weight acceptance phase and used a strategy involving more generalized co-contraction. Both copers and non-copers had high levels of quadriceps femoris muscle activity. The reduced knee moment in the involved limbs of the non-copers did not represent "quadriceps avoidance" but rather represented a strategy of general co-contraction with a greater relative contribution from the hamstring muscles.  相似文献   

16.
BACKGROUND: The force responsible for noncontact anterior cruciate ligament (ACL) injuries remains controversial. The patella tendon to tibial shaft angle causes an anterior tibial shear force with quadriceps activation. HYPOTHESIS: An aggressive quadriceps contraction can injure the ACL. METHODS: The authors characterized noncontact ACL injury and kinematics with aggressive quadriceps loading. Thirteen fresh-frozen knees were potted in a jig held in 20 degrees of flexion while a 4500 N quadriceps contraction was simulated. Knee kinematics were recorded. A KT-1000 arthrometer and a simulated active quadriceps test assessed anterior displacement. Statistics were performed using paired t tests and 1-way analysis of variance. RESULTS: Kinematics revealed the following mean values: anterior displacement, 19.5 mm; valgus, 2.3 degrees; and internal rotation, 5.5 degrees. Mean KT-1000 and active quadriceps test differences were 4.0 mm and 2.7 mm, respectively (statistically significant P =.002 and P =.002). Six knees showed gross ACL injury at the femoral insertion. Based on ACL injury, KT-1000 differences were statistically significant (P =.029). CONCLUSIONS: Aggressive quadriceps loading, with the knee in slight flexion, produces significant anterior tibial translation and ACL injury. This suggests that the quadriceps is the intrinsic force in noncontact ACL injuries, producing a model for further investigation.  相似文献   

17.

Purpose

To examine the effects of different sagittal plane body positions during single-leg landings on biomechanics and muscle activation parameters associated with risk for anterior cruciate ligament (ACL) injury.

Methods

Twenty participants performed single-leg drop landings onto a force plate using the following landing styles: self-selected, leaning forward (LFL) and upright (URL). Lower extremity and trunk 3D biomechanics and lower extremity muscle activities were recorded using motion analysis and surface electromyography, respectively. Differences in landing styles were examined using 2-way Repeated-measures ANOVAs (sex × landing conditions) followed by Bonferroni pairwise comparisons.

Results

Participants demonstrated greater peak vertical ground reaction force, greater peak knee extensor moment, lesser plantar flexion, lesser or no hip extensor moments, and lesser medial and lateral gastrocnemius and lateral quadriceps muscle activations during URL than during LFL. These modifications of lower extremity biomechanics across landing conditions were similar between men and women.

Conclusions

Leaning forward while landing appears to protect the ACL by increasing the shock absorption capacity and knee flexion angles and decreasing anterior shear force due to the knee joint compression force and quadriceps muscle activation. Conversely, landing upright appears to be ACL harmful by increasing the post-impact force of landing and quadriceps muscle activity while decreasing knee flexion angles, all of which lead to a greater tibial anterior shear force and ACL loading. ACL injury prevention programmes should include exercise regimens to improve sagittal plane body position control during landing motions.  相似文献   

18.
BACKGROUND: Female athletes have increased risk of anterior cruciate ligament rupture after the onset of puberty. HYPOTHESES: Male athletes would demonstrate a longitudinal increase in vertical jump height compared with female athletes. There would be longitudinal gender differences in ground-reaction forces and loading rates. STUDY DESIGN: Cohort study; Level of evidence, 2. METHODS: Sixteen female and 17 male adolescent athletes were evaluated for 2 consecutive years. Subjects were included if they were classified as pubertal during the first year of testing and postpubertal during the second year. As subjects performed a drop vertical jump, ground-reaction force, and vertical jump height were measured. Data analysis consisted of a mixed design analysis of variance with post hoc analysis (paired t tests). RESULTS: The male athletes demonstrated increased vertical jump height with maturation (P < .001); female athletes did not. Boys significantly reduced their landing ground-reaction force (P = .005), whereas girls did not. Takeoff force decreased in girls (P = .003) but not in boys. Both boys and girls had decreased loading rates with maturation (P < .001); however, girls had higher loading rates than did boys at both stages of maturation (P = .037). CONCLUSION: Male athletes demonstrated a neuromuscular spurt as evidenced by increased vertical jump height and increased ability to attenuate landing force. The absence of similar adaptations in female athletes may be related to the increased risk of anterior cruciate ligament injury.  相似文献   

19.
Athletic women are at greater risk of anterior cruciate ligament (ACL) injury than men. Twenty, healthy, athletic women were evaluated for the effect of preferred stance limb isokinetic quadriceps femoris and hamstring fatigue from eccentric work compared with controls on the activation onset of vastus medialis, rectus femoris, vastus lateralis, the medial hamstrings, biceps femoris, and gastrocnemius muscles. Following 3 weeks of crossover cut training, subjects were tested for fatigue effects (5 subjects/week, 3 conditions, 1 condition/day, order effect controlled) on muscle activation onsets prior to crossover cut landing heelstrike (mixed model, ANOVA, P < 0.05). Fatigue from eccentric quadriceps femoris work produced delayed vastus medialis (P = 0.03), rectus femoris (P = 0.007), and vastus lateralis (P = 0.03) activation onsets compared with control, but did not differ compared to hamstring fatigue. Neither hamstring nor quadriceps femoris fatigue produced differences (P > 0.05) in medial hamstring or biceps femoris activation onsets compared to control. Quadriceps femoris fatigue from eccentric work produced earlier gastrocnemius activation onsets (P = 0.048) than control, but did not differ for hamstring fatigue. The gastrocnemius appears to provide synergistic and compensatory dynamic knee stabilization in closed kinetic chain function during quadriceps femoris fatigue. This finding in a normal group at high risk of ACL injury while performing a maneuver with a high ACL injury risk supports gastrocnemius inclusion in knee rehabilitation and conditioning programs and suggests the need for comparative evaluations of knee injured/reconstructed subjects.  相似文献   

20.
OBJECTIVE: To determine the effect of landing type (unilateral vs. bilateral) and gender on the biomechanics of drop landings in recreational athletes. DESIGN: This study used a repeated measures design to compare bilateral and unilateral landings in male and female athletes. A repeated measures multivariate analysis of variance (type of landing*gender) was performed on select variables. SETTING: Biomechanics laboratory. PARTICIPANTS: Sixteen female and 16 male recreational athletes. MAIN OUTCOME MEASURES: Kinetic, kinematic, and electromyographic (EMG) data were collected on participants while performing bilateral and unilateral landings from a 40-cm platform. RESULTS: Compared to bilateral landings, subjects performed unilateral landings with increased knee valgus, decreased knee flexion at initial contact, decreased peak knee flexion, decreased relative hip adduction, and increased normalized EMG of the rectus femoris, medial hamstrings, lateral hamstrings, and medial gastrocnemius (P < 0.005). During both types of landing, females landed with increased knee valgus and normalized vertical ground reaction force (VGRF) compared to males (P < 0.009), however, the interaction of landing type*gender was not significant (P = 0.29). CONCLUSIONS: Compared to bilateral landings, male and female recreational athletes performed unilateral landings with significant differences in knee kinematic and EMG variables. Female athletes landed with increased knee valgus and VGRF compared to males during both types of landing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号