首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The search for a hypothalamic Na+,K+-ATPase inhibitor   总被引:3,自引:0,他引:3  
E Haber  G T Haupert 《Hypertension》1987,9(4):315-324
Accumulating experimental evidence suggests that natriuresis in response to intravascular volume expansion is promoted by an endogenous regulator of Na+,K+-adenosine triphosphatase (ATPase). Efforts to purify this substance by a number of laboratories have as yet been unsuccessful. The properties of partially purified inhibitors from plasma, urine, and tissue often fail to possess the characteristics thought to be consistent with those of a physiological regulator. These include potency (Ki of approximately 1 nM), reversibility of inhibition, specificity for Na+,K+-ATPase, and responsiveness to relevant physiological stimuli. Two rather different candidate substances, extracted from urine and hypothalamus, have been purified to a high degree. Neither is a peptide, and both are of low molecular weight and resistant to acid hydrolysis. The substance from urine is rather nonpolar and interacts with digoxin-specific antibodies, while that from hypothalamus is polar and does not appear to share epitopes with the cardiac glycosides. On the serosal surface of the toad urinary bladder, the hypothalamic substance causes a reversible inhibition of Na+ transport, inhibits rubidium uptake in red blood cells by acting on the membrane's exterior surface, inhibits binding of ouabain to purified Na+,K+-ATPase, and reversibly inhibits hydrolysis of adenosine 5'-triphosphate by the enzyme with a Ki of 1.4 nM. The hypothalamic inhibitor may be differentiated from ouabain by their respective ionic requirements for optimal inhibition of enzymatic activity, and although both ouabain and the hypothalamic inhibitor fix Na+,K+-ATPase in its E2 conformation, the hypothalamic inhibitor does not promote phosphorylation of the enzyme by inorganic phosphate in the presence of Mg2+. Ionic requirements for inhibition also differentiate the hypothalamic inhibitor from vanadate ion, as does the inhibitor's activity in the presence of norepinephrine. Further enzymological and physiological studies will be facilitated by structural characterizations of the inhibitory substances and by the availability of a method to measure their concentrations in physiological fluids.  相似文献   

2.
3.
The ability of plasma to inhibit 86 rubidium uptake in rat aorta and to displace [3H]-ouabain from hog brain Na+,K+-ATPase was used as a measure of plasma Na+,K+-ATPase inhibitory activity in seven normotensive and eight hypertensive subjects. Rat aortae rings were incubated in oxygenated plasma containing 86 rubidium (2 microCi/mL) for 30 mins at 37 degrees C and uptake measured and expressed as mumol/kg wet weight/min. Plasma was extracted with a mixture of chloroform and methanol (2:1) and the extract separated by silicic acid column followed by thin layer chromatography and fractions assayed for ouabain displacement using digoxin as a standard. Total ouabain displacement was calculated as the sum of all fractions. There was a strong correlation between the two methods for total plasma Na+,K+-ATPase inhibitory activity (r = 0.761, P less than 0.01). There was a significant positive correlation between plasma Na+,K+-ATPase inhibitory activity and blood pressure in all subjects. Na+,K+-ATPase inhibitory activity was significantly higher in plasma of hypertensives by both methods (P less than 0.001). The increased Na+,K+-ATPase inhibitory activity in plasma from hypertensives was due to the nonesterified fatty acid, long chain acylcarnitine and diphosphatidylglycerol fractions.  相似文献   

4.
The ability of plasma from 3- and 9-week-old Milan hypertensive rats and their normotensive controls to inhibit Na+,K+-adenosine triphosphatase (ATPase) was studied using cytochemical bioassay techniques in fresh tissue. With a validated cytochemical bioassay that measures the capacity of biological samples to stimulate glucose-6-phosphate dehydrogenase activity in guinea pig proximal tubules as an indication of their capacity to inhibit Na+,K+-ATPase, the mean glucose-6-phosphate dehydrogenase-stimulating ability of the plasma of the 9-week-old Milan hypertensive rats and their normotensive controls was 586.0 +/- 88 and 23.4 +/- 8.3 U/ml (n = 7; p less than 0.001), while that of the 3-week-old Milan hypertensive rats (before the main rise in arterial pressure) and their normotensive controls was 99.9 +/- 27.4 and 7.8 +/- 1.8 U/ml (n = 7; p less than 0.001). With the use of a semiquantitative cytochemical assay that measures Na+,K+-ATPase activity directly, plasma from the adult hypertensive rats had a much greater capacity to inhibit Na+,K+-ATPase than the plasma of the control rats. The significantly raised levels found in the young hypertensive rats before the main rise in arterial pressure are consistent with the hypothesis that the rise in the ability of plasma to inhibit Na+,K+-ATPase is due to an inherited renal difficulty in excreting sodium.  相似文献   

5.
To examine the relationship between body mass index, blood pressure, and the Na+,K+-adenosine triphosphatase (ATPase) system, we measured the erythrocyte ghost Na+,K+-ATPase and the erythrocyte Na+ concentration in 120 blacks and 127 whites (136 males and 111 females). Blacks showed a 13.9% higher erythrocyte Na+ (7.63 +/- 0.19 vs 6.70 +/- 0.11 [SEM] mEq/L; p = 0.0001) and a 16.1% lower erythrocyte ghost Na+,K+-ATPase activity (140.3 +/- 4.2 vs 167.3 +/- 4.7 nmol inorganic phosphate/mg protein/hr; p = 0.0002) than whites. Male subjects demonstrated a 6.4% higher erythrocyte Na+ (7.35 +/- 0.17 vs 6.91 +/- 0.14 mEq/L; p = 0.043) and an 11.5% lower Na+,K+-ATPase activity (145.7 +/- 3.7 vs 164.7 +/- 5.5 nmol inorganic phosphate/mg protein/hr; p = 0.0015) than female subjects. Significant (p less than 0.001) negative correlations were identified for the systolic, diastolic, and mean blood pressure levels and the erythrocyte ghost Na+,K+-ATPase. These findings were complemented by positive correlations for the blood pressure levels and erythrocyte Na+ concentrations. The body mass index was negatively correlated with erythrocyte ghost Na+,K+-ATPase and it accounted for 6.7%, 5.6%, and 6.1% of the variabilities in the systolic, diastolic, and mean blood pressure levels, respectively. Variabilities of 1.4% systolic, 12.3% diastolic, and 11.1% in mean arterial pressure were attributable to the erythrocyte ghost Na+,K+-ATPase activity. Provided that findings in erythrocytes also reflect the relative status of the vascular smooth muscle cell Na+,K+-ATPase, the predisposition of black, male, and obese persons to hypertension may relate, among other factors, to a lower activity of this enzyme system, which results in an increased vascular tone.  相似文献   

6.
OBJECTIVES: Pseudohypoaldosteronism type 1 (PHA1) is a rare inherited disorder characterized by salt-wasting due to target organ unresponsiveness to mineralocorticoids. PHA1 comprises two clinically and genetically distinct entities; isolated renal and systemic forms. DESIGN: The aim of this study was to investigate red blood cell (RBC) Na+,K+-ATPase activity and nasal potential difference (PD) in two pairs of unrelated dyzygous twins; one with the systemic form of the disease (PHA1-S) and the second with the isolated renal form (PHA1-R). Total and ouabain-sensitive ATPase activities were measured spectrophotometrically by a method that couples ATP hydrolysis with NADH oxidation. Maximal PD and response to amiloride perfusion were evaluated by a standard technique. RESULTS: In the twins with PHA1-S, persistently low activity of RBC Na+,K+-ATPase was found during a 6-year follow-up. Normalization of plasma renin activity (PRA) and plasma aldosterone was observed at the end of the first year of life. Maximal nasal PD was low and there was no significant response to amiloride. In the twins with PHA1-R, RBC Na+,K+-ATPase activity was very low at the time of diagnosis and normalized at the age of 6-8 months. PRA reverted gradually to normal values, whereas aldosterone levels remained high during the 6 years of follow-up. Maximal nasal PD and response to amiloride were normal. CONCLUSIONS: The observed differences in RBC Na+,K+-ATPase activity and nasal PD response to amiloride between the two pairs of twins support the contention of different basic pathogenic mechanisms in the two forms of PHA1.  相似文献   

7.
Endosomes maintain a slightly acidic internal pH, which is directly responsible for their ability to ensure proper sorting of incoming receptors and ligands during endocytosis. At least two distinct subpopulations of endosomes can be distinguished, designated "early" and "late" on the basis of their kinetics of labeling with endocytic tracers. The subpopulations differ not only in their functions (rapid receptor recycling and transport to lysosomes, respectively) but also in their capacities for acidification in intact cells and in vitro. To investigate the possible basis for pH regulation in endosomes, we have studied the transport properties and ion permeabilities of early and late endosomes isolated from Chinese hamster ovary cells. Using endosomes selectively labeled with pH-sensitive endocytic tracers, we found that ATP-dependent acidification is electrogenic, being accompanied by the generation of an interior-positive membrane potential which opposes further acidification. While membrane potential and, consequently, acidification was controlled by the influx of permeant anions and efflux of protons and alkali cations, acidification was further modulated in Na+ and K+-containing buffers by the ouabain- and vanadate-sensitive Na+,K+-ATPase, which appears to be a functional component of the endosomal membrane. The data suggest that electrogenic Na+ transport due to Na+,K+-ATPase activity contributes to the interior-positive membrane potential, thereby reducing ATP-dependent H+ transport. Importantly, inhibition of acidification by Na+,K+-ATPase activity was found only in early endosomes, consistent with their limited acidification capacity relative to late endosomes and lysosomes.  相似文献   

8.
A panel of nine mouse monoclonal antibodies has been prepared against purified preparations of rat kidney Na+,K+-ATPase (EC 3.6.1.3). Selection for specific antibody was based upon the ability of crude hybridoma fluids to inhibit Na+-ATPase activity (using luciferase-linked ATPase assays) and upon antibody binding to both the purified kidney membrane enzyme and to glutaraldehyde-fixed hepatocytes by using standard enzyme-linked immunoadsorbent assays. After immunoaffinity purification, two of the antibodies (both of the IgG1 subclass) fully inhibit kidney and liver membrane Na+,K+-ATPase activity with Ki (apparent) values of 30 nM ("9-A5") and 600 nM ("9-B1"). Immunoblots demonstrate directly that three different 125I-labeled antibodies (6-4, 9-A5, and 9-B1) bind predominantly to a 94,000 Mr protein that comigrates in NaDodSO4/polyacrylamide gels with the fluorescein isothiocyanate-labeled alpha subunit of the Na+,K+-ATPase. Indirect immunofluorescence studies with these antibodies on paraformaldehyde-fixed liver slices reveal staining patterns congruent with bile canalicular membrane domains. These results together suggest that the antibodies exert inhibitory effects by recognizing alpha subunits of both liver and kidney Na+ pumps in their native conformations.  相似文献   

9.
The role of sorbitol, myo-inositol, and Na+, K(+)-adenosine triphosphatase (ATPase) activity on motor nerve conduction velocity (MNCV) in streptozotocin (STZ)-diabetic rats was studied. Reduction of MNCV and Na+, K(+)-ATPase in caudal nerves appeared after 3 weeks of diabetes, and at this time treatment with aldose reductase inhibitor (ARI), ADN-138 and 1% myo-inositol supplement was begun. One percent myo-inositol supplement for 3 weeks resulted in a significant increase in myo-inositol levels in diabetic nerves, but left MNCV and sorbitol levels unchanged. In contrast, treatment with ADN-138 for 3 weeks reduced sorbitol levels in diabetic nerves and resulted in significant increases in MNCV and Na+, K(+)-ATPase in the nerves. Since ADN-138 did not restore myo-inositol levels, the increase in Na+, K(+)-ATPase levels by ADN-138 treatment was independent of myo-inositol levels. Also, nerve Na+ levels in ADN-138-treated rats were reduced and the ratio of K+ to Na+ was raised, while 1% myo-inositol supplement did not affect them. These results suggest that treatment with ADN-138 elevates MNCV through a series of processes: ARI----reduction of sorbitol level----increase in Na+, K(+)-ATPase activity----correction of K+, Na+ imbalance----increase in MNCV.  相似文献   

10.
The sodium pump (Na+, K+-ATPase, NKA) is vital for animal cells, as it actively maintains Na+ and K+ electrochemical gradients across the cell membrane. It is a target of cardiotonic steroids (CTSs) such as ouabain and digoxin. As CTSs are almost unique strong inhibitors specific to NKA, a wide range of derivatives has been developed for potential therapeutic use. Several crystal structures have been published for NKA-CTS complexes, but they fail to explain the largely different inhibitory properties of the various CTSs. For instance, although CTSs are thought to inhibit ATPase activity by binding to NKA in the E2P state, we do not know if large conformational changes accompany binding, as no crystal structure is available for the E2P state free of CTS. Here, we describe crystal structures of the BeF3 complex of NKA representing the E2P ground state and then eight crystal structures of seven CTSs, including rostafuroxin and istaroxime, two new members under clinical trials, in complex with NKA in the E2P state. The conformations of NKA are virtually identical in all complexes with and without CTSs, showing that CTSs bind to a preformed cavity in NKA. By comparing the inhibitory potency of the CTSs measured under four different conditions, we elucidate how different structural features of the CTSs result in different inhibitory properties. The crystal structures also explain K+-antagonism and suggest a route to isoform specific CTSs.

Under physiological conditions, Na+,K+-ATPase (NKA) actively extrudes three cytoplasmic Na+ ions in exchange for two extracellular K+ ions per ATP hydrolyzed (see Fig. 1 for a simplified reaction diagram). The established gradients for Na+ and K+ are pivotal for generating a membrane potential, regulation of cell volume, and providing chemical energy for various secondary active transporters. They are expressed in all animal cells and are finely tuned. In humans, the catalytic α-subunit exists in four isoforms. α1 is ubiquitous and best studied. α2 is most abundant in skeletal and heart muscle, whereas α3 is found in brain cells and α4 in cells of the testis. The α-subunit complexes with a β-subunit (isoforms β1–4 in humans) and a tissue specific regulatory protein FXYD (1–7 in humans) (for a recent general review, see, e.g., refs. 1, 2).Open in a separate windowFig. 1.A reaction diagram of Na+,K+-ATPase with special emphasis on the backward phosphorylation with Pi and inhibition by CTSs. CTSs can bind to at least three E2P species with different affinities. The states demonstrated to allow high-affinity binding of CTSs appear in purple letters, and those supposed to allow high-affinity binding but not demonstrated are in red letters; the state that allows low-affinity binding is in orange letters. E2PATP is the physiological E2P ground state (path A); E2PPi can be formed in the backward reaction starting from E2 with Pi (path B). This reaction places Mg2+ at the phosphorylation site of NKA but likely to incorporate another Mg2+ at site II (E2PPi·Mg2+). If the backward phosphorylation reaction starts from E2·2K+, E2P·2K+ will be (transiently) formed in which two K+ bind to NKA in E2P with high affinity (E2P·2K+high). CTSs can stabilize a different state, in which two K+ are bound with (presumably) low affinity (E2PPi·2K+low; path C). Crystal structures available are boxed and phosphate analogs used are shown below the boxes. The crystal structures obtained in this study are highlighted (yellow boxes). PDB ID codes for published crystal structures are: E1∼P·ADP·3Na+, 3WGU; E2PPi·Mg2+(OBN), 4HYT; E2PPi·Mg2+(DGX), 4RET; E2PPi·2K+ (BUF), 4RES; E2·Pi·2K+, 2ZXE; E2·Pi·2K+(OBN), 3A3Y.Cardiotonic glycosides, such as digoxin (DGX) and digitoxin (DTX), are specific inhibitors of NKA and have been prescribed for patients with heart failure for centuries. Canonical cardiotonic glycosides, including ouabain (OBN), the best studied member, have a tripartite structure: a central steroid core, a five-membered or six-membered lactone ring, and a carbohydrate moiety of one to four residues. Each part appears to have a different role in binding. As summarized by Glynn (3), critical features of high affinity cardiac glycosides are: 1) The unsaturated lactone ring attached in the correct configuration at C17; 2) the cis configuration of the AB and CD ring junctions in the steroid nucleus; 3) the presence of a hydroxyl group at C14; and 4) the presence of an appropriate sugar at C3. A wide range of cardiotonic steroids (CTSs), including aglycones, as the sugar at C3 does not necessarily improve the affinity, showing vastly different inhibitory properties, have been developed in order to improve their usability in the clinical setting.Indeed, several new members, such as rostafuroxin (ROS) (4) and istaroxime (IST) (5), now under clinical trials, have distinct chemical structures. ROS is proposed as a potent antihypertensive compound in ouabain-dependent models of hypertension (4). It is reported to be capable of displacing OBN from NKA at a concentration 10 times lower than that expected from its KI, which is 1,000 times greater than that of OBN (6). IST has only a carbonyl group instead of the unsaturated lactone, and an aminoalkyloxime group instead of the sugar, but shows an inhibitory potency similar to that of digoxin (5). It is reported to have a significant inotropic effect but with a lower risk of causing cardiac arrhythmia compared to digoxin (5). Why these compounds can replace OBN at a much lower concentration than that expected from their binding affinities is paradoxical and addressed in this study.Reflecting their very long history, the accumulated literature on CTSs is huge. Numerous studies report on their inhibitory activities, but they appear rather inconsistent, partly due to differences in experimental conditions (7). It is well established that CTSs preferentially bind to NKA in the E2P ground state from the extracellular face (8). However, the E2P states formed in different routes show distinct properties. In the physiological route, in the presence of Mg2+ and Na+, the E2P state is reached through phosphorylation by ATP (path A in Fig. 1) and denoted here as E2PATP. The E2P state can be reached by backward phosphorylation by Pi in the presence of Mg2+ (path B in Fig. 1) and denoted as E2PPi [denoted previously as E′2P (9)]. These states show different kinetic properties. In particular, dephosphorylation of E2PATP is fast if K+ is present, whereas that of E2PPi is slow and hardly accelerated by K+ (9, 10). As this insensitivity is due to the binding of a second Mg2+ to the ATPase in E2PPi (10), it would be more appropriate to denote this state as E2PPi·Mg2+ (Fig. 1). As the affinity of Mg2+ in E2PPi is ∼0.5 mM (10), the majority of the ATPase molecules phosphorylated by Pi will be in this state. E2PATP has a low affinity for Mg2+ (not saturated at 6 mM) (10). Therefore, the transmembrane cation binding sites and, accordingly, the CTS-binding cavity will be different in the two E2P states. Indeed, the signal from RH421, a voltage-sensitive styryl dye, is clearly different (9). Then, the inhibitory properties of CTSs will also be different in these two E2P states (type I and II complexes in refs. 11, 12). Furthermore, if phosphorylation by Pi + Mg2+ is performed in the presence of K+, another type of E2P form with loosely occluded K+, termed E2PPi·2K+, is generated (path C in Fig. 1). This form has a high rate of dephosphorylation (9, 10). OBN is well known to have a much-reduced affinity in the presence of K+ (K+ antagonism) (e.g., ref. 13), but other CTSs have not been well characterized in this regard. Indeed, Laursen et al., reported that bufalin (BUF) requires K+ for high-affinity binding (14). In a recent report (15), the difference in K+ antagonism is attributed to the lactone ring. Therefore, systematic measurements on the inhibitory potency in the three E2P states are clearly required, in addition to the one under turnover conditions.Confusion in the literature is apparent even in structural studies. There are several crystal structures published for NKA with bound CTSs: those in E2·Pi·2K+ with ouabain at low affinity (2.8-Å resolution) (16), BUF in E2PPi·2K+ (3.4-Å resolution) (14), and those in E2PPi·Mg2+ with ouabain at high affinity (3.4 Å) (17) or digoxin (3.9 Å) (14). All of the crystals of the high-affinity complexes are generated in the presence of a high concentration (>100 mM) of Mg2+, and indeed, Mg2+ is observed to occupy site II for K+. Therefore, the E2P state stabilized by CTSs should be denoted as E2PPi·Mg2+ (Fig. 1). These crystal structures have established that the high affinity of CTSs primarily arises from complementarity between the M5 helix and the α-face of the steroid core, consistent with mutagenesis studies (1822). However, other than this, there seems to be serious discrepancies between biochemical and structural data. For instance, ouabagenin (OBG), which lacks rhamnose attached to C3, has a 300-fold reduced affinity in binding to NKA in E2PPi·Mg2+, but Laursen et al. (17) describes that the sugar moiety in ouabain does not interact with the ATPase. Mutagenesis studies have identified residues responsible for isoform dependence (23, 24), but the crystal structure failed to explain why (24). We really do not know if any structural changes are caused by CTS binding to NKA, because no structure is available for the E2P ground state without CTS.We answer this question in this report, as we now have crystal structures of the BeF3 complex of NKA, an E2P ground state analog, free of CTS. Systematic measurements of the inhibitory properties of various CTSs, including ROS and IST, under four different conditions provide a basis for addressing their structure-activity relationships. One striking finding is that ROS shows a much higher affinity under turnover conditions than in E2PPi·Mg2+, in marked contrast to OBN. Such differences, as well as the K+ antagonism, are nicely explained by the crystal structures of NKA with various CTSs. The crystal structures also explain the isoform dependence unambiguously and suggest ways to confer α2 specificity on CTSs.  相似文献   

11.
In order to determine if the Na+, K+-ATPase activity in erythrocyte membranes is altered in congestive heart failure, and to examine its clinical significance with respect to other clinical variables, erythrocyte Na+, K+-ATPase activity was measured in 51 patients with left ventricular ejection fractions <40% (coronary artery disease, n=26; dilated cardiomyopathy, n=25) and 24 control patients. Na+, K+-ATPase activity was lower in both coronary artery disease and dilated cardiomyopathy groups than control group even in the absence of digitalis use. There was a significant inverse correlation between Na+, K+-ATPase activity and plasma norepinephrine. The presence of non-sustained ventricular tachycardia was associated with a lower Na+, K+-ATPase activity in both groups with congestive heart failure without digitalis use than those without ventricular tachycardia. Plasma norepinephrine was higher in patients with non-sustained ventricular tachycardia than those without in the coronary artery disease group, but not in the dilated cardiomyopathy group. Na+, K+-ATPase activity may be helpful in predicting electrophysiologic instability in patients with heart failure.  相似文献   

12.
The study was undertaken to examine the status of Na(+), K(+)-ATPase in aged rat brain and to verify if any alteration of this enzyme in aged brain could be related to an oxidative damage. The crude synaptosomes from rat brain were exposed in vitro to an oxidative stress in the form of a combination of Fe(2+) (100 microM) and ascorbate (2 mM) for up to 2 h when increased lipid peroxidation (nearly four-fold), extensive protein carbonyl formation and a marked decrease of Na(+), K(+)-ATPase activity (approximately 88%) were observed. All these changes were prevented by the presence of a chain-breaking anti-oxidant, butylated hydroxytoluene (0.2 mM), in the incubation mixture. When the same crude synaptosomal membranes from the young (4-6 months) and aged (18-22 months) rat brains were analysed, a significant reduction of Na(+), K(+)-ATPase activity (nearly 48%) along with significantly elevated levels of lipid peroxidation products and protein carbonyls could be detected in the aged animals in comparison to young ones. The latter data in combination with the results of in vitro experiments imply that the age-related decline of rat brain Na(+), K(+)-ATPase activity is presumably the consequence of an enhanced oxidative damage in aging brain  相似文献   

13.
Multiple genes encode the human Na+,K+-ATPase catalytic subunit.   总被引:11,自引:3,他引:11       下载免费PDF全文
A human genomic library was constructed and screened with hybridization probes derived from sheep and rat cDNAs encoding the alpha and alpha(+) isoforms, respectively, of the Na+,K+-ATPase catalytic subunit. Genomic sequences spanning 150 kilobases were isolated. Four genes, designated alpha A, alpha B, alpha C, and alpha D, each 20-25 kilobases in length, were identified by restriction mapping, Southern blot hybridization analysis, and limited DNA sequencing. We present evidence that two of these genes, alpha A and alpha B, encode the alpha and alpha(+) isoforms, respectively. The other genes, alpha C and alpha D, one of which is physically linked to the alpha(+) gene, exhibit nucleotide and amino acid homology to Na+,K+-ATPase catalytic subunit cDNA sequences but do not correspond to any previously identified isoforms.  相似文献   

14.
15.
In the present work we investigated the effect of ovariectomy on Na+, K+-ATPase and acetylcholinesterase (AChE) activities in rat hippocampus. We also studied some parameters of oxidative stress, namely total radical-trapping antioxidant potential (TRAP), thiobarbituric acid-reactive substances (TBA-RS), as well as the antioxidant enzyme activities superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) activities. Our hypothesis is that ovariectomy might cause alterations in essential enzyme activities necessary to brain normal functioning and that these chances could be caused by oxidative stress. Female adult Wistar rats were divided into three groups: (1) naive (control); (2) sham-operated; and (3) ovariectomized. Thirty days after ovariectomy rats were sacrificed. Results showed that rats subjected to ovariectomy presented a significant increase in Na+, K+-ATPase, AChE and CAT activities, but did not change the oxidative stress parameters studied when compared to sham or naive rats. Since ovariectomy mimics postmenopausal changes, our findings showing alteration in the activities of brain Na+, K+-ATPase, AChE and CAT may be related to problems in postmenopausal women.  相似文献   

16.
Homocystinuria is an inborn error of sulfur amino acid metabolism characterized predominantly by vascular and nervous system dysfunction. In this study we determined the in vitro effects of homocysteine and methionine, metabolites which accumulate in homocystinuria, on Na+, K+-ATPase, and Mg2+-ATPase activities in synaptic membranes from the hippocampus of rats. The results showed that both metabolites significantly inhibit Na+, K+-ATPase but not Mg2+-ATPase activity at concentrations usually observed in plasma of homocystinuric patients. Furthermore, incubation of hippocampal homogenates with homocysteine also elicited an inhibition of the enzyme activity which was however prevented by the simultaneous addition of cysteine to the medium. In addition, cysteine or methionine per se did not modify the two enzymatic activities. These findings indicate that oxidation of critical groups in the enzyme may possibly be involved in homocysteine inhibitory effect. Moreover, kinetic studies performed to investigate the interaction between homocysteine and methionine on Na+, K+-ATPase inhibition suggested a common site for the two amino acids in the enzyme. Considering the critical role exerted by Na+, K+-ATPase in brain, it is proposed that the inhibition provoked by homocysteine and methionine on the enzyme activity may be possibly related to the brain dysfunction characteristic of homocystinuria.  相似文献   

17.
AIM: Peroxynitrite (ONOO-) is a powerful oxidant shown to damage membranes. In the present study, the effect of taurine on changes of liver plasma membrane Na+, K+-ATPase induced by ONOO- was investigated. METHODS: Liver plasma membrane was exposed to ONOO-with or without taurine. Na+, K+-ATPase activity and lipid peroxidation as thiobarbituric acid reactive substances (TBARS) levels were measured. RESULTS: Different concentrations of ONOO- (100, 200, 500, and 1 000 μmol/L) were found to decrease liver plasma membrane Na+, K+-ATPase activity significantly. The depletion of enzyme activity was not concentration dependent. Effects of different concentrations of taurine on liver plasma membrane Na+, K+-ATPase activity were also measured. Taurine did not cause any increase in enzyme activity. When plasma membranes were treated with 200 μmol/L ONOO- with different concentrations of taurine, a restoring effect of taurine on enzyme activity was observed. TBARS levels were also measured and taurine was found to decrease the elevated values. CONCLUSION: Taurine is observed to act as an antioxidant of ONOO- to decrease lipid peroxidation and thus affect liver plasma membrane Na+, K+-ATPase by restoring its activity.  相似文献   

18.
目的探讨血管紧张素Ⅱ受体拮抗剂(ARB)替米沙坦和血管紧张素转换酶抑制剂(ACEI)苯那普利对负鼠近端小管上皮细胞(OK细胞)Na+-K+-ATP酶活性的影响.方法培养的OK细胞采用低渗方法制备细胞膜悬液,使用BCA-100蛋白质定量测定试剂盒测定膜蛋白;Na+-K+ ATP酶活性采用孔雀绿比色分析法测定释放的无机磷(Pi)含量,培养液中分别加入血管紧张素Ⅱ(Ang Ⅱ)、Ang Ⅱ+血管紧张素Ⅱ受体拮抗剂替米沙坦(Telmisartan)、Ang Ⅱ+血管紧张素转换酶抑制剂苯那普利(Benazepril),观察它们对OK细胞Na+-K+-ATP酶活性的影响.结果 (1)培养液中加入10-10 mol/L Ang Ⅱ组与对照组相比,OK细胞Na+-K+-ATP酶活性明显上升.(0.0972±0.0080 vs 0.0896±0.0065 μmol·L-1·mg pro-1·h-1, P<0.05)(2) 当培养液中同时加入10{10 mol/L Ang Ⅱ和10-9mol/L Telmisartan,与单加入10-10mol/L AngⅡ组相比,OK细胞Na+-K+-ATP酶活性明显降低.(0.0623±0.0053 vs 0.0972±0.0080 μmol·L-1·mg pro-1·h-1,P<0.05)(3)当培养液中同时加入10-10 mol/L AngⅡ和10-9 mol/L Benazepril,与单加入10-10 mol/L AngⅡ组相比,OK细胞Na+-K+-ATP酶活性无明显变化.(0.1027±0.0166 vs 0.0972±0.0080 μmol·L-1·mg pro-1·h-1, P>0.05).结论血管紧张素Ⅱ作为一种生长因子,不仅能刺激细胞增殖,又能调节近端小管的离子转运,增加Na+-K+-ATP酶活性;替米沙坦能抑制血管紧张素Ⅱ引起的OK细胞Na+-K+-ATP酶活性增加,而苯那普利则无此作用.  相似文献   

19.
Our objective was to investigate the effect of alanine administration on Na+,K+-ATPase activity in cerebral cortex of rats subjected to chemically-induced phenylketonuria. Wistar rats were treated from the 6th to the 28th day of life with subcutaneous injections of either 2.6 mol alanine or 5.2 mol phenylalanine plus 2.6 mol -methylphenylalanine per g body weight or phenylalanine plus -methylphenylalanine plus alanine in the same doses or equivalent volumes of 0.15 M saline. The animals were killed on the 29th or 60th day of life. Synaptic plasma membrane from cerebral cortex was prepared for Na+,K+-ATPase activity determination. The results showed that alanine injection prevents the decrease of Na+,K+-ATPase activity in animals subjected to experimental phenylketonuria. Therefore, in case the same effects are achieved with ingested alanine, it is possible that alanine supplementation may be an important dietary adjuvant for phenylketonuric patients.  相似文献   

20.
A sensitive assay method to evaluate the inhibitor of Na+, K+-ATPase in human urine was developed by measuring the inorganic phosphate liberated from ATP in vitro using Na+, K+-ATPase from porcine cerebral cortex. Ouabain inhibited the Na+, K+-ATPase by competing with the potassium ion (an apparent Ki = 2.6 +/- 0.89 X 10(-8) M, n = 8) under the condition of 100 mM NaCl, 4.5 mM MgSO4 and 0.56 mM ATP. The apparent Km value of KCl was 0.4 mM. Factors inhibiting Na+, K+-ATPase were detected in the post-salt fraction on Sephadex G-15 chromatography following the ethanol extraction of lyophilized fresh urine of sodium loaded human subjects (300 meq Na+/day, for 4 days) with essential hypertension. Two active fractions around the 400 daltons following salt were eluted on Sephadex G-15 chromatography. The slower eluted factor competed kinetically with potassium ion, but the inhibitory activity was lost within two days during storage at 4 degrees C. The faster-eluted inhibitor lost its activity within a day. These results indicate that the unstable inhibiting factors of Na+, K+-ATPase exist in human urine and one of these factors inhibits ouabain sensitive Na+, K+-ATPase by binding to the potassium binding site (or very close to it), which exists at the outer surface of the cell membrane of this enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号