首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mutations responsible for autosomal dominant nocturnal frontal lobe epilepsy have been identified in two members of the neuronal nicotinic acetylcholine receptor gene family: CHRNA4(ENFL1 locus) and CHRNB2 (ENFL3 locus) coding for alpha4 and beta2 subunit, respectively. However, mutations in these genes account for only a minority (less than 10%) of cases. For a third ADNFLE locus (ENFL2) on chromosome 15q24 the gene was not identified. The involvement of the three loci in the pathogenesis of ADNFLE was investigated in 12 unrelated Italian families, selected on the basis of anamnestic and video-polysomnographic data. Compliant family members were typed for polymorphic markers spanning the analyzed chromosome regions. Linkage analyses excluded association of all chromosome regions with ADNFLE in 72% of cases. In two, four and one families it was impossible to ascertain or exclude association with ENFL1, ENFL2, or ENFL3, respectively, however, no mutations have been detected in the nicotinic receptor genes located in these regions. These data strongly suggest that ENFL1, ENFL2 and ENFL3 are minor loci for the disease and point to the existence of at least a fourth locus for ADNFLE.  相似文献   

2.
《Epilepsia》2006,47(S3):266-267
1 A. Gambardella (   1 Università Magna Graecia, Italy )
Autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) is a recently identified partial epilepsy, which is characterized by brief frontal-lobe motor seizures occurring mostly during light sleep. The age of onset is usually infancy and adolescence, although seizures may start in adult life. Inheritance is autosomal dominant with 70% penetrance. The clinical picture of ADNFLE is relatively homogeneous, even if a broad range of severity has been observed even among affected members of the same pedigree. The interictal EEG is usually normal but ictal recordings show that these events are epileptic and appear to arise from the frontal lobes. Misdiagnosis as nightmares, night terrors, other parasomnias or even hysteria is common if clinicians are unaware of ADNFLE.
So far, ADNFLE has been associated with mutations affecting two genes coding for alfa4 and beta2 subunits of the neuronal nicotinic acetylcholine receptor (nAChR), which are located on chromosome 20q and chromosome 1 respectively. Moreover, although the gene has not yet been identified, another ADNFLE locus has been mapped to chromosome 15q24. More recently, there has been evidence that variations in the promoter of the corticotropic-releasing hormone gene may be also associated with ADNFLE. Nonetheless, the underlying gene has not yet been found in most ADNFLE families. Overall, these data support the pathogenic role of the cholinergic system in ADNFLE, even if its etiology appears to be the result of a variety of molecular defects despite the relative homogeneity of the clinical manifestations.  相似文献   

3.
PURPOSE: Three forms of idiopathic partial epilepsy with autosomal dominant inheritance have been described: (a) autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE); (b) autosomal dominant lateral temporal epilepsy (ADLTE) or partial epilepsy with auditory features (ADPEAF); and (c) familial partial epilepsy with variable foci (FPEVF). Here we describe linkage analysis in a Dutch four-generation family with epilepsy fulfilling criteria of both ADNFLE and FPEVF. METHODS: Clinical characteristics and results of EEG, computed tomography (CT), and magnetic resonance imaging (MRI) were evaluated in a family with autosomal dominantly inherited partial epilepsy with apparent incomplete penetrance. Linkage analysis was performed with markers of the ADNFLE (1p21, 15q24, 20q13.3) and FPEVF (2q, 22q11-q12) loci. RESULTS: Epilepsy was diagnosed in 10 relatives. Age at onset ranged from 3 months to 24 years. Seizures were mostly tonic, tonic-clonic, or hyperkinetic, with a wide variety in symptoms and severity. Most interictal EEGs showed no abnormalities, but some showed frontal, central, and/or temporal spikes and spike-wave complexes. From two patients, an ictal EEG was available, showing frontotemporal abnormalities in one and frontal and central abnormalities in the other. Linkage analysis with the known loci for ADNFLE and FPEVF revealed linkage to chromosome 22q in this family. CONCLUSIONS: The clinical characteristics of this family fulfilled criteria of both ADNFLE and FPEVF. The frequent occurrence of seizures during daytime and the observation of interictal EEG abnormalities originating from different cortical areas were more in agreement with FPEVF. The observed linkage to chromosome 22q supported the diagnosis of FPEVF and confirmed that this locus is responsible for this syndrome.  相似文献   

4.
BACKGROUND: Familial partial epilepsy with variable foci (FPEVF) is an autosomal dominant syndrome characterized by partial seizures originating from different brain regions in different family members in the absence of detectable structural abnormalities. A gene for FPEVF was mapped to chromosome 22q12 in two distantly related French-Canadian families. METHODS: We describe the clinical features and performed a linkage analysis in a Spanish kindred and in a third French-Canadian family distantly related to the original pedigrees. RESULTS: Onset of seizures was typically in middle childhood, and attacks were usually easy to control. Seizure semiology varied among family members but was constant for each individual. In some, a pattern of nocturnal frontal lobe seizures led to consideration of the diagnosis of autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE). The Spanish family was mapped to chromosome 22q (multipoint lod score, 3.4), and the new French-Canadian family had a multipoint lod score of 2.97 and shared the haplotype of the original French-Canadian families. CONCLUSIONS: Identification of the various forms of familial partial epilepsy is challenging, particularly in small families, in which insufficient individuals exist to identify a specific pattern. We provide clinical guidelines for this task, which will eventually be supplanted by specific molecular diagnosis. We confirmed linkage of FPEVF to chromosome 22q12 and redefined the region to a 5.2-Mb segment of DNA.  相似文献   

5.
PURPOSE: Mutations in the genes encoding the alfa(2), alfa(4) and beta(2) subunits of the neuronal nicotinic acetylcholine receptor (nAChR) play a causative role in autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE). Moreover, variations in the promoter of the corticotropic-releasing hormone gene (CRH) were also associated with ADNFLE. Here, we investigated whether nine brain-expressed genes (CHRNA2, CHRNA3, CHRNA4, CHRNA5, CHRNA6, CHRNA7, CHRNB2, CHRNB3, CHRNB4), encoding distinct nAChR subunits, and CRH are associated with the disease in three distinct ADNFLE families from Southern Italy. METHODS: There were 14 living affected individuals (9 women), ranging in age from 14 to 57 years, pertaining to three unrelated families. Age at onset of seizures clustered around 9 years of age (range from 7 and 16 years, mean: 9.1 years+/-3.8). All affected individuals manifested nocturnal partial seizures of frontal lobe origin, which were well controlled by medications. Exon 5 of CHRNA4 and CHRNB2 genes, harboring all the known mutations, was sequenced in the probands. Then, we performed a linkage study on 13 affected and 26 non-affected individuals belonging to the three families with microsatellite markers and an intragenic polymorphisms encompassing the chromosome localization of the nAChR subunit genes and of the CRH gene. RESULTS: Mutational and linkage analyses allowed us to exclude the involvement of all known nAChR subunit genes and of the CRH gene in ADNFLE in our families. CONCLUSION: Our results further illustrate the considerable genetic heterogeneity for such a syndrome, despite the quite homogeneous clinical picture. It is therefore reasonable to hypothesize that at least another gene not belonging to the nAChR gene family, in addition to CRH, is involved in the pathogenesis of ADNFLE.  相似文献   

6.
Progress in the Genetics of the Partial Epilepsies   总被引:5,自引:2,他引:3  
Ruth Ottman 《Epilepsia》2001,42(S5):24-30
  相似文献   

7.
Two new putative susceptibility loci for ADNFLE   总被引:1,自引:0,他引:1  
Autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) has been up to now considered a simple Mendelian trait caused by mutations in neuronal nicotinic acetylcholine receptor (nAChR) subunit genes. We previously demonstrated that in a three-generation Italian family the disease was unlinked to all known ADNFLE loci as well as to all known brain-expressed nAChR subunits. The genome-wide linkage analysis here presented performed on this family points to the existence of two new putative ADNFLE loci on chromosomes 3p22-p24 and 8q11.2-q21.1. These findings, together with several ADNFLE characteristics, suggest that this epilepsy could be, at least in the above family, a complex disorder. In particular, we propose and discuss the hypothesis of a digenic transmission of the disease.  相似文献   

8.
F Picard  P Chauvel 《Revue neurologique》1999,155(6-7):445-449
The identification of the autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) in 1994 was rapidly followed by that of other familial forms of non lesional partial epilepsies (familial temporal lobe epilepsy, autosomal dominant partial epilepsy with variable foci). Since then around forty families with ADNFLE have been described, most of them having only 3 or 4 affected individuals. The epilepsy usually begins during childhood (mean age at onset: 11 years). The seizures mainly consist of motor elements which can be dystonic, tonic or hyperkinetic (bipedal automatisms, pelvic thrashing movements...), often preceded by a non specific aura. They are brief and frequent, taking place at night, in clusters. Some patients also present some diurnal seizures. One third of the patients report the occurrence of rare secondarily generalized tonic-clonic seizures. There is a large intra-familial variability as to age of onset, intensity of the manifestations and the course of the epilepsy. During the period of highest frequency of seizures, some patients may present moderate neuropsychological disturbances concordant with frontal dysfunctioning, or transitory behavioral disorders. The seizures often subside with age and may even disappear at adulthood. The most effective antiepileptic drug is carbamazepine, however pharmacoresistance is seen in 20 to 30 p. 100 of the cases. Interictal EEG shows non specific epileptiform anomalies with a frontal predominance, often seen solely on sleep recording, in more than half of all patients. Ictal EEG does not always give evidence of definite ictal discharges. The clinical heterogeneity of ADNFLE as it is especially observed in very variable types of auras which are non localizing, aside form the EEG's own limits, makes it difficult to localize the primary epileptic focus with certainty in the frontal lobe in all cases. In all, the clinical and electrical spectrum of ADNFLE is large, and the topographical identification of these familial frontal lobe epilepsies sets the same problems as for sporadic, classical cryptogenic frontal lobe epilepsies.  相似文献   

9.
OBJECTIVE: To identify the mutation responsible for autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) in a nonwhite family. BACKGROUND: ADNFLE is newly recognized as an entity of idiopathic partial epilepsy. Recently, two different mutations of the neuronal nicotinic acetylcholine receptor alpha4 subunit (CHRNA4) gene were identified in a white family as a cause of ADNFLE. METHODS: Four affected and three unaffected individuals in three generations of a Japanese family with ADNFLE, and 100 unrelated healthy Japanese volunteers were studied. Clinical features and EEG findings in affected individuals were consistent with those of ADNFLE reported in white families with ADNFLE. Mutations within the CHRNA4 gene were screened for using single-strand conformation polymorphism analysis (SSCA) and were determined by direct sequencing. The mutation identified was sought in volunteers by the amplification refractory mutation system. RESULTS: A C-to-T exchange (C755T) was found in exon 5 of the CHRNA4 gene on one allele of affected individuals. C755T segregated in affected individuals and was not found in 200 alleles obtained from the volunteers. C755T replaced serine 252 (Ser252) in the second membrane-spanning domain (M2) of CHRNA4 with a leucine. Ser252 is conserved characteristically in the alpha-subunit of acetylcholine receptor and is considered to play an important role in channel function. CONCLUSION: C755T is a novel missense mutation of the CHRNA4 gene causing autosomal dominant nocturnal frontal lobe epilepsy in this Japanese family.  相似文献   

10.
Abstract. Autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) is an idiopathic epilepsy, with a spectrum of clinical manifestations, ranging from brief, stereotyped, sudden arousals to more complex dystonic–dyskinetic seizures. Video–polysomnography allows a correct differential diagnosis. There is no difference between sporadic nocturnal frontal lobe epilepsy (NFLE) and ADNFLE in the clinical and neurophysiological findings. ADNFLE is the first idiopathic epilepsy for which a genetic basis has been identified. Mutations have been found in two genes (CHRNA4 and CHRNB2) coding for neuronal nicotinic receptor subunits (4 and 2, respectively). Contrasting data have been reported on the effect of these mutations on the functionality of the receptor.Moreover, the incomplete data on the neuronal network/s in which this receptor is involved, make difficult the understanding of the genotype–phenotype correlation. This is an overview on the clinical and genetic aspects of ADNFLE including a discussion of some open questions on the role of the neuronal nicotinic receptor subunit mutations in the pathogenesis of this form of epilepsy.  相似文献   

11.
The chromosome 15q24 region, containing the CHRNA3/A5/B4 gene cluster, coding for the alpha3, alpha5 and beta4 subunits of neuronal nicotinic acetylcholine receptors, has been reported to be linked to autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) in one family. However, nor the gene nor the mutation involved have been identified. We report the refined mapping of CHRNA3/A5/B4 cluster. Segregation analyses of CHRNA3/A5/B4 polymorphisms in families showing recombinations for 15q24 G?en?ethon STR markers allowed to position the cluster in a 0.6 cM interval, between STRs D15S1027 and D15S1005. This location is external to the 15q24-ADNFLE-linked region, therefore excluding the involvement of this cluster in the pathogenesis of ADNFLE in the 15q24-linked family. Moreover, these data provide more precise information for further linkage studies.  相似文献   

12.
Major advances in the identification of genetic loci and genes that predispose individuals to epilepsy have been made in the last several years. Two main themes for human, idiopathic epilepsies are emerging; genetic, or locus heterogeneity is not uncommon, and the discovery that epilepsy susceptibility genes are voltage-gated and ligand-gated ion channels. Knowledge that more than a single genetic locus is responsible for a single seizure type, along with a wide spectrum of disease mutations among families will complicate clinical, diagnostic issues. Disease gene identification, such as the two potassium ion channels (KCNQ2 and KCNQ3) for the two forms of benign familial neonatal seizures (BFNC) and the alpha4 subunit of the nicotinic receptor for autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE), however, should yield significant advances in drug discoveries. Understanding the primary defect in inherited epilepsies provides for specific protein and pathway targets for potential drug intervention.  相似文献   

13.
Members of the ligand-gated neuronal nicotinic acetylcholine receptor (nAChR) gene family (CHRNA4 and CHRNB2, coding for the α4 and β2 subunits, respectively) are involved in autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE). However, ADNFLE is genetically heterogeneous and mutations in CHRNA4 and CHRNB2 account for only a minority of ADNFLE cases. Additional nAChR subunits expressed in the brain are candidates for this epilepsy. The involvement of all genes coding for brain-expressed nAChR subunits, with known chromosome localization (CHRNB2, 1q21; CHRNA2, 8p21; CHRNA6, CHRNB3, 8p11.2; CHRNA7, 15q14; CHRNA5/A3/B4, 15q24 and CHRNA4, 20q13.2) was investigated in four unrelated ADNFLE Italian families for at least three generations. Families were selected on the basis of anamnestic and videopolysomnographic analyses. Individuals were typed for polymorphic markers located in the above mentioned chromosome regions. Linkage and mutation analyses were performed. In none of the families was linkage between ADNFLE and the analysed chromosome regions detected. These findings support the hypothesis that genes different from those coding for α2-7 and β2-4 neuronal nAChR subunits could be responsible for ADNFLE. Received: 17 July 2001 Received in revised form: 21 January 2002 Accepted: 29 January 2002  相似文献   

14.
Autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE; MIM 600513) has been associated with mutations in the genes coding for the alfa-4 (CHRNA4), beta-2 (CHRNB2), and alpha-2 (CHRNA2) subunits of the neuronal nicotinic acetylcholine receptor (nAChR) and for the corticotropin-releasing hormone (CRH). A four-generation ADNFLE family with six affected members was identified. All affected members presented the clinical characteristics of ADNFLE. Interictal awake and sleep EEG recordings showed no epileptiform abnormalities. Ictal video-EEG recordings showed focal seizures with frontal lobe semiology. Mutation analysis of the CHRNB2 gene revealed a c.859G>A transition (Val287Met) within the second transmembrane domain, identical to that previously described in a Scottish ADNFLE family. To our knowledge, this is the third family reported presenting a mutation in CHRNB2. The clinical phenotype appears similar to that described with mutations in CHRNA4, suggesting that mutations in these two subunits lead to similar functional alterations of the nAChR.  相似文献   

15.
Familial partial epilepsy with variable foci (FPEVF) is an autosomal dominant form of partial epilepsy characterized by the presence of epileptic seizures originating from different cerebral lobes in different members of the same family. Linkage to chromosomes 22q12 and 2q36 has been reported, although only six families have been published. We studied a new FPEVF family including nine affected individuals. The phenotype in this family was similar to that previously described and consisted of nocturnal and daytime seizures with semiology suggesting a frontal lobe origin. A video‐EEG (electroencephalography) recording of the proband’s seizures is presented and revealed hyperkinetic seizures of frontal lobe origin preceded by left frontal spikes. We excluded linkage to chromosome 2q36 and found a suggestion of linkage to chromosome 22q12 with a lod score of 2.64 (θ = 0) for marker D22S689.  相似文献   

16.
PURPOSE: Mutations in genes coding for the alpha 4 and beta 2 subunits of the neuronal nicotinic acetylcholine receptor receptor (CHRN) are known to cause autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE). Here we examined the phenotypes in two families, from the same ethnic and geographic backgrounds, with ADNFLE as a result of mutations in these two different subunits of CHRN. METHODS: All affected family members underwent a detailed clinical evaluation and review of available EEG, neuroimaging, and videotapes of seizures. The molecular study of family D is reported here; family S has a previously reported mutation in the beta 2 subunit of CHRN. RESULTS: A total of 16 individuals with ADNFLE were identified in the two families. In both families, seizure semiology, age at seizure onset, and the natural history of the seizure disorder was similar. Intrafamilial variation in terms of severity of epilepsy syndrome was present in both families. A significant number of individuals from each family had a history of psychological problems. The molecular study of family D revealed a Ser248Phe mutation in the alpha 4 subunit of CHRN. CONCLUSIONS: The epilepsy phenotype is not distinguishable in the two families who have ADNFLE as a result of mutations in genes coding for different CHRN subunits. This is likely to be due to the similar functional consequences of each mutation on the CHRN receptor.  相似文献   

17.
PURPOSE: Two large Canadian kindreds appearing to segregate febrile convulsions as an autosomal dominant trait were evaluated for linkage to three known FC loci, as well as other epilepsy loci. METHODS: Members of the two families were genotyped with microsatellite markers linked to the previously identified febrile convulsion loci, FEB1, FEB2, and GEFS+, and we performed two-point linkage analyses by assuming an autosomal dominant mode of inheritance. RESULTS: We report the exclusion of the FC trait in our families to FEB1 on 8q13-21 and to a second febrile convulsion locus on 19p13. Furthermore, we also excluded the GEFS+ locus on 19q13.1 as the cause of febrile convulsions in both kindreds. Microsatellite markers linked to juvenile myoclonic epilepsy (EJM1), benign neonatal familial convulsions EBN1 and EBN2, autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE), idiopathic generalized epilepsy (EGI), progressive myoclonic epilepsy of Unverricht-Lundborg (EPM1), and partial epilepsy with auditory features (EPT), were also excluded as potential loci linked to the FC trait in our families. CONCLUSIONS: These findings favor considerable genetic heterogeneity for febrile convulsions.  相似文献   

18.
To date five mutations in two major constituents of neuronal nicotinic acetylcholine receptor (nAChR) in the brain, i.e. alpha4 and beta2 subunits, have been identified to be associated with autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE). Among them, only Ser284Leu, a point mutation in alpha4 subunit identified in ADNFLE as well as in a sporadic case with nocturnal frontal lobe epilepsy, remains to be characterized electrophysiologically. We examined the properties of rat nAChR harboring Ser284Leu reconstituted on Xenopus oocytes. Currents elicited in response to application of acetylcholine to oocytes expressing wild type or mutant nAChR were measured by a standard two-microelectrode voltage clamp method. Compared with wild-type nAChR, the mutant nAChR had a comparable EC(50) value for acetylcholine whereas it showed faster desensitization and lower Cs(+)/Na(+) permeability ratio. Ser284Phe, a putative mutation constructed for comparison, exhibited similar properties. These findings indicate that Ser(284) plays an important role in gating of nAChR along with Thr(276) and Ser(280), and suggest that mutation at Ser(284) could reduce nAChR activity similar to other mutations of alpha4 subunit found in ADNFLE.  相似文献   

19.
PURPOSE OF REVIEW: While epilepsy describes a heterogeneous array of syndromes, the conventional view is that there is a common underlying failure in the ability of GABAergic inhibition to overcome excessive synaptic excitation. This review explores the possibility that enhanced GABAergic inhibition in the neocortex could also be proepileptogenic. RECENT FINDINGS: Recently, two mouse strains carrying mutant alleles of the alpha4 subunit of the nicotinic acetylcholine receptor that are associated with autosomal dominant nocturnal frontal lobe epilepsy have been found to show spontaneous seizures. Recordings from neocortical pyramidal neurons in vitro show that the autosomal dominant nocturnal frontal lobe epilepsy mutations are associated with large selective increases in nicotine-evoked GABAergic inhibition, which may be key factor in epileptogenesis, as the seizures in vivo are blocked by subconvulsive doses of the GABAA receptor antagonist, picrotoxin. SUMMARY: The precise links between the observed gain of neocortical inhibition and development of seizures in autosomal dominant nocturnal frontal lobe epilepsy mice remain unknown. Recent insights into the functional properties of cortical GABAergic circuits, however, suggest several possible pathways to be explored, whose elucidation could enable selective therapeutic interventions.  相似文献   

20.
PURPOSE: Autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) is the first described partial epilepsy syndrome known to be due to a single gene mutation. We found a first Japanese ADNFLE family with a novel mutation of the neuronal nicotinic acetylcholine receptor (nAChR) alpha4 subunit (CHRNA4) gene. The aim of this report is precisely to describe the electroclinical manifestations of ADNFLE in this family and to compare these findings with those of other families reported previously in the literature. METHODS: Three affected family members were investigated electroclinically by close clinical observation, interictal EEG, video-EEG monitoring, magnetic resonance imaging, and single-photon-emission tomography. Information about other affected family members was obtained from either the spouse or the parents. Mutations within the CHRNA4 gene were examined in seven family members. RESULTS: The clinical manifestations and diagnostic findings in the members of this family were consistent with ADNFLE. However, there were intrafamilial and interfamilial variations in clinical features. The seizures of the patients were brief tonic seizures, with hyperventilation in children and secondarily generalized tonic-clonic convulsions in adults. The onset of the children's seizures began in infancy and early childhood. The children's seizures were sometimes provoked by movement and sound stimulation, and did not respond to antiepileptic drugs. On the other hand, the adults' seizures disappeared spontaneously or were easily controlled with carbamazepine. Three children showed hyperactivity, and two children had mild mental retardation. All patients had impaired consciousness during their seizures and no auras. A novel missense mutation (c755C>T) in exon 5 of the CHRNA4 gene was found in four affected family members. CONCLUSIONS: The electroclinical pictures of a Japanese family with ADNFLE were basically the same as those of other families reported, but with slight differences. ADNFLE is probably not uncommon, and it is very likely that there are unidentified patients with this inherited disorder in Japan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号