首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Peroxisome biogenesis disorders, including Zellweger syndrome (ZS), neonatal adrenoleukodystrophy (NALD) and infantile Refsum disease, are lethal hereditary diseases caused by abnormalities in peroxisomal assembly. To date, 12 genotypes have been identified. We now have evidence that the complete human cDNA encoding Pex13p, an SH3 protein of a docking factor for the peroxisome targeting signal 1 receptor (Pex5p), rescues peroxisomal matrix protein import and its assembly in fibroblasts from PBD patients of complementation group H. In addition, we detected mutations on the human PEX13 cDNA in two patients of group H. A severe phenotype of a ZS patient (H-02) was homozygous for a nonsense mutation, W234ter, which results in the loss of not only the SH3 domain but also the putative transmembrane domain of Pex13p. A more mildly affected NALD patient (H-01), whose fibroblasts showed the temperature-sensitive (TS) phenotype, was homozygous for a missense mutation in the SH3 domain of Pex13p, I326T. This mutant PEX13 cDNA expression in a PEX13-defective CHO mutant showed I326T to be a TS mutation and thus suggested that Pex13p with the I326T mutation in the SH3 domain is stable at 30 degrees C but is somewhat unstable at 37 degrees C.  相似文献   

2.
The peroxisome biogenesis disorders (PBDs), including Zellweger syndrome (ZS), neonatal adrenoleukodystrophy (NALD) and infantile Refsum disease (IRD), are autosomal recessive diseases caused by deficiency of peroxisome assembly as well as malfunction of peroxisomes, where >10 genotypes have been reported. ZS patients manifest the most severe clinical and biochemical abnormalities, while those with NALD and IRD show the least severity and the mildest features, respectively. PEX1 is the causative gene for PBDs of complementation group I (CG1), the highest incidence PBD, and encodes the peroxin, Pex1p, a member of the AAA ATPase family. In the present work, we found that peroxisomes were morphologically and biochemically formed at 30 but not 37 degrees C, in the fibroblasts from all CG1 IRD patients examined, whereas almost no peroxisomes were seen in ZS and NALD cells, even at 30 degrees C. A point missense mutation, G843D, was identified in the PEX1 allele of most CG1 IRD patients. The mutant PEX1, termed HsPEX1G843D, gave rise to the same temperature-sensitive phenotype on CG1 CHO cell mutants upon transfection. Collectively, these results demonstrate temperature-sensitive peroxisome assembly to be responsible for the mildness of the clinical features of PEX1 - defective IRD of CG1.   相似文献   

3.
Peroxisome biogenesis disorders (PBD) are lethal hereditary diseases caused by abnormalities in the biogenesis of peroxisomes. At present, 12 different complementation groups have been identified and to date, all genes responsible for each of these complementation groups have been identified. The peroxisomal membrane protein PEX14 is a key component of the peroxisomal import machinery and may be the initial docking site for the two import receptors PEX5 and PEX7. Although PEX14 mutants have been identified in yeasts and CHO-cells, human PEX14 deficiency has apparently not been documented. We now report the identification of a new complementation group of the peroxisome biogenesis disorders with PEX14 as the defective gene. Indeed, human PEX14 rescues the import of a PTS1-dependent as well as a PTS2-dependent protein into the peroxisomes in fibroblasts from a patient with Zellweger syndrome belonging to the new complementation group. This patient was homozygous for a nonsense mutation in a putative coiled-coil region of PEX14, c.553C>T (p.Q185X). Furthermore, we showed that the patient's fibroblasts lacked PEX14 as determined by immunocytochemical analysis. These findings indicate that there are 13 genotypes in PBD and that the role of PEX14 is also essential in humans.  相似文献   

4.
Peroxisome biogenesis disorders, of which 13 complementation groups have been identified, are subdivided with regard to two major dysfunctions: peroxisomal matrix protein import and peroxisomal membrane synthesis. Detectable remnant membrane structures are evident only in the former. Molecular defects have been defined in 10 PEX genes, including eight related to protein import and two to membrane synthesis. We now have evidence that the human complete cDNA encoding Pex3p, a peroxisomal membrane protein (PMP) factor for the proper localization of PMPs, rescues the import of both PMP and the matrix protein in fibroblasts from a Zellweger syndrome patient of complementation group G. This patient was homozygous for a 1 base insertion in the codon for V182, which resulted in a change of codon (182-183) and introduced a termination codon (184), which inactivated PMP and matrix protein import by Pex3p. A PEX3-defective CHO mutant clone, ZPG208, was of the same complementation group as group G.  相似文献   

5.
The peroxisome biogenesis disorders (PBD) are characterized by neural, hepatic, and renal deficiencies, severe mental retardation, and are often lethal. These disorders are genetically and phenotypically heterogeneous and are caused by defective peroxisomal protein import and decreased peroxisomal metabolic function. Mutations in PEX10 have been identified in patients from complementation group 7 (CG7) of the PBDs and we report here an analysis of the genotypes and phenotypes of PEX10-deficient patients. All four PEX10-deficient Zellweger Syndrome (ZS) patients were found to have nonsense, frameshift, or splice site mutations that remove large portions of the PEX10 coding region. In contrast, a more mildly affected PEX10-deficient neonatal adrenoleukodystrophy patient expressed a PEX10 allele with a missense mutation, H290Q, affecting the C-terminal zinc-binding domain of the PEX10 product. These results support the hypothesis that severe, loss-of-function mutations in PEX genes cause more severe clinical phenotypes, whereas mildly affected PBD patients have PEX gene mutations that retain residual function. To quantitate the effects of the PEX10 mutations identified here and elsewhere we employed a functional complementation assay. Surprisingly, we observed that nonsense and frameshift mutations predicted to delete the C-terminal 2/3 (R125X) or 1/3 (c.704insA) of the protein displayed nearly normal PEX10 activity. Even more surprising, we found that the unexpectedly high PEX10 activity displayed by these cDNAs could be eliminated by removing or mutating segments of the PEX10 cDNA downstream of the mutations. Although these results demonstrate serious flaws in the PEX10 functional complementation assay, they do suggest that the C-terminal zinc-binding domain is critical for PEX10 function.  相似文献   

6.
The peroxisome biogenesis disorders (PBDs), which comprise Zellweger syndrome (ZS), neonatal adrenoleukodystrophy, and infantile Refsum disease (IRD), represent a spectrum of disease severity, with ZS being the most severe, and IRD the least severe disorder. The PBDs are caused by mutations in one of the at least 12 different PEX genes encoding proteins involved in the biogenesis of peroxisomes. We report the biochemical characteristics and molecular basis of a subset of atypical PBD patients. These patients were characterized by abnormal peroxisomal plasma metabolites, but otherwise normal to very mildly abnormal peroxisomal parameters in cultured skin fibroblasts, including a mosaic catalase immunofluorescence pattern in fibroblasts. Since this latter feature made standard complementation analysis impossible, we developed a novel complementation technique in which fibroblasts were cultured at 40 degrees C, which exacerbates the defect in peroxisome biogenesis. Using this method, we were able to assign eight patients to complementation group 3 (CG3), followed by the identification of a single homozygous c.959C>T (p.S320F) mutation in their PEX12 gene. We also investigated various peroxisomal biochemical parameters in fibroblasts at 30 degrees C, 37 degrees C, and 40 degrees C, and found that all parameters showed a temperature-dependent behavior. The principle of culturing cells at elevated temperatures to exacerbate the defect in peroxisome biogenesis, and thereby preventing certain mutations from being missed, may well have a much wider applicability for a range of different inborn errors of metabolism.  相似文献   

7.
The PEX6 (peroxisome assembly factor‐2, PAF‐2) gene encodes a member of the AAA protein (ATPases associated with diverse cellular activities) family and restores peroxisome assembly in fibroblasts from peroxisome biogenesis disorder patients belonging to complementation group C (group 4 in the United States). We have now clarified the genomic DNA structure of human PEX6 and identified mutations in patients from various ethnic groups. The human PEX6 gene consists of 17 exons and 16 introns, spanning about 14kb. The largest exon, exon 1, has at least 952 bp nucleotides. Eleven novel mutations (18 alleles) were identified by direct sequencing of the PEX6 cDNA from 10 patients. All these mutations have been confirmed in the corresponding genomic DNA. There was no common mutation, but an exon skip was identified in two unrelated Japanese patients. Most of the mutations led to premature termination or large deletions of the PEX6 protein and resulted in the most severe peroxisome biogenesis disorder phenotype of Zellweger syndrome. A patient with an atypical Zellweger syndrome had a missense mutation that was shown to disrupt the cell's ability to form peroxisomes. This mutation analysis will aid in understanding the functions of the PEX6 protein in peroxisomal biogenesis. Hum Mutat 13:487–496, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

8.
The peroxisome biogenesis disorders (PBDs) are a group of neuronal migration/neurodegenerative disorders that arise from defects in PEX genes. A major subgroup of the PBDs includes Zellweger syndrome (ZS), neonatal adrenoleukodystrophy (NALD), and infantile Refsum disease (IRD). These three disorders represent a clinical continuum with Zellweger syndrome the most severe. Mutations in the PEX1 gene, which encodes a protein of the AAA ATPase family involved in peroxisome matrix protein import, account for the genetic defect in more than half of the patients in this PBD subgroup. We report here on the results of PEX1 mutation detection in an Australasian cohort of PEX1-deficient PBD patients. This screen has identified five novel mutations, including nonsense mutations in exons 14 and 19 and single nucleotide deletions in exons 5 and 18. Significantly, the allele carrying the exon 18 frameshift mutation is present at moderately high frequency (approx. 10%) in this patient cohort. The fifth mutation is a missense mutation (R798G) that attenuates, but does not abolish PEX1 function. We have evaluated the cellular impact of these novel mutations, along with that of the two most common PEX1 mutations (c.2097-2098insT and G843D), in PBD patients by determining the levels of PEX1 mRNA, PEX1 protein, and peroxisome protein import. The findings are consistent with a close correlation between cellular phenotype, disease severity, and PEX1 genotype.  相似文献   

9.
10.
Human genetic peroxisomal biogenesis disorders (PBDs), such as Zellweger syndrome, comprise 13 different complementation groups (CGs). Eleven peroxin genes, termed PEXs, responsible for PBDs have been identified, whereas pathogenic genes for PBDs of 2 CGs, CG-A (the same CG as CG8 in the United States and Europe) and CG6, remained unidentified. We herein provide several lines of novel evidence indicating that PEX6, the pathogenic gene for CG4, is impaired in PBD of CG6. Expression of PEX6 restored peroxisome assembly in fibroblasts from a CG6 PBD patient. This patient was a compound heterozygote for PEX6 gene alleles. Accordingly, by merging CG6 with CG4, human PBDs are now classified into 12 CGs. Received: December 25, 2000 / Accepted: February 5, 2001  相似文献   

11.
The autosomal recessive Zellweger syndrome spectrum (ZSS) disorders comprise a main subgroup of the peroxisome biogenesis disorders and can be caused by mutations in any of 12 different currently identified PEX genes resulting in severe multisystemic disorders. To get insight into the spectrum of PEX gene defects among ZSS disorders and to investigate if additional human PEX genes are required for functional peroxisome biogenesis, we assigned over 600 ZSS fibroblast cell lines to different genetic complementation groups. These fibroblast cell lines were subjected to a complementation assay involving fusion by means of polyethylene glycol or a PEX cDNA transfection assay specifically developed for this purpose. In a majority of the cell lines we subsequently determined the underlying mutations by sequence analysis of the implicated PEX genes. The PEX cDNA transfection assay allows for the rapid identification of PEX genes defective in ZSS patients. The assignment of over 600 fibroblast cell lines to different genetic complementation groups provides the most comprehensive and representative overview of the frequency distribution of the different PEX gene defects. We did not identify any novel genetic complementation group, suggesting that all PEX gene defects resulting in peroxisome deficiency are currently known.  相似文献   

12.
We, as the only diagnostic center for peroxisome biogenesis disorders (PBD) in Japan, identified a total of 31 Japanese patients with PBD during the last 20 years. They were 27 patients with Zellweger syndrome (ZS), including two sib cases, three with neonatal adrenoleukodystrophy (NALD) and one with rhizomelic type chondrodysplasia punctata (RCDP). No patient with infantile Refsum disease has been detected. These patients were genetically subdivided into complementation group A (five ZS and one NALD), B (11 ZS), C (four ZS), E (five ZS and two NALD), F (two ZS), and R (one RCDP). They were subjected to mutation analysis of PEX1, PEX2, PEX6, PEX7, and PEX10. All the 11 ZS patients with group-B PBD had a common mutation, i.e., a homozygous 2-base-pair deletion in PEX10. To determine whether this highly frequent mutation is due to a founder effect, we analyzed single nucleotide polymorphisms within PEX10 among patients and Japanese controls. The mutation apparently arose once on an ancestral chromosome in the Japanese population. Based on the value of 24 PBD patients identified during the last 10 years, we estimated the prevalence of PBD in Japan to be approximately one in 500,000 births.  相似文献   

13.
Mutations in 12 different PEX genes can cause a generalized peroxisomal biogenesis disorder with clinical phenotypes ranging from Zellweger syndrome to infantile Refsum disease. To identify the specific PEX gene to be sequenced, complementation analysis is first performed in fibroblasts using catalase immunofluorescence. A patient with a relatively mild phenotype of infantile cholestasis, hypotonia and motor delay had elevated plasma very long-chain fatty acids and bile acid precursors, but fibroblast studies revealed normal or only mildly abnormal peroxisomal parameters and mosaic catalase immunofluorescence. This mosaicism persisted even when the incubation temperature was increased from 37 °C to 40 °C, a maneuver previously shown to abolish mosaicism by exacerbating peroxisomal dysfunction. As mosaicism precludes complementation analysis, a candidate gene approach was employed. After PEX1 sequencing was unrewarding, PEX12 sequencing revealed homozygosity for a novel c.102A>T (p.R34S) missense mutation affecting a partially conserved residue in the N-terminal region important for localization to peroxisomes. Transfection of patient fibroblasts with wild-type PEX12 cDNA confirmed that a PEX12 defect was the basis for the PBD. Homozygosity for c.102A>T was identified in a second patient of similar ethnic origin also presenting with a mild phenotype. PEX12 is a highly probable candidate gene for direct sequencing in the context of a mild clinical phenotype with mosaicism and minimally abnormal peroxisomal parameters in fibroblasts.  相似文献   

14.
We isolated peroxisome biogenesis mutants ZP128 and ZP150 from rat PEX2 -transformed Chinese hamster ovary (CHO) cells, by the 9-(1'-pyrene)nonanol/ultraviolet method. The mutants lacked morphologically recognizable peroxisomes and showed a typical peroxisome assembly-defective phenotype such as a high sensitivity to 12-(1'-pyrene)dodecanoic acid/UV treatment. By means of PEX cDNA transfection and cell fusion, ZP128 and ZP150 were found to belong to a recently identified complementation group H. Expression of human PEX13 cDNA restored peroxisome assembly in ZP128 and ZP150. CHO cell PEX13 was isolated; its deduced sequence comprises 405 amino acids with 93% identity to human Pex13p. Mutation in PEX13 of mutant ZP150 was determined by RT-PCR: G to A transition resulted in one amino acid substitution, Ser319Asn, in one allele and truncation of a 42 amino acid sequence from Asp265 to Lys306 in another allele. Therefore, ZP128 and ZP150 are CHO cell lines with a phenotype of impaired PEX13.  相似文献   

15.
Peroxisome biogenesis disorders (PBD) represent a spectrum of genetic disorders characterized by impaired peroxisome assembly. Zellweger syndrome (ZS) is the most severe form of PBD and is characterized by craniofacial abnormalities, severe hypotonia, neonatal seizures, ocular abnormalities, psychomotor retardation, hepatomegaly and increased levels of very long chain fatty acids (VLCFA). The most common mutation associated with the PBD is PEX1. Here, the first Korean patient with ZS confirmed by clinical, biochemical, and molecular findings is reported. Two novel mutations of the PEX1 gene were identified in the patient with ZS. The patient was a compound heterozygote for c.2034_2035delCA and c.2845C>T mutations of the PEX1 gene. Both mutations are novel findings and were inherited from the patient's parents. In summary, here the first Korean case of ZS is reported that was confirmed by two novel mutations of the PEX1 gene.  相似文献   

16.
Peroxisome biogenesis disorders (PBD) comprise three phenotypes including Zellweger syndrome (ZS) (the most severe), neonatal adrenoleucodystrophy, and infantile Refsum disease (IRD) (the most mild), and can be classified into at least 12 genetic complementation groups, which are not predictive of the phenotypes. Several pathogenic genes for PBD groups have been identified, but the relationship between the defective gene products and phenotypic heterogeneity has remained unclear. We identified a mutation in the PEX2 gene in an IRD patient with compound heterozygosity for a missense mutation and the known nonsense mutation detected in ZS patients. In transfection experiments using the peroxisome deficient CHO mutant, Z65 with a nonsense mutation in the PEX2 gene, we noted the E55K mutation had mosaic activities of peroxisomal protein import machinery and residual activities of peroxisomal functions, including dihydroxyacetone phosphate acyltransferase and beta oxidation of very long chain fatty acids. The nonsense mutation severely affects these peroxisomal functions as well as the protein import. These data suggest that allelic heterogeneity of the PEX gene affects the peroxisomal protein import and functions and regulates the clinical severity in PBD.  相似文献   

17.
Peroxisome biogenesis disorders (PBD) are a heterogeneous group of autosomal recessive neurodegenerative disorders that affect multiple organ systems. Approximately 80% of PBD patients are classified in the Zellweger syndrome spectrum (PBD‐ZSS). Mutations in the PEX1, PEX6, PEX10, PEX12, or PEX26 genes are found in approximately 90% of PBD‐ZSS patients. Here, we sequenced the coding regions and splice junctions of these five genes in 58 PBD‐ZSS cases previously subjected to targeted sequencing of a limited number of PEX gene exons. In our cohort, 71 unique sequence variants were identified, including 18 novel mutations predicted to disrupt protein function and 2 novel silent variants. We identified 4 patients who had two deleterious mutations in one PEX gene and a third deleterious mutation in a second PEX gene. For two such patients, we conducted cell fusion complementation analyses to identify the defective gene responsible for aberrant peroxisome assembly. Overall, we provide empirical data to estimate the relative fraction of disease‐causing alleles that occur in the coding and splice junction sequences of these five PEX genes and the frequency of cases where mutations occur in multiple PEX genes. This information is beneficial for efforts aimed at establishing rapid and sensitive clinical diagnostics for PBD‐ZSS patients and interpreting the results from these genetic tests. © 2008 Wiley‐Liss, Inc.  相似文献   

18.
The peroxisome biogenesis disorders (PBDs) form a genetically and clinically heterogeneous group of disorders due to defects in at least 11 distinct genes. The prototype of this group of disorders is Zellweger syndrome (ZS), with neonatal adrenoleukodystrophy (NALD) and infantile Refsum disease (IRD) as milder variants. Liver disease, variable neurodevelopmental delay, retinopathy and perceptive deafness are common to PBDs. PBD patients belonging to complementation group 3 (CG3) have mutations in the PEX12 gene, which codes for a protein (PEX12) that contains two transmembrane domains, and a zinc-binding domain considered to be important for its interaction with other proteins of the peroxisomal protein import machinery. We report on the identification of five PBD patients belonging to CG3. Sequence analysis of their PEX12 genes revealed five different mutations, four of which have not been reported before. Four of the patients have mutations that disrupt the translation frame and/or create an early termination codon in the PEX12 open reading frame predicted to result in truncated protein products, lacking at least the COOH-terminal zinc-binding domain. All these patients display the more severe phenotypes (ZS or NALD). The fifth patient expresses two PEX12 alleles capable of encoding a protein that does contain the zinc-binding domain and displayed a milder phenotype (IRD). The three biochemical markers measured in fibroblasts (DHAPAT activity, C26:0 beta-oxidation and pristanic acid beta-oxidation) also correlated with the genotypes. Thus, the genotypes of our CG3 patients show a good correlation with the biochemical and clinical phenotype of the patients.  相似文献   

19.
Zellweger syndrome (ZS) is an autosomal recessive peroxisomal disorder that results from mutations in one of the peroxisome biogenesis (PEX) genes. This is the first patient reported with uniparental disomy (UPD) resulting in ZS, in this case maternal isodisomy of chromosome 1 involving reduction to homoallelism of a frameshift mutation within PEX 10. Other reported cases of UPD1, and evidence for the imprinting of genes on chromosome 1, are reviewed. The molecular findings in this patient have important implications for molecular testing and genetic counseling in ZS.  相似文献   

20.
Mutations in each of the 13 identified human PEX genes are known to cause a peroxisomal biogenesis defect (PBD). Affected patients can be divided into two broad clinical spectra: the Zellweger spectrum, which accounts for about 80% of PBD patients, and the rhizomelia chondrodysplasia punctata (RCDP) spectrum. The clinical continuum of Zellweger spectrum patients extends from Zellweger syndrome (ZS) as the prototype and the most severe entity of this group to neonatal adrenoleukodystrophy (NALD) as an intermediate form and infantile Refsum (IRD) disease as the mildest variant. Characteristic features of ZS patients are dysmorphic features, severe neurological impairment, liver dysfunction, and eye and skeletal abnormalities. Similar but less severe clinical signs are seen in patients with NALD and IRD. In this study ten clinically and/or biochemically well-characterized patients with classical ZS were investigated for defects in all known human PEX genes. We identified two novel mutations in PEX2 (official symbol, PXMP3), two novel mutations in PEX6, two novel mutations in PEX10, one novel mutation in PEX12, and one novel mutation in PEX13.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号