首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 123 毫秒
1.
The interactive effects of age and cholinergic damage were assessed behaviorally in young and middle-aged rats. Rats were lesioned at either 3 or 17 months of age by injection of 192 IgG-saporin immunotoxin into the medial septum and the nucleus basalis magnocellularis, and they were then tested on a range of behavioral tasks: a nonmatching-to-position task in a T-maze, an object-recognition task, an object-location task, and an open-field activity test. Depending on the task used, only an age or a lesion effect was observed, but there was no Age X Lesion interaction. Middle-aged and young rats responded to the cholinergic lesions in the same manner. These results show that in the middle-aged rats in which cholinergic transmission was affected, additional injury to the system was not always accompanied by major cognitive dysfunctions.  相似文献   

2.
Prenatal treatment with synthetic glucocorticoids is commonly used as a treatment for women at risk of preterm delivery. However, little is known about the life-long consequences of these treatments on the fetus. In the present study, we evaluated cognitive function as well as susceptibility of cholinergic neurons to (192)IgG-saporin immunolesion in adult rats after prenatal glucocorticoid treatment. Morris water maze results revealed a significant difference in learning and memory function in adult rats that were prenatally exposed to dexamethasone, and further cognitive deficits after (192)IgG-saporin exposure. Choline acetyl transferase activity was decreased in the cortex of dexamethasone-treated rats compared with controls. In addition, rats prenatally exposed to either dexa, or betamethasone revealed a dramatic decrease in choline acetyl transferase activity compared to control rats after (192)IgG-saporin lesion. We report behavioral and biochemical evidence for altered cognitive function and increased susceptibility of cholinergic neurons to (192)IgG-saporin in adult rats after prenatal glucocorticoid treatment. Taken together, these results suggest that prenatal treatment with dexamethasone could affect cognitive functions and render cholinergic neurons more vulnerable to challenges later in life.  相似文献   

3.
Pre-existing trauma to basal forebrain corticopetal cholinergic neurons has been hypothesized to render this system vulnerable to age-related processes. The present longitudinal study assessed the interactions between the effects of partial cortical cholinergic deafferentation and aging on sustained attention performance. After pre-surgical training, animals were given sham-surgery or bilateral infusions of the immunotoxin 192 IgG-saporin into the basal forebrain. The lesion was intended to yield a limited loss of cortical cholinergic inputs and thus to produce minor immediate effects on sustained attention performance. All animals were tested continuously until age 36 months. The attentional performance of lesioned and sham-lesioned animals did not dissociate until age 31 months, when the lesioned animals exhibited an impairment in overall sustained attention performance. Importantly, this impairment interacted with the effects of time-on-task, and thus reflected a specific impairment in attentional processes. These results support the notion that pre-existing damage to the basal forebrain corticopetal cholinergic neurons yields age-related impairments in the attentional capabilities that depend on the integrity of this neuronal system.  相似文献   

4.
Previously, we demonstrated that plasticity of frontal cortex is altered in aging rats: lesions of the nucleus basalis magnocellularis (NBM) produce larger declines in dendritic morphology in frontal cortex of aged rats compared to young adults. Cholinergic afferents from the NBM modulate glutamatergic transmission in neocortex, and glutamate is known to be involved in dendritic plasticity. To begin to identify possible mechanisms underlying age-related differences in plasticity after NBM lesion, we assessed the effect of cholinergic deafferentation on expression of the AMPA receptor subunit GluR1 in frontal cortex of young adult and aging rats. Young adult, middle-aged, and aged rats received sham or 192 IgG-saporin lesions of the NBM, and an unbiased stereological technique was used to estimate the total number of intensely GluR1-immunopositive neurons in layer II-III of frontal cortex. While the number of GluR1-positive neurons was increased in both middle-aged and aged rats, lesions markedly increased the number of intensely GluR1-immunopositive neurons in frontal cortex of young adult rats only. This age-related difference in lesion-induced expression of AMPA receptor subunit protein could underlie the age-related differences in dendritic plasticity after NBM lesions.  相似文献   

5.
Three-month-old Long-Evans rats were subjected to intraseptal infusions of 0.8 microg of 192 IgG-saporin followed, 2 weeks later, by intrahippocampal suspension grafts containing fetal cells from the medial septum and the diagonal band of Broca. The suspensions were implanted in the dorsal or the ventral hippocampus. Sham-operated and lesion-only rats were used as controls. Between 18 and 32 weeks after grafting, all rats were tested in a water maze (using protocols placing emphasis on reference memory or on working memory) and an eight-arm radial maze. The lesion produced extensive cholinergic denervation of the hippocampus, as evidenced by reduced acetylcholinesterase-positivity and acetylcholine content. Depending upon their implantation site, the grafts restored an acetylcholinesterase-positive reinnervation pattern in either the dorsal or the ventral hippocampus. Nevertheless, the grafts failed to normalize the concentration of acetylcholine in either region. The cholinergic lesion impaired working memory performance in both the water maze and the radial maze. To a limited degree, reference memory was also altered. Grafts placed in the ventral hippocampus had no significant behavioral effect, whereas those placed in the dorsal hippocampus normalized working memory performance in the water maze. Our data show that infusion of 192 IgG-saporin into the septal region deprived the hippocampus of its cholinergic innervation and altered spatial working memory more consistently than spatial reference memory. Although the cholinergic nature of the graft-induced reinnervation remains to be established more clearly, these results further support the idea of a functional dissociation between the dorsal and the ventral hippocampus, the former being preferentially involved in spatial memory.  相似文献   

6.
Widespread lesions of forebrain cholinergic or noradrenergic projections by intraventricular administration of 192 IgG-saporin or 6-hydroxydopamine, respectively, accelerate kindling epileptogenesis. Here we demonstrate both quantitative and qualitative differences between the two lesions in their effects on hippocampal kindling in rats. Epileptogenesis was significantly faster after noradrenergic as compared to cholinergic denervation, and when both lesions were combined, kindling development resembled that in animals with 6-hydroxydopamine lesion alone. Furthermore, whereas the 192 IgG-saporin lesion promoted the development only of the early stages of kindling, administration of 6-hydroxydopamine or both neurotoxins accelerated the late stages also. To investigate the contribution of different subparts of the basal forebrain cholinergic system to its seizure-suppressant action in hippocampal kindling, 192 IgG-saporin was injected into medial septum/vertical limb of the diagonal band of Broca or nucleus basalis magnocellularis, leading to selective hippocampal or cortical cholinergic deafferentation, respectively. The denervation of the hippocampus facilitated kindling similar to the extensive lesion caused by intraventricular 192 IgG-saporin, whereas the cortical lesion had no effect. These results indicate that although both noradrenergic and cholinergic projections to the forebrain exert powerful inhibitory effects on hippocampal kindling epileptogenesis, the action of the cholinergic system is less pronounced and occurs specifically prior to seizure generalization. In contrast, noradrenergic neurons inhibit the development of both focal and generalized seizures. The septo-hippocampal neurons are responsible for the antiepileptogenic effect of the cholinergic system in hippocampal kindling, whereas the cortical projection is not significantly involved. Conversely, we have previously shown [Ferencz I. et al. (2000) Eur. J. Neurosci., 12, 2107-2116] that seizure-suppression in amygdala kindling is exerted through the cortical and not the hippocampal cholinergic projection. This shows that, depending on the location of the primary epileptic focus, i.e. the site of stimulation, basal forebrain cholinergic neurons operate through different subsystems to counteract seizure development in kindling.  相似文献   

7.
Previously, we demonstrated that plasticity of frontal cortex is altered in aging rats: 3 months after surgery, excitotoxic lesions of the nucleus basalis magnocellularis (NBM) produce larger declines in dendritic morphology in frontal cortex of aged rats relative to young adults. To determine whether the differential effect of the lesion was due specifically to loss of cholinergic input from the NBM, we assessed dendritic morphology in frontal cortex after specific cholinergic depletion in young adult, middle-aged, and aged male rats. Rats received unilateral sham or 192-IgG-saporin lesions of the NBM. Two weeks after surgery, brains were stained using a Golgi-Cox procedure. Dendritic morphology was quantified in pyramidal neurons in layers II-III of frontal cortex. Although lesions altered apical dendrites at all ages, these effects were most pronounced in aged rats. In addition, lesions produced marked atrophy of basilar dendrites in middle-aged and aged rats only. Thus, the differential dendritic atrophy resulting from NBM lesions in aged rats occurs within 2 weeks after lesion, and results specifically from loss of cholinergic innervation.  相似文献   

8.
It has recently been shown that hippocampal neurogenesis can be modulated either directly or indirectly by ascending cholinergic inputs from the basal forebrain. In the present work, we sought to address whether extended training in a spatial navigation task would affect hippocampal neurogenesis in the presence of a severe and selective cholinergic depletion. Young female rats received stereotaxic injections of the immunotoxin 192 IgG-saporin into the basal forebrain nuclei and/or the cerebellar cortex. Starting from 4 to 5 weeks post-lesion, and for the subsequent 2 weeks, the animals were trained on paradigms of reference and working memory in the water maze and received single daily i.p. injections of bromodeoxyuridine (BrdU) at the end of each testing session. In line with previous observations, a dramatic 80% decrease in neuron proliferation was seen in the dentate gyrus of lesioned animals, as compared to vehicle-injected or intact controls. Interestingly, however, rats subjected to maze training over 2 weeks, irrespective of their learning success, exhibited significantly fewer newborn neurons than matched controls with no maze exposure. Thus, at least for the type of task used here, which has previously been shown to impose a certain degree of stress, extended training and learning does not appear to affect proliferation in the dentate gyrus.  相似文献   

9.
Degeneration of the cholinergic neurons in the basal forebrain and elevation of inflammatory markers are well-established hallmarks of Alzheimer's disease; however, the interplay of these processes in normal aging is not extensively studied. Consequently, we conducted a neuroanatomical investigation to quantify cholinergic neurons and activated microglia in the medial septum/vertical diagonal band (MS/VDB) of young (6 months) and aged (28 months) Fisher 344 × Brown Norway F1 rats. Aged rats in this study were impaired relative to the young animals in spatial learning ability as assessed in the Morris water maze. Stereological analysis revealed no difference between aged and young rats in the total numbers of cholinergic neurons, demonstrating that loss of cholinergic neurons is not a necessary condition to observe impaired spatial learning in aged rats. In this same region, the total number of activated microglia was substantially greater in aged rats relative to young rats. Jointly, these data demonstrate that aging is characterized by an increase in the basal inflammatory state within the MS/VDB, but this inflammation is not associated with cholinergic neuron death.  相似文献   

10.
Dotigny F  Ben Amor AY  Burke M  Vaucher E 《Neuroscience》2008,154(4):1607-1618
Acetylcholine is released in the primary visual cortex during visual stimulation and may have a neuromodulatory role in visual processing. The present study uses both behavioral and functional neuroanatomy investigations to examine this role in the rat. In the first set of experiments the cholinergic system was lesioned with 192 immunoglobulin G (IgG) saporin and the visual acuity and performance in a visual water maze task were assessed. The cholinergic lesion did not affect the visual acuity measured pre- and post-lesion but it did reduce the efficiency to learn a novel orientation discrimination task measured post-lesion. In order to better understand the involvement of the cholinergic system in the neuronal activity in the visual cortex c-Fos expression induced by patterned visual stimulation was further investigated. Results obtained following lesion of the cholinergic fibers (192 IgG-saporin or quisqualic acid), muscarinic inhibition (scopolamine), or NMDA receptor inhibition (CPP) were compared with control conditions. Double and triple immunolabeling was used in order to determine the neurochemical nature of the activated cortical cells. The results demonstrated that patterned stimulation elicited a significant increase in c-Fos immunolabeled neurons in layer IV of the contralateral primary visual cortex to the stimulated eye which was completely abolished by cholinergic fibers lesion as well as scopolamine administration. This effect was independent of NMDA receptor transmission. The c-Fos activation was predominantly observed in the glutamatergic spiny stellate cells and less frequently in GABAergic interneurons. Altogether, these results demonstrate a strong involvement of the basal forebrain cholinergic system in the modulation of post-synaptic visual processing, which could be related to cognitive enhancement or attention during visual learning.  相似文献   

11.
The present experiment was designed to study changes in behavior following immunolesioning of the basal forebrain cholinergic system. Rats were lesioned at 3 months of age by injection of the 192 IgG-saporin immunotoxin into the medial septum area and the nucleus basalis magnocellularis, and then tested at different times after surgery (from days 7-500) on a range of behavioral tests, administered in the following order: a nonmatching-to-position task in a T-maze, an object-recognition task, an object-location task, and an open-field activity test. The results revealed a two-way interaction between post-lesion behavioral testing time and memory demands. In the nonmatching-to-position task, memory deficits appeared quite rapidly after surgery, i.e. at a post-lesion time as short as 1 month. In the object-recognition test, memory impairments appeared only when rats were tested at late post-lesion times (starting at 15 months), whereas in the object-location task deficits were apparent at early post-lesion times (starting from 2 months). Taking the post-operative time into account, one can hypothesize that at the shortest post-lesion times, behavioral deficits are due to pure cholinergic depletion, while as the post-lesion time increases, one can speculate the occurrence of a non-cholinergic system decompensation process and/or a gradual degeneration process affecting other neuronal systems that may contribute to mnemonic impairments. Interestingly, when middle-aged rats were housed in an enriched environment, 192 IgG-saporin-lesioned rats performed better than standard-lesioned rats on both the nonmatching-to-position and the object-recognition tests. Environment enrichment had significant beneficial effects in 192 IgG-saporin-lesioned rats, suggesting that lesioned rats at late post-lesion times (over 1 year) still have appreciable cognitive plasticity.  相似文献   

12.
The importance of cholinergic neurons projecting from the medial septum (MS) of the basal forebrain to the hippocampus in memory function has been controversial. The aim of this study was to determine whether loss of cholinergic neurons in the MS disrupts object and/or object location recognition in male Sprague-Dawley rats. Animals received intraseptal injections of either vehicle, or the selective cholinergic immunotoxin 192 IgG-saporin (SAP). 14 days later, rats were tested for novel object recognition (NOR). Twenty-four hours later, these same rats were tested for object location recognition (OLR) (recognition of a familiar object moved to a novel location). Intraseptal injections of SAP produced an 86% decrease in choline acetyltransferase (ChAT) activity in the hippocampus, and a 31% decrease in ChAT activity in the frontal cortex. SAP lesion had no significant effect on NOR, but produced a significant impairment in OLR in these same rats. The results support a role for septo-hippocampal cholinergic projections in memory for the location of objects, but not for novel object recognition.  相似文献   

13.
It is well known that learning and memory ability declines with aging. Age-related long-term changes in learning and memory ability in rats were investigated with the place navigation task and the allocentric place discrimination task (APDT) in a water maze using the same animals for each task. In a working memory place navigation task, aged animals could learn the location of the platform as well as when they were young, although strategy shifts were observed. In contrast, accuracy in the APDT significantly declined from 90% to 65% with aging. This impairment was ameliorated by an acetylcholine esterase inhibitor physostigmine at 22–23 months old. No amelioration was, however, detected in the same animals tested when they further aged to 26–27 months old. These results suggest that the APDT performance is sensitive to age-related memory deficits and that this may be due to the cholinergic dysfunction.  相似文献   

14.
Cholinergic disturbances have been implicated in schizophrenia. In a recent study we found that intracerebroventricular (i.c.v.) delivery of the immunotoxin 192 IgG-saporin, that effectively destroys cholinergic projections from the basal forebrain to hippocampus and cortex cerebri, leads to a marked facilitation of amphetamine-induced locomotor activity in adult rats. The aim of the present experiments was to evaluate the contribution of the septohippocampal versus the basalocortical cholinergic projections for the amphetamine hyper-response seen previously in i.c.v. 192 IgG-saporin injected rats. Since i.c.v. delivery of 192 IgG-saporin also destroys a population of Purkinje neurons in cerebellum, this cell loss needs to be taken into consideration as well. Cortex cerebri and hippocampus were selectively cholinergically denervated by intraparenchymal injections of 192 IgG-saporin into nucleus basalis magnocellularis and the medial septum/diagonal band of Broca, respectively. Selective loss of Purkinje cells in cerebellum was achieved by i.c.v. delivery of OX7 saporin. Possible effects of these three lesions on spontaneous and amphetamine-induced locomotor activity were assessed in locomotor activity cages. We find that selective cholinergic denervation of cortex cerebri, but not denervation of hippocampus or damage to cerebellum can elicit dopaminergic hyper-reactivity similar to that seen in previous i.c.v. 192 IgG-saporin experiments. Our data are compatible with the hypothesis that disturbances of cholinergic neurotransmission in cortex cerebri may be causally involved in forms of schizophrenia.  相似文献   

15.
E. De Rosa and M. E. Hasselmo (2000) demonstrated that 0.25 mg/kg scopolamine (SCOP) selectively increased proactive interference (PI) from stored odor memories during learning. In the present study, rats with bilateral cholinergic lesions limited to the horizontal limb of the diagonal band of Broca, made with 192 IgG-saporin, were not impaired in acquiring the same olfactory discrimination task relative to control rats. Rats with bilateral 192 IgG-saporin lesions to all basal forebrain cholinergic nuclei (BF) also showed no impairment in acquisition of this task. However, the BF-saporin rats were hypersensitive to oxotremorine-induced hypothermia and demonstrated an increased sensitivity to PI following a low dose of SCOP (0.125 mg/kg) relative to control rats. The results suggest that weaker cholinergic modulation after cholinergic BF lesions makes the system more sensitive to PI during blockade of the remaining cholinergic elements.  相似文献   

16.
It is well established that the cerebral cortex undergoes extensive remodeling in aging. In this study, we used behaviorally characterized rats to correlate age-related morphological changes with cognitive impairment. For this, young and aged animals were tested in the Morris water maze to evaluate their cognitive performance. Following behavioral characterization, the animals were perfused and a combination of intracellular labeling and immunohistochemistry was applied. Using this approach, we characterized the dendritic morphology of cortical pyramidal neurons as well as the pattern of glutamatergic and GABAergic appositions on their cell bodies and dendrites. We focused on the association region of the parietal cortex (LtPA) and the medial prefrontal cortex (mPFC) for their involvement in the Morris water maze task. We found an age-related atrophy of distal basal dendrites that did not differ between aged cognitively unimpaired (AU) and aged cognitively impaired animals (AI). Dendritic spines and glutamatergic appositions generally decreased from young to AU and from AU to AI rats. On the other hand, GABAergic appositions only showed a trend towards a decrease in AU rats. Collectively, the data show that the ratio of excitatory/inhibitory inputs was only altered in AI animals. When cortical cholinergic varicosities were labeled on alternate sections, we found that AI animals also had a significant reduction of cortical cholinergic boutons compared with AU or young animals. In aged animals, the density of cortical cholinergic varicosities correlated with the excitatory/inhibitory ratio. Our data suggest that both cholinergic atrophy and an imbalance towards inhibition may contribute to the observed age-associated behavioral impairment.  相似文献   

17.
Burk JA  Sarter M 《Neuroscience》2001,105(4):899-909
The role of basal forebrain corticopetal cholinergic projections in attentional functions has been extensively investigated. For example, 192 IgG-saporin-induced loss of cortical cholinergic inputs was repeatedly demonstrated to result in a selective impairment in the ability of rats to detect signals in a task designed to assess sustained attention performance. The loss of cortical cholinergic inputs correlated highly with the decrease in the hit rate. Little is known about the functions of basal forebrain non-cholinergic neurons, particularly corticopetal GABAergic neurons, largely because of the absence of specific research tools to manipulate selectively this projection. As basal forebrain lesions produced with ibotenic acid were previously observed to potently destroy non-cholinergic, particularly GABAergic neurons while producing only moderate decreases in the density of cortical cholinergic inputs, the present experiment examined the effects of such lesions on sustained attention performance and then compared these effects with the immunohistochemical and attentional consequences of selective cholinotoxic lesions produced by intra-basal forebrain infusions of 192 IgG-saporin. In contrast to the selective decrease in hits previously observed in 192 IgG-saporin-lesioned animals, the attentional performance of ibotenic acid-lesioned animals was characterized by a selective increase in the relative number of false alarms, that is 'claims' for signals in non-signal trials. Analyses of the response latencies suggested that this effect of ibotenic acid was due to impairments in the animals' ability to switch from the processing of the response rules for signal trials to those for non-signal trials. As expected, 192 IgG-saporin did not affect the number of basal forebrain parvalbumin-positive neurons, that are presumably GABAergic, but decreased cortical acetylcholinesterase-positive fiber density by over 80%. Conversely, in ibotenic acid-lesioned animals, basal forebrain parvalbumin-positive cells were decreased by 60% but cortical acetylcholinesterase-positive fiber density was only moderately reduced (less than 25%).These data form the basis for the development of the hypothesis that basal forebrain GABAergic neurons mediate executive aspects of attentional task performance. Such a function may be mediated in parallel via basal forebrain GABAergic projections to the cortex and the subthalamic nucleus.  相似文献   

18.
Estrogen contributes to structural recovery after a lesion   总被引:2,自引:0,他引:2  
Over the last decade neuroscientists have accumulated a wealth of information confirming the trophic effects of 17beta-estradiol (E2) on a variety of brain regions, such as the effects on hippocampal spine density, as well as other measures of structural reorganization. Here, we explore the hypothesis that E2 exerts a positive trophic effect on the cholinergic neurons of the basal forebrain, an area heavily implicated in memory and attentional processes. Female rats were ovariectomized at 3 months of age and lesioned with the immunotoxin 192 IgG-saporin before receiving a subcutaneous pellet containing .25 mg of estrogen or placebo, released over 60 days. The control, non-ovariectomized group was treated identically. At the end of the treatment, the brains were histologically prepared and we used image analysis procedures to evaluate changes in the dendritic arborization of surviving cholinergic neurons. As expected, infusion of the immunotoxin induced a reduction in dendritic arborization in all subjects, but was significantly different from control values only in ovariectomized rats. When differences within animals were factored in, dendritic size in ovariectomized animals treated with E2 was undistinguishable from intact controls. By contrast, in ovariectomized animals treated with placebo, dendritic length remained significantly reduced. These results suggest that E2 can not only protect but also reverse structural neurodegenerative processes in cholinergic neurons. Our data is particularly relevant in the context of female aging and postmenopausal dementia, since preserving an intact cholinergic system may be crucial to prevent at least some of the cognitive decline that occurs in Alzheimer's disease.  相似文献   

19.
The authors examined visual-spatial conditional learning with automated touchscreen tasks in male Long-Evans rats with selective lesions of medial septal/vertical limb of diagonal band (MS/VDB) cholinergic neurons produced by 192 IgG-saporin. Performance on a conditional task, in which 1 of 2 centrally displayed stimuli directed the rat to respond to an illuminated panel on the left or right, depended on training history: Control rats with experience on other visual tasks performed better than MS/VDB-lesioned rats with similar training histories, whereas this effect was reversed in naive rats. This difference appears to reflect transfer effects present in the control rats that are absent in the MS/VDB-lesioned rats. These findings may suggest that MS/VDB cholinergic neurons play a particular role in the transfer of behavioral experience and flexibility of application of behavioral rules in memory, rather than a role in conditional learning per se.  相似文献   

20.
The neuromodulator acetylcholine is thought to modulate information processing in the olfactory system. The authors used 192 IgG-saporin, a lesioning agent selective for basal forebrain cholinergic neurons, to determine whether selective lesions of cholinergic neurons projecting to the olfactory bulb and cortex affect odor perception in rats. Lesioned and sham-operated rats were tested in an olfactory generalization paradigm with sets of chemically related odorants (n-aliphatic aldehydes, acids, and alcohols). Lesioned rats generalized more between chemically similar odorants but did not differ from controls in their response to chemically unrelated odorants or in acquisition of the conditioned odor. Results show that cholinergic inputs to the olfactory system influence perceptual qualities of odorants and confirm predictions made by computational models of this system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号