首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, much discussion has been centered on the brain networks of recall, memory, and execution. This study utilized functional magnetic resonance imaging to compare activation between a simple sequential finger movement (real task) and recalling the same task (imagery task) in 15 right-handed normal subjects. The results demonstrated a greater activation in the contralateral motor and somatosensory cortex during the real task, and a higher activation in the contralateral inferior frontal cortex, ipsilateral motor, somatosensory cortex, and midbrain during the imagery task. These real task-specific areas and imagery-specific areas, including the ipsilateral motor and somatosensory cortex, are consistent with recent studies. However, this is the first report to demonstrate that the imagery-specific regions involve the ipsilateral inferior frontal cortex and midbrain. Directly comparing the activation between real and imagery tasks demonstrated the inferior frontal cortex and midbrain to therefore play important roles in cognitive feedback.  相似文献   

2.
A remarkable preservation of sensorimotor function is observed in patients with refractory epilepsy who were treated by hemispherectomy. Cortical regions in the remaining hemisphere or contralateral subcortical region contribute to the residual sensorimotor function. Somatosensory evoked field (SEF) is used to investigate the residual sensory function in hemispherectomized patients. The SEFs are usually recorded with magnetoencephalography (MEG). The objective is to investigate the ipsilateral cortical regions associated with residual sensory function in hemispherectomized patients using somatosensory evoked field techniques. Six patients with anatomical hemispherectomy were included. Ipsilateral and contralateral sensory functions were assessed by physical examination. Somatosensory evoked fields to electrical stimulation of the bilateral median nerves were recorded by MEG in the hemispherectomized patients and six control subjects. The stimulus intensity was adjusted to the minimum threshold that elicited a thumb twitch. The presumed neuronal source was identified as the equivalent current dipole. Six patients demonstrated different degrees of residual sensory function. Three patients had somatosensory evoked field activation in the ipsilateral cortex upon electrical stimulation of the hemiplegic hand. In these patients the locations of the ipsilateral sensorimotor cortex activation were in the primary somatosensory cortex (SI). The latency of the reliable somatosensory evoked field after stimulation of the median nerve was significantly longer for responses from the hemiplegic side compared with responses to stimulation of the median nerve from the normal side. In conclusion, ipsilateral sensory function has a time-locked relation to the cortical electromagnetic activation in the SI area of hemispherectomized patients.  相似文献   

3.
Magnetoencephalographic (MEG) recordings allow noninvasive monitoring of simultaneously active brain areas with reasonable spatial and excellent temporal resolution. Whole-scalp neuromagnetic recordings show activation of contralateral primary (SI) and bilateral second (SII) somatosensory cortices to unilateral median nerve stimulation. Recent MEG studies on healthy and diseased human subjects have shown some functional characteristics of SII cortex. Besides tactile input, the SII cortex also responds to nociceptive afferents. The SII activation is differentially modulated by isometric muscle contraction of various body parts. Lesions in the SII cortex may disturb the self-perception of body scheme. Moreover, the SI and SII cortices may be sequentially activated within one hemisphere, but the SII cortex may also receive direct peripheral input on the ipsilateral side.  相似文献   

4.
We combined information from functional magnetic resonance imaging (fMRI) and magnetoencephalography (MEG) to assess which cortical areas and in which temporal order show macroscopic activation after right median nerve stimulation. Five healthy subjects were studied with the two imaging modalities, which both revealed significant activation in the contra- and ipsilateral primary somatosensory cortex (SI), the contra- and ipsilateral opercular areas, the walls of the contralateral postcentral sulcus (PoCS), and the contralateral supplementary motor area (SMA). In fMRI, two separate foci of activation in the opercular cortex were discerned, one posteriorly in the parietal operculum (PO), and one anteriorly near the insula or frontal operculum (anterior operculum, AO). The activation sites from fMRI were used to constrain the solution of the inverse problem of MEG, which allowed us to construct a model of the temporal sequence of activation of the different sites. According to this model, the mean onset latency for significant activation at the contralateral SI was 20 msec (range, 17-22 msec), followed by activation of PoCS at 23 msec (range, 21-25 msec). The contralateral PO was activated at 26 msec (range, 19-32 msec) and AO at 33 msec (range, 22-51 msec). The contralateral SMA became active at 36 msec (range, 24-48 msec). The ipsilateral SI, PO, and AO became activated at 54-67 msec. We conclude that fMRI provides a useful means to constrain the inverse problem of MEG, allowing the construction of spatiotemporal models of cortical activation, which may have significant implications for the understanding of cortical network functioning.  相似文献   

5.
Transcranial magnetic stimulation (TMS) was used to investigate whether the excitability of the corticospinal system is selectively affected by motor imagery. To this purpose, we performed two experiments. In the first one we recorded motor evoked potentials from right hand and arm muscles during mental simulation of flexion/extension movements of both distal and proximal joints. In the second experiment we applied magnetic stimulation to the right and the left motor cortex of subjects while they were imagining opening or closing their right or their left hand. Motor evoked potentials (MEPs) were recorded from a hand muscle contralateral to the stimulated cortex. The results demonstrated that the excitability pattern during motor imagery dynamically mimics that occurring during movement execution. In addition, while magnetic stimulation of the left motor cortex revealed increased corticospinal excitability when subjects imagined ipsilateral as well as contralateral hand movements, the stimulation of the right motor cortex revealed a facilitatory effect induced by imagery of contralateral hand movements only. In conclusion, motor imagery is a high level process, which, however, manifests itself in the activation of those same cortical circuits that are normally involved in movement execution.  相似文献   

6.
The role of motor activity ipsilateral to movement remains a matter of debate, due in part to discrepancies among studies in the localization of this activity, when observed, and uncertainty about its time course. The present study used magnetoencephalography (MEG) to investigate the spatial localization and temporal dynamics of contralateral and ipsilateral motor activity during the preparation of unilateral finger movements. Eight right-handed normal subjects carried out self-paced finger-lifting movements with either their dominant or nondominant hand during MEG recordings. The Multi-Start Spatial Temporal multi-dipole method was used to analyze MEG responses recorded during the movement preparation and early execution stage (-800 msec to +30 msec) of movement. Three sources were localized consistently, including a source in the contralateral primary motor area (M1) and in the supplementary motor area (SMA). A third source ipsilateral to movement was located significantly anterior, inferior, and lateral to M1, in the premotor area (PMA) (Brodmann area [BA] 6). Peak latency of the SMA and the ipsilateral PMA sources significantly preceded the peak latency of the contralateral M1 source by 60 msec and 52 msec, respectively. Peak dipole strengths of both the SMA and ipsilateral PMA sources were significantly weaker than was the contralateral M1 source, but did not differ from each other. Altogether, the results indicated that the ipsilateral motor activity was associated with premotor function, rather than activity in M1. The time courses of activation in SMA and ipsilateral PMA were consistent with their purported roles in planning movements.  相似文献   

7.
Coherent oscillations of neurons in the primary motor cortex (M1) have been shown to be involved in the corticospinal control of muscle activity. This interaction between M1 and muscle can be measured by the analysis of corticomuscular coherence in the beta-frequency range (beta-CMCoh; 14-30 Hz). Largely based on magnetoencephalographic (MEG) source-modeling data, it is widely assumed that beta-CMCoh reflects direct coupling between M1 and muscle. Deafferentation is capable of modulating beta-CMCoh, however, and therefore the influence of reafferent somatosensory signaling and corresponding neuronal activity in the somatosensory cortex (S1) has been unclear. We present transcranial magnetic stimulation (TMS) and MEG data from three adult patients suffering from congenital hemiparesis due to pre- and perinatally acquired lesions of the pyramidal tract. In these patients, interhemispheric reorganization had resulted in relocation of M1 to the contralesional hemisphere, ipsilateral to the paretic hand, whereas S1 had remained in the lesioned hemisphere. This topographic dichotomy allowed for an unequivocal topographic differentiation of M1 and S1 with MEG (which is not possible if M1 and S1 are directly adjacent within one hemisphere). In all patients, beta-CMCoh originated from the contralesional M1, in accordance with the TMS-evoked motor responses, and in contrast to the somatosensory evoked fields (SEFs) for which the sources (N20m) were localized in S1 of the lesioned hemisphere. These data provide direct evidence for the concept that beta-CMCoh reflects the motorcortical efferent drive from M1 to the spinal motoneuron pool and muscle. No evidence was found for a relevant contribution of neuronal activity in S1 to beta-CMCoh.  相似文献   

8.
ObjectiveTask-specific focal hand dystonia (tspFHD) is a movement disorder diagnosed in individuals performing repetitive hand behaviors. The extent to which processing anomalies in primary sensory cortex extend to other regions or across the two hemispheres is presently unclear.MethodsIn response to low/high rate and novel tactile stimuli on the affected and unaffected hands, magnetoencephalography (MEG) was used to elaborate activity timing and amplitude in the primary somatosensory (S1) and secondary somatosensory/parietal ventral (S2/PV) cortices. MEG and clinical performance measures were collected from 13 patients and matched controls.ResultsCompared to controls, subjects with tspFHD had increased response amplitude in S2/PV bilaterally in response to high rate and novel stimuli. Subjects with tspFHD also showed increased response latency (low rate, novel) of the affected digits in contralateral S1. For high rate, subjects with tspFHD showed increased response latency in ipsilateral S1 and S2/PV bilaterally. Activation differences correlated with functional sensory deficits (predicting a latency shift in S1), motor speed and muscle strength.ConclusionsThere are objective differences in the amplitude and timing of activity for both hands across contralateral and ipsilateral somatosensory cortex in patients with tspFHD.SignificanceKnowledge of cortical processing abnormalities across S1 and S2/PV in dystonia should be applied towards the development of learning-based sensorimotor interventions.  相似文献   

9.
OBJECTIVE: Application of spatially filtered magnetoencephalography (MEG) to investigate changes in the mechanism of cerebral motor control in patients with tumours around the central sulcus. METHODS: MEG records were made during a repetitive hand grasping task in six patients with gliomas around the central sulcus and in four control subjects. Power decreases in the alpha (8-13 Hz), beta (13-30 Hz), and low gamma bands (30-50 Hz) during the motor tasks (event related desynchronisation, ERD) were analysed statistically with synthetic aperture magnetometry. The tomography of ERD was superimposed on the individual's magnetic resonance image. RESULTS: beta ERD was consistently localised to the contralateral primary sensorimotor cortex (MI/SI) in control subjects, whereas the alpha and low gamma ERD showed considerable intersubject variability. beta ERD in patients during non-affected side hand movement was also localised to the contralateral MI/SI, but exclusively to the ipsilateral hemisphere during affected side hand movement. CONCLUSIONS: The altered pattern of ERD in the patient group during affected side hand movement suggests recruitment of diverse motor areas, especially the ipsilateral MI/SI, which may be required for the effective movement of the affected hand.  相似文献   

10.
Existing evidence indicates the importance of observing correct, normal actions on the motor cortical activities. However, the exact neurophysiological mechanisms, particularly in the somatosensory system, remain unclear. This study aimed to elucidate the effects of observing normal and abnormal hand movements on the contralateral primary somatosensory (cSI), contralateral (cSII) and ipsilateral (iSII) secondary somatosensory activities. Experiment I was designed to investigate the effects of motor outputs on the somatosensory processing, in which subjects were instructed to relax or manipulate a small cube. Experiment II was tailored to examine the somatosensory responses to the observation of normal (Normal) and abnormal (Abnormal) hand movements. The subjects received electrical stimulation to right median nerve and magnetoencephalography (MEG) recordings during the whole experimental period. Regional cortical activation and functional connectivity were analyzed. Compared to the resting condition, a reduction in cSI and an enhancement of SII activation was found when subjects manipulated a cube, suggesting the motor outputs have an influence on the somatosensory responses. Further investigation of the effects of observing different hand movements showed that cSII activity was significantly stronger in the Normal than Abnormal condition. Moreover, compared with Abnormal condition, a higher cortical coherence of cSI‐iSII at theta bands and cSII‐iSII at beta bands was found in Normal condition. Conclusively, the present results suggest stronger activation and enhanced functional connectivity within the somatosensory system during the observation of normal than abnormal hand movements. These findings also highlight the importance of viewing normal, correct hands movements in the stroke rehabilitation.  相似文献   

11.
This study investigates the (re-)organization of somatosensory functions following early brain lesions. Using functional magnetic resonance imaging (fMRI), passive hand movement was studied. Transcranial magnetic stimulation (TMS) and magnetoencephalography (MEG) were used as complementary methods. fMRI data was analyzed on the first level with regard to topographical variability; second-level group effects as well as the overall integrity of the somatosensory circuitry were also assessed. Subjects with unilateral brain lesions occurring in the third trimester of pregnancy or perinatally with different types of motor reorganization were included: patients with regular, contralateral motor organization following middle cerebral artery strokes (CONTRA(MCA), n = 6) and patients with reorganized, ipsilateral motor functions due to periventricular lesions (IPSI(PL), n = 8). Motor impairment was similar, but sensory impairment was more pronounced in the CONTRA(MCA) group. Using fMRI and MEG, both groups showed a normal pattern with a contralateral somatosensory representation, despite the transhemispherically reorganized primary motor cortex in the IPSI(PL) group, as verified by TMS. Activation topography for the paretic hands was more variable than for the nonparetic hand in both groups. The cortico-cerebellar circuitry was well-preserved in almost all subjects. We conclude that in both models of motor reorganization, no interhemispheric reorganization of somatosensory functions occurred. Also, no relevant intrahemispheric reorganization was observed apart from a higher topographical variability of fMRI activations. This preserved pattern of somatosensory organization argues in favor of a differential lesion effect on motor and somatosensory functions and demonstrates a limited compensatory potential for the latter.  相似文献   

12.
OBJECTIVES: To investigate the reorganization of somatosensory and motor cortex in congenital brain injury. METHODS: We recorded motor evoked potentials (MEPs) following transcranial magnetic stimulation (TMS) and somatosensory evoked potentials (SEPs) in a 41 year old man with severe congenital right hemiparesis but only mild proprioceptive impairment. Brain magnetic resonance imaging showed a large porencephalic cavitation in the left hemisphere mainly involving the frontal and parietal lobes. RESULTS: TMS showed fast-conducting projections from the undamaged primary motor cortex to both hands, whereas MEPs were not elicited from the damaged hemisphere. Left median nerve stimulation evoked normal short-latency SEPs in the contralateral undamaged somatosensory cortex. Right median nerve stimulation did not evoke any SEP in the contralateral damaged hemisphere, but a middle-latency SEP (positive-negative-positive, 39-44-48 ms) in the ipsilateral undamaged hemisphere, with a fronto-central scalp distribution. CONCLUSIONS: Our data show that somatosensory function of the affected arm is preserved, most likely through slow-conducting non-lemniscal connections between the affected arm and ipsilateral non-primary somatosensory cortex. In contrast, motor function was poor despite fast-conducting ipsilateral cortico-motoneuronal output from the primary motor cortex of the undamaged hemisphere to the affected arm. This suggests that different forms of reorganization operate in congenital brain injury and that fast-conducting connections between primary cortex areas and ipsilateral spinal cord are not sufficient for preservation or recovery of function.  相似文献   

13.
To determine the onset of movement-related EEG activity accompanying stimulus-induced movements, it is commonly isolated from overlapping stimulus-related activity by a subtraction procedure, yielding the lateralized readiness potential (LRP). In order to elucidate the generation of the LRP and to explore whether magnetoencephalographic (MEG) measures have advantages over the LRP as a measure of response selection, MEG activity was recorded in four healthy adults during self-paced and stimulus-induced hand movements. Self-paced movements were preceded by readiness fields in all subjects, explained by sources in contralateral and (for 2/8 response sides) also ipsilateral hemispheres. Movement-related activity preceding stimulus-induced movements could only be modeled adequately when stimulus-related activity was removed by subtracting MEG signals for left and right hand movements. Thus identified source locations showed no systematic deviation from the sources for readiness fields, supporting a generation of the movement-related activity in primary motor cortex. The corresponding source waveforms allowed latency determinations of motor cortex activity as markers for response-choice timing. MEG thus provides information on the time course of hand-specific motor cortex activation for each hemisphere separately, where the electro-encephalographic LRP provides a composite measure for both hemispheres.  相似文献   

14.
Sensorimotor organization in double cortex syndrome   总被引:1,自引:0,他引:1  
Subcortical band heterotopia is a diffuse malformation of cortical development related to pharmacologically intractable epilepsy. On magnetic resonance imaging (MRI), patients with "double cortex" syndrome (DCS) present with a band of heterotopic gray matter separated from the overlying cortex by a layer of white matter. The function and connectivity of the subcortical heterotopic band in humans is only partially understood. We studied six DCS patients with bilateral subcortical band heterotopias and six healthy controls using functional MRI (fMRI). In controls, simple motor task elicited contralateral activation of the primary motor cortex (M1) and ipsilateral activation of the cerebellum and left supplementary motor area (SMA). All DCS patients showed task-related contralateral activation of both M1 and the underlying heterotopic band. Ipsilateral motor activation was seen in 4/6 DCS patients. Furthermore, there were additional activations of nonprimary normotopic cortical areas. The sensory stimulus resulted in activation of the contralateral primary sensory cortex (SI) and the thalamus in all healthy subjects. The left sensory task also induced a contralateral activation of the insular cortex. Sensory activation of the contralateral SI was seen in all DCS patients and secondary somatosensory areas in 5/6. The heterotopic band beneath SI became activated in 3/6 DCS patients. Activations were also seen in subcortical structures for both paradigms. In DCS, motor and sensory tasks induce an activation of the subcortical heterotopic band. The recruitment of bilateral primary areas and higher-order association normotopic cortices indicates the need for a widespread network to perform simple tasks.  相似文献   

15.
Motor performance declines with increasing age and it has been proposed that elder people might compensate for these deficits with increased cerebral activation. However, it is not known, whether increased activation - especially in motor areas of the contralateral and the ipsilateral cerebral hemisphere - might effectively contribute to motor performance or whether it is an ineffective way to counteract age related deficits in the motor system. We tested this question by mapping brain activation during performance of differentially demanding motor tasks in 18 young (mean 25.39 years) and 17 elderly (mean 66.65 years) healthy individuals. We tested a wide range of hand motor tasks from passive wrist movements, fist clenching at different frequencies, to a somatosensory-guided finger pinch task. In the elderly group functional activation was generally increased for all tasks with comparable motor performance for ipsilateral primary and secondary motor areas. The young group showed increased contralateral primary motor cortex activation for the more difficult somatosensory guided precision grip task. We correlated motor performance of the task with high difficulty and comparable performance with fMRI-activation. Elder participants showed a negative correlation for the ipsilateral supplementary motor area (SMA) and for the ipsilateral sensorimotor cortex (SM1). Young participants showed a positive correlation for contralateral SMA and SM1. Our data suggest an increased cerebral recruitment reflects an inefficient response to an age-related higher difficulty of task and is not an effective way to counteract age-related deficits in the motor system.  相似文献   

16.
Previous electroencephalographic and magnetoencephalographic studies have demonstrated giant early somatosensory cortical responses in patients with cortical myoclonus. We applied whole-scalp magnetoencephalography to study activation sequences of the somatosensory cortical network in 7 patients with Unverricht-Lundborg-type progressive myoclonus epilepsy diagnostically verified by DNA analysis. Responses to electric median nerve stimuli displayed 30-msec peaks at the contralateral primary somatosensory cortex that were four times stronger in patients than in control subjects. The amplitudes of 20-msec responses did not significantly differ between the groups. In contrast to control subjects, 5 patients displayed ipsilateral primary somatosensory cortex activity at 48 to 61 msec in response to both left- and right-sided median nerve stimuli. Furthermore, their secondary somatosensory cortex was not significantly activated. These abnormalities indicate altered responsiveness of the entire somatosensory cortical network outside the contralateral primary somatosensory cortex in patients with Unverricht-Lundborg-type progressive myoclonus epilepsy. The deficient activation of the secondary somatosensory cortex in Unverricht-Lundborg patients may reflect disturbed sensorimotor integration, probably related to impaired movement coordination.  相似文献   

17.
Repetitive passive movements are part of most rehabilitation procedures, especially in patients with stroke and motor deficit. However, little is known about the consequences of repeated proprioceptive stimulations on the intracerebral sensorimotor network in humans. Twelve healthy subjects were enrolled, and all underwent two functional magnetic resonance imaging (fMRI) sessions separated by a 1-month interval. Passive daily movement training was performed in six subjects during the time between the two fMRI sessions. The other six subjects had no training and were considered as the control group. The task used during fMRI was calibrated repetitive passive flexion-extension of the wrist similar to those performed during training. The control task was rest. The data were analyzed with SPM96 software. Images were realigned, smoothed, and put into Talairach's neuroanatomical space. The time effect from the repetition of the task was assessed in the control group by comparing activation versus rest in the second session with activation versus rest in the first session. This time effect then was used as null hypothesis to assess the training effect alone in our trained group. Passive movements compared with rest showed activation of most of the cortical areas involved in motor control (i.e., contralateral primary sensorimotor cortex, supplementary motor area [SMA], cingulum, Brodmann area 40, ipsilateral cerebellum). Time effect comparison showed a decreased activity of the primary sensorimotor cortex and SMA and an increased activity of ipsilateral cerebellar hemisphere, compatible with a habituation effect. Training brought about an increased activity of contralateral primary sensorimotor cortex and SMA. A redistribution of SMA activity was observed. The authors demonstrated that passive training with repeated proprioceptive stimulation induces a reorganization of sensorimotor representation in healthy subjects. These changes take place in cortical areas involved in motor preparation and motor execution and represent the neural basis of proprioceptive training, which might benefit patients undergoing rehabilitative procedures.  相似文献   

18.
Little is known about the spatiotemporal dynamics of cortical responses that integrate slightly asynchronous somatosensory inputs from both hands. This study aimed to clarify the timing and magnitude of interhemispheric interactions during early integration of bimanual somatosensory information in different somatosensory regions and their relevance for bimanual object manipulation and exploration. Using multi-fiber probabilistic diffusion tractography and MEG source analysis of conditioning-test (C-T) median nerve somatosensory evoked fields in healthy human subjects, we sought to extract measures of structural and effective callosal connectivity between different somatosensory cortical regions and correlated them with bimanual tactile task performance. Neuromagnetic responses were found in major somatosensory regions, i.e., primary somatosensory cortex SI, secondary somatosensory cortex SII, posterior parietal cortex, and premotor cortex. Contralateral to the test stimulus, SII activity was maximally suppressed by 51% at C-T intervals of 40 and 60 ms. This interhemispheric inhibition of the contralateral SII source activity correlated directly and topographically specifically with the fractional anisotropy of callosal fibers interconnecting SII. Thus, the putative pathway that mediated inhibitory interhemispheric interactions in SII was a transcallosal route from ipsilateral to contralateral SII. Moreover, interhemispheric inhibition of SII source activity correlated directly with bimanual tactile task performance. These findings were exclusive to SII. Our data suggest that early interhemispheric somatosensory integration primarily occurs in SII, is mediated by callosal fibers that interconnect homologous SII areas, and has behavioral importance for bimanual object manipulation and exploration.  相似文献   

19.
BACKGROUND: Ipsilateral sensory motor cortex (SMC) activation can occur during hand movements following cerebral injury. We studied the effect of increasing task difficulty and temporary peripheral paralysis on patterns of motor system activation.METHODS: Six healthy subjects completed a functional MRI paradigm of right finger abduction with four stages; light resistance, strong resistance, imagined movement and attempted abduction after ulnar nerve blockade. Activation maps compared images acquired during rest and task, while region of interest analysis measured numbers of activated pixels.RESULTS: All subjects showed some ipsilateral SMC activation. Across all subjects and all tasks involving hand movement, contralateral activation was proportional to ipsilateral activation (2.1:1; r=0.86).CONCLUSIONS: The relationship between ipsilateral and contralateral SMC activation remained stable despite differing effort or hand paralysis. The contralateral and ipsilateral SMC appear to act in a coordinated fashion during unilateral hand movements.  相似文献   

20.
We investigated neuromagnetic responses during an auditorily paced synchronization task using a 122-channel whole-head neuromagnetometer. Eight healthy right handed subjects were asked to synchronize left and right unilateral finger taps to a regular binaural pacing signal. Synchronization of the right hand with an auditory pacing signal is known to be associated with three tap-related neuromagnetic sources localized in the contralateral primary sensorimotor cortex. While the first source represents the neuromagnetic correlate of the motor command the second one reflects somatosensory feedback due to the finger movement. The functional meaning of the third source, which is also localized in the primary somatosensory cortex is still unclear. On the one hand this source represents a neuromagnetic correlate of somatosensory feedback due to the finger tap. On the other hand it has been suggested that the function of this source could additionally represent a cognitive process, which enables the subject to monitor the time distance between taps and clicks. The aim of the present study was to elucidate the function of this source, which would fundamentally reform the meaning of the primary somatosensory cortex in the timing of movements with respect to external events. The data of the present study demonstrate that the three sources in the contralateral sensorimotor cortex are stronger related to the tap than to the click. This result contradicts the assumption of a cognitive process localized in the primary somatosensory cortex. Thus, activation in the primary somatosensory cortex most likely represents exclusively somatosensory feedback and no further cognitive processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号