首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
Jeong JH  Kim GY  Yoon SS  Park SJ  Kim YJ  Sung CM  Shin SS  Lee BJ  Kang MI  Park NY  Koh HB  Cho KO 《Virus research》2005,108(1-2):207-212
Since the molecular analysis of spike (S) glycoprotein gene of bovine coronavirus (BCoV) has been conducted and compared mainly among American and Canadian isolates and/or strains, it is unclear whether BCoV circulated in the other countries are distinctive in genetic characteristics. In the present study, we analyzed the S glycoprotein gene to characterize 10 winter dysentery (WD) coronavirus strains circulated in Korea during 2002-2003 and compared the nucleotide (nt) and deduced amino acid (aa) sequences with the other known BCoV. The phylogenetic analysis of the entire S glycoprotein gene revealed that the aa sequences of all Korean WD strains were more homologous to each other and were very closely related to respiratory bovine coronavirus (RBCV) strain OK and enteric bovine coronavirus (EBCV) strain LY-138, but were distinct from the other known BCoVs. Based on the phylogenetic analysis of the hypervariable region of the S1 subunit, all Korean WD strains clustered with the respiratory strain OK, BCQ3994 and the enteric strain LY-138, while the Canadian BCQ calf diarrhea and WD strains, and the American RBCV LSU, French EBCV F15 and avirulent VACC, L9, and Mebus strains clustered on a separate major branch. These data suggest that the WD strains circulated in Korea had a genetic property of both RBCV and EBCV and were significantly distinct from the ancestral enteric strain.  相似文献   

2.
Summary. The nucleotide sequences of HA1 domain of hemagglutinin of clinical H1N1 influenza viruses, isolated during recent outbreaks of respiratory problems in pig farms of Quebec, was determined. The viruses A/Sw/Quebec/ 3291/90 (SwQc3291) and A/Sw/Quebec/1747/90 (SwQc1747), associated with chronic respiratory disease, showed close similarity for their deduced aa sequences. When compared with the published data of A/Sw/Quebec/5393/91 (SwQc91), the variations observed included Cb and Ca antigenic sites in SwQc3291 and Sb and Ca sites in SwQc1747 isolates. These variants were antigenically related to SwQc91 virus associated with chronic respiratory disease, but differed from the more classical A/Sw/Quebec/192/81 (SwQc81) strain. In contrast, A/Sw/Quebec/1192/86 (SwQc1192) isolate, associated with acute respiratory influenza, showed maximum number of differences including Ca, Cb, Sa and Sb antigenic sites. The latter, as well as the SwQc81 strain, were antigenically distinct from SwQc91 virus on the basis of its cross-reactivity to MAbs directed against the HA glycoprotein. Estimation of genetic distances and phylogenic tree analysis showed that SwQc1747 and SwQc3291 were closely related, but these viruses along with SwQc1192 were considerably divergent from SwQc91 virus. Received May 29, 1996 Accepted September 25, 1996  相似文献   

3.
Henrichon  Marc  Tijssen  Peter  Dea  Serge  Arora  Dharamjit S 《Virus genes》1997,14(3):251-254
The complete nucleotide sequences of neuraminidase (NA) of two swine influenza viruses (H1N1) are presented. A/Sw/Quebec/5393/91 (SwQc91) virus, associated with the chronic respiratory disease and A/Sw/Quebec/192/81 (SwQc81) virus, associated with the acute respiratory disease, were used. The deduced amino acid sequences of NA of SwQc91 and SwQc81 viruses showed a high degree (>95%) of similarity. The NA gene of both viruses was a single open reading frame of 1459 nucleotides coding for 469 aa with a 5′ noncoding region of 21 nucleotides and a 3′ noncoding region of 28 nucleotides. The comparison of two sequences showed that there were 23 differences recorded for SwQc91 strain, of which 5, 6, and 12 differences were recorded in the hydrophobic, stalk and head regions, respectively. A potential antigenic determinant changed from Ala to Thr at position 453 and there was a new potential glycosylation site present at position 88 for SwQc91 strain whereas it was absent at position 50 when compared with SwQc81 strain. Estimates of genetic distance and phylogenic tree analysis showed that SwQc91 and SwQc81 viruses were closely related with each other and with the American strain, A/Sw/Wisconsin/4754/94. However, the swine viruses represented a distinct group that was considerably divergent from the group of human viruses. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Subgroup A respiratory syncytial viruses present in respiratory secretions and low passage level cell culture isolates were found to be markedly less susceptible to neutralization with monoclonal antibodies (MAbs) to the F glycoprotein than the cell culture adapted A2 virus strain. Low passage virus isolates collected over a 20 year period and belonging to several sub-group A lineages were refractory to neutralization with antibodies recognizing two major neutralizing antigenic sites located sub-terminally at opposite ends of the F(1) glycoprotein sub-unit. On further passage in cell culture, virus isolates exhibited both increased infectivity titers and increased susceptibility to neutralization by antibodies to both antigenic sites. The consensus nucleotide sequence of the membrane associated proteins M and of the SH, G and F glycoprotein genes, and their intergenic regions were compared for neutralization resistant and susceptible stocks of one virus strain, R17532. No changes were observed in the known monoclonal antibody epitopes on the F glycoprotein. In line with this, the increase in susceptibility was not found to be associated with any increased binding of monoclonal antibody to isolated F glycoprotein in a BIAcore assay, thus excluding the possibility that passage in cell culture selected for viruses with mutations in the antibody binding sites. M and SH genes were conserved but a number of sites in the G and F glycoprotein genes were found to vary on adaptation to cell culture suggesting that change in susceptibility to neutralization was associated with a change in the prevalent quasispecies present in the virus population. The genetic basis of phenotypic change in susceptibility remains to be determined.  相似文献   

5.
Six mouse monoclonal antibodies (MoAbs) against Japanese encephalitis virus (JEV) were prepared and analyzed with indirect immunofluorescence assay (IFA), enzyme linked immunosorbent assay (ELISA), haemagglutination inhibition test (HI), neutralization test (NT), antibody dependent cell mediated cytotoxicity (ADCC) assay, antigenic site specific analysis and relative affinity measurement. These MoAbs could be divided into three classes by indirect immunofluorescence cross reactivity among four flaviviruses, 2H4, 2F2, and nG2 were type specific; 2D2 and mC3 were subgroup specific; and mG9 was family specific. 2H4 and 2F2 had higher neutralization activity, 2D2 and mC3 had the function of inducing ADCC effect, mG9 had higher titer in HI. The six MoAbs recognized five antigenic sites on JEV envelope glycoprotein, 2H4 and 2F2 recognized the same or very similar antigenic site and their relative affinity was ranked as: nG2 > 2H4 > 2D2 > mG9 > 2F2 > mC3.  相似文献   

6.
Antigenic sites on the G1 glycoprotein of La Crosse bunyavirus were defined by constructing a panel of neutralizing and nonneutralizing monoclonal antibodies (F. Gonzalez-Scarano, R. E. Shope, C. H. Calisher, and N. Nathanson (1982), Virology 120, 42-53). To analyze the relationship between the individual epitopes delineated by monoclonal antibodies, 11 neutralizing antibodies were used to select variant viruses. These variant viruses were tested against the panel of anti-G1 protein monoclonal antibodies by neutralization and by ELISA. The neutralization tests assigned the 11 epitopes to five groups, consisting of 6, 2, 1, 1, and 1 epitopes. ELISA tests gave a similar pattern, but also demonstrated interrelationships between four of the five epitope groups, suggesting that there may be a single immunodominant antigenic site on the G1 protein. When eight nonneutralizing anti-G1 monoclonal antibodies were tested in ELISA, they fell into three of the five epitope groups defined by neutralization; there was no evidence of a separate noneutralizing antigenic site on the G1 protein.  相似文献   

7.
Seven hybridoma cell lines producing monoclonal antibodies (MAbs) to the hemagglutinin-esterase (HE) glycoprotein of bovine coronavirus (BCV) were obtained from BALB/c mice that were immunized with an enriched peplomeric fraction of the winter dysentery (WD)-associated strain BCQ.2590. The specificities of these MAbs to either the dimeric (140-kDa) or the monomeric (65-kDa) form of the HE glycoprotein were determined by Western immunoblotting experiments with purified virus and immunoprecipitation tests with [35S]methionine-labelled infected cell extracts. Four of these anti-HE MAbs inhibited the hemagglutinating activity of the virus and three weakly neutralized its infectivity in vitro. In addition, competition binding assays allowed for the definition of two independent antigenic domains (domains A and D) and two overlapping antigenic domains (domains B and C) for the HE glycoprotein of the WD-associated strain; epitopes located within antigenic domain A were not associated with hemagglutination inhibition (HAI) and virus neutralization activities. In HAI tests, the four anti-HA MAbs defined two distinct antigenic subgroups among 24 BCV field isolates that have been associated with either typical outbreaks of WD or neonatal calf diarrhea (NCD) in Quebec dairy herds from 1986 to 1996. The Quebec WD-associated strains of BCV, as well as some of the NCD-associated strains isolated since 1991, fell within a subgroup distinct from that of the prototype Mebus strain.  相似文献   

8.
L Z Luo  Y Li  R M Snyder  R R Wagner 《Virology》1990,174(1):70-78
Strains of vesicular stomatitis virus, New Jersey serotype (VSV-NJ), isolated from diseased cattle or swine were examined by genomic RNA sequencing for genetic diversity potentially leading to antigenic variations in their type-specific glycoproteins as determined by reactivity with epitope-specific monoclonal antibodies (MAbs). Seven field isolates recovered in Colorado, New Mexico, Georgia, and Mexico during the widespread 1982-1985 epizootic in the western United States resembled the prototypic 1952 Hazelhurst subtype by partial sequence homology, but amino acid reversions to the 1949 Ogden subtype occurred frequently. When studies were performed with MAbs directed to the Ogden subtype glycoprotein, relatively limited antigenic variation, and only in neutralization epitope VIII, was noted among two of five epizootic isolates from Colorado and New Mexico. However, amino acid differences in the glycoprotein of a 1983 isolate from an enzootic region of Georgia resulted in major antigenic deficiencies in epitopes V, VI, and VII as determined by Western blotting and neutralization of infectivity with epitope-specific MAbs. Quite a few genetic but no antigenic differences were noted in an enzootic 1984 isolate from Mexico, a potential origin of the United States epizootic. Marked or complete loss of epitopes VII, VI, VIII, and V can be traced to spontaneous mutations leading to amino acid substitutions at glycoprotein positions 199, 263, 275, and 317, respectively, in the enzootic Georgia isolate 07/83-GA-P and the epizootic New Mexico isolate 06/85-NM-B. By comparison, closely adjacent amino acid substitutions at glycoprotein positions 210, 268, 277, and 364 occurred in epitope-deficient mutants selected for resistance to neutralization by MAbs specific for epitopes VII, VI, VIII, and V, respectively. Two neutralization epitopes designated X and XI were found to be unique for the G protein of the 1952 Hazelhurst isolate..../52-GA-P. The epitope X-specific MAb H21, in particular, failed to neutralize the infectivity not only of the Ogden subtype..../49-UT-B but also was ineffective against all the 1982-1985 field isolates. The classical 1952 Hazelhurst strain of VSV-NJ is genetically and antigenically quite different from those viruses isolated during the 1982-1985 epizootic.  相似文献   

9.
10.

Background

A/H3N2 variability leads to poor vaccine effectiveness when the vaccine strain is not well matched to the circulating virus.

Objectives

We aim to describe the molecular and antigenic evolution of A/H3N2 viruses recovered during the last 3 influenza seasons in Quebec, Canada.

Study design

Clinical samples from 33 patients with culture-confirmed A/H3N2 infections were collected over 3 consecutive seasons (March 2009-2011). The isolates’ HA gene was amplified and sequenced; phylogenetic analyses of the HA1 region were conducted. To characterize A/H3N2 antigenic properties, standard hemagglutination inhibition (HI) and microneutralization (MN) assays were performed.

Results

In 2009, we observed an antigenic drift from A/Brisbane/10/2007 (vaccine strain used in 2008-2009 and 2009-2010) to A/Perth/16/2009 (vaccine strain used in 2010-2011). Antigenic analysis of clinical influenza strains recovered in Quebec during 2009-2010 also illustrated antigenic drift from the previously prevalent A/Brisbane/10/2007-like (March 2009) to A/Perth/16/2009-like (December 2009) strains. In 2010-2011, the emergence of >4 substitutions in 4 different H3 antigenic sites suggested a genetic drift. However, HI and MN results confirmed the emergence of a drift in only 1 strain (8-fold difference in titers), while 19 others remained antigenically similar to A/Perth/16/2009 but exhibited titer differences (2-4-fold) just inferior to the standard definition of a drift.

Conclusion

Antigenic and molecular characterization of H3N2 viruses over three seasons revealed that not only is the number of HA mutations important, but the nature and location of key mutations may play a significant role in antigenic drift.  相似文献   

11.
L. Michaud  S. Dea 《Archives of virology》1993,131(3-4):455-465
Summary Twenty monoclonal antibodies (MAbs) were prepared against the Mebus strain of bovine enteric coronavirus, 14 of them reacting with the peplomeric S (gp 100) glycoprotein. Competition binding assays allowed the definition of at least 4 distinct antigenic domains for the S glycoprotein, designated as A, B, C, and D; epitopes associated to neutralizing activity being located in sites A, B, and C. One MAb directed to the hemagglutinin HE (gp 140/gp 65) glycoprotein inhibited the hemagglutinating activity of the virus, but had no neutralizing activity. Comparison of Quebec enteropathogenic BCV isolates using polyclonal antiserum and MAbs directed to the S glycoprotein confirmed their close antigenic relationship, but also revealed the occurrence of at least three distinct antigenic subgroups. Antigenic domain D was highly conserved among BCV isolates, as well as non-neutralizing epitopes assigned to antigenic domains A and C. The Minnesota strain of turkey enteric coronavirus could be distinguished from BCV isolates by MAbs directed to epitopes of antigenic domain C, whereas human coronavirus HCV-OC 43 could be distinguished by MAbs directed to epitopes of antigenic domain A. The porcine hemagglutinating encephalomyelitis virus could be distinguished from the other hemagglutinating coronaviruses by neutralizing epitopes located on antigenic domains A, B, and C.  相似文献   

12.
The nonpathogenic HSZP strain of HSV-1 induces large polykaryocytes due to a syn3 mutation (His for Arg at residue 858) in the C-terminal endodomain of glycoprotein B (gB) (40). We determined the nucleotide (nt) sequence of the UL27 gene specifying the gB polypeptide of HSZP (gBHSZP) and found 3 mutations in its ectodomain at aminoacids (aa) 59, 79 and 108. The ANGpath virus, which also has a syn3 mutation in the C-terminal endodomain of gB (Val for Ala at residue 855) is pathogenic for adult mice (39), but can be made nonpathogenic by replacing the gBANGpath gene by the corresponding gBKOS sequence (21). The gBANGpath had three ectodomain mutations (at aa 62, 77 and 285), while gBKOS had at least four ectomain mutations (aa 59, 79, 313, and 553). Two mutations (aa 59 and 79) in the latter, located in the variable antigenic site IV/D1 were common for gBKOS and gBHSZP. These together with the gBANGpath mutations at aa 62 and 77 create a cluster of 4 mutations in diverse region of the N-terminal part of gB (between aa 59-79), in which the gBs of pathogenic ANGpath and 17 viruses differ from the gBs of nonpathogenic HSZP and KOS viruses. The lower pathogenicity of KOS as related to gBKOS, is furthermore associated with the change of Ser to Thr at aa 313 (locus III/D2). The possibility is discussed that mutations in both above mentioned antigenic loci could result in higher immunogenicity of the corresponding antigenic epitopes, which, in turn, would contribute to the decreased virulence of HSZP and KOS viruses.  相似文献   

13.
Antigenic diversity among the bovine viral diarrhea virus (BVDV) cytopathic strains 87-2552 (field isolate) and NADL and Singer (prototype strains) was demonstrated with monoclonal antibodies (MAbs) in enzyme-linked immunosorbent, immunofluorescence, virus neutralization, and immunoprecipitation assays. Two MAbs against BVDV strain 87-2552, designated D11 and B7, strongly neutralized this field strain and were specific for the 48-kDa glycoprotein of the virus. These two MAbs have different subisotypes, immunoglobulin G1 for D11 and immunoglobulin G3 for B7. MAbs against BVDV strains 87-2552 and NADL were specific for their respective strains in virus neutralization assays. The results indicated significant antigenic differences between BVDV strain 87-2552 and the NADL and Singer strains.  相似文献   

14.
Transmissible gastroenteritis virus (TGEV) is an enteropathogenic coronavirus isolated for the first time in 1946. Nonenteropathogenic porcine respiratory coronaviruses (PRCVs) have been derived from TGEV. The genetic relationship among six European PRCVs and five coronaviruses of the TGEV antigenic cluster has been determined based on their RNA sequences. The S protein of six PRCVs have an identical deletion of 224 amino acids starting at position 21. The deleted area includes the antigenic sites C and B of TGEV S glycoprotein. Interestingly, two viruses (NEB72 and TOY56) with respiratory tropism have S proteins with a size similar to the enteric viruses. NEB72 and TOY56 viruses have in the S protein 2 and 15 specific amino acid differences with the enteric viruses. Four of the residues changed (aa 219 of NEB72 isolate and aa 92, 94, and 218 of TOY56) are located within the deletion present in the PRCVs and may be involved in the receptor binding site (RBS) conferring enteric tropism to TGEVs. A second RBS used by the virus to infect ST cells might be located in a conserved area between sites A and D of the S glycoprotein, since monoclonal antibodies specific for these sites inhibit the binding of the virus to ST cells. An evolutionary tree relating 13 enteric and respiratory isolates has been proposed. According to this tree, a main virus lineage evolved from a recent progenitor virus which was circulating around 1941. From this, secondary lineages originated PUR46, NEB72, TOY56, MIL65, BR170, and the PRCVs, in this order. Least squares estimation of the origin of TGEV-related coronaviruses showed a significant constancy in the fixation of mutations with time, that is, the existence of a well-defined molecular clock. A mutation fixation rate of 7 +/- 2 x 10(-4) nucleotide substitutions per site and per year was calculated for TGEV-related viruses. This rate falls in the range reported for other RNA viruses. Point mutations and probably recombination events have occurred during TGEV evolution.  相似文献   

15.
Respiratory syncytial virus genetic and antigenic diversity   总被引:9,自引:0,他引:9       下载免费PDF全文
Respiratory syncytial virus (RSV) is a major cause of viral lower respiratory tract infections among infants and young children in both developing and developed countries. There are two major antigenic groups of RSV, A and B, and additional antigenic variability occurs within the groups. The most extensive antigenic and genetic diversity is found in the attachment glycoprotein, G. During individual epidemic periods, viruses of both antigenic groups may cocirculate or viruses of one group may predominate. When there are consecutive annual epidemics in which the same group predominates, the dominant viruses are genetically different from year to year. The antigenic differences that occur among these viruses may contribute to the ability of RSV to establish reinfections throughout life. The differences between the two groups have led to vaccine development strategies that should provide protection against both antigenic groups. The ability to discern intergroup and intragroup differences has increased the power of epidemiologic investigations of RSV. Future studies should expand our understanding of the molecular evolution of RSV and continue to contribute to the process of vaccine development.  相似文献   

16.
Routine antigenic characterization of swine influenza virus isolates in a high-throughput serum neutralization (HTSN) assay found that approximately 20% of isolates were not neutralized by a panel of reference antisera. Genetic analysis revealed that nearly all of the neutralization-resistant isolates possessed a seasonal human-lineage hemagglutinin (HA; δ cluster). Subsequent sequencing analysis of full-length HA identified a conserved N144 residue present only in neutralization-resistant strains. N144 lies in a predicted N-linked glycosylation consensus sequence, i.e., N-X-S/T (where X is any amino acid except for proline). Interestingly, neutralization-sensitive viruses all had predicted N-linked glycosylation sites at N137 or N142, with threonine (T) occupying position 144 of HA. Consistent with the HTSN assay, hemagglutination inhibition (HI) and serum neutralization (SN) assays demonstrated that migration of the potential N-linked glycosylation site from N137 or N142 to N144 resulted in a >8-fold decrease in titers. These results were further confirmed in a reverse genetics system where syngeneic viruses varying only by predicted N-glycosylation sites at either N142 or N144 exhibited distinct antigenic characteristics like those observed in field isolates. Molecular modeling of the hemagglutinin protein containing N142 or N144 in complex with a neutralizing antibody suggested that N144-induced potential glycosylation may sterically hinder access of antibodies to the hemagglutinin head domain, allowing viruses to escape neutralization. Since N-linked glycosylation at these sites has been implicated in genetic and antigenic evolution of human influenza A viruses, we conclude that the relocation of the hemagglutinin N-linked glycosylation site from N142 to N144 renders swine influenza virus δ-cluster viruses resistant to antibody-mediated neutralization.  相似文献   

17.
Limited amount of information is available in Taiwan on the genetic or antigenic characteristics of influenza A virus prior to the establishment of a Taiwan surveillance network in 2000. Isolates of H1N1 and H3N2 viruses in Taiwan between 1980 and 2006 were studied, and part of the hemagglutinin gene was analyzed due to its importance in terms of viral infection and antibody neutralization. Results from a phylogenetic analysis indicate continuous evolutionary topology in H3N2 isolates, and two distinct H1N1 lineages. Many genetic relationships between vaccine strains and epidemic isolates appearing in Taiwan before other global locations were also observed and recorded in addition to a gradual increase in the number of N‐linked glycosylation sites on partial HA1 proteins since 1980. The results from pairwise comparisons of HA1 nucleotide and deduced amino acid sequences indicate shared identities within groups organized according to their bootstrap and P‐values of approximately 95.5–100% and 95.7–100% in H1N1 and 94.5–100% and 93.2–100% in H3N2 viruses, respectively. Comparisons of amino acid substitutions in the five antigenic regions reveal highly non‐synonymous changes occurring in the Sb region of H1N1 and in the B region of H3N2. The results of an antigenic analysis using a hemagglutinin inhibition (HI) test indicate the presence of some epidemic strains 1–2 years earlier in Taiwan than in other parts of the world, as well as higher vaccine mismatch rates. This information supports the need for continuous surveillance of emerging influenza viruses in Taiwan, which will be useful for making global vaccine decisions. J. Med. Virol. 81:1457–1470, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
The severity of an influenza epidemic season may be influenced not only by variability in the surface glycoproteins, but also by differences in the internal proteins of circulating influenza viruses. To better understand viral antigenic evolution, all eight gene segments from 44 human H3N2 epidemic strains isolated during 2004–2008 in Taiwan were analyzed to provide a profile of protein variability. Comparison of the evolutionary profiles of the HA, NA and PB2 genes of influenza A (H3N2) viruses indicated that they were derived from a group of H3N2 isolates first seen in 2004. However, the PA, M and PB1 genes were derived from a different group of H3N2 isolates from 2004. Tree topology revealed the NP and NS genes could each be segregated into two groups similar to those for the polymerase genes. In addition, new genetic variants occurred during the non-epidemic period and become the dominant strain after one or two seasons. Comparison of evolutionary patterns in consecutive years is necessary to correlate viral genetic changes with antigenic changes as multiple lineages co-circulate.  相似文献   

19.
Antigenic drift and variability of influenza viruses   总被引:6,自引:0,他引:6  
Annual influenza epidemics are caused by rapid evolution of the viral genome. Continuous and extensive antigenic variation has been shown for hemagglutinin (HA), the principal immunizing antigen of the virus. Monitoring of the antigenicity of circulating influenza viruses is necessary for selection of the most suitable vaccine strains. In this study, characterization of influenza A/H3N2 and influenza B viruses recently circulating in Germany was performed by molecular and antigenic analysis. Sequencing and phylogenetic analysis of the HA1 gene revealed that two distinct groups of H3N2 viruses co-circulated during 1997/1998. The majority of isolates clustered with the new drift variant A/Sydney/5/97, as was also shown by antigenic characterization. A noteworthy genetic drift of H3N2 viruses was evident during the winter 1998/1999. However, serological characterization using hemagglutinin inhibition tests did not result in detection of viruses belonging to different groups as confirmed by molecular analysis. Influenza B viruses isolated during 1996/1997 were antigenically closely related to the prototype vaccine strains B/Beijing/184/93 or B/Harbin/7/94. Molecular analysis demonstrated that our German 1996/1997 isolates differed by nine amino acids from B/Harbin/7/94 and represented a group of viruses that was completely different from the Harbin strain. Retrospective studies revealed the circulation of B/Yamanshi/166/98-like viruses in Germany already during the 1996/1997 season. Our results suggest that molecular analysis of the HA gene is important to complement the antigenic characterization for a better selection of appropriate vaccine strains.  相似文献   

20.
To better understand the limits of antigenic reactivity and epitope accessibility of the V3 domain of primary HIV-1 isolates, we evaluated three human anti-V3 monoclonal antibodies (mAbs) and selected guinea pig vaccine sera for neutralization against reference panels of subtype B and C pseudoviruses derived from early stage infections. The mAbs and vaccine sera potently neutralized several prototype viruses, but displayed substantially less neutralization of most reference strains. In the presence of soluble CD4 (sCD4), the breadth of V3-mediated neutralization was increased; up to 80% and 77% of the subtype B and C viruses respectively were sensitive to V3-mediated neutralization. Unlike sCD4, the reaction of CD4-binding site mAbs b12 and F105 with native virus did not lead to full exposure of the V3 domain. These findings confirm that V3 antibodies recognize most primary viral strains, but that the epitope often has limited accessibility in the context of native envelope spike.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号