首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The involvement of opioid receptor activation in the antinociceptive effect of either fluvoxamine, a selective serotonin reuptake inhibitor, or serotonin (5-HT) on thermal hyperalgesia and mechanical allodynia in a model of neuropathic pain in mice induced by sciatic nerve ligation was examined. The experiments were conducted 2 or 6 weeks after unilateral sciatic nerve ligation. Ipsilateral thermal hyperalgesia and mechanical allodynia were observed both 2 and 6 weeks after sciatic nerve ligation. Neither s.c. fluvoxamine nor i.t. 5-HT affected sciatic nerve ligation-induced thermal hyperalgesia or mechanical allodynia in mice 2 weeks after sciatic nerve ligation. However, the same dose of either fluvoxamine or 5-HT significantly reduced mechanical allodynia but not thermal hyperalgesia in sciatic nerve ligated mice 6 weeks after surgery. The antinociceptive effect of fluvoxamine on sciatic nerve ligation-induced mechanical allodynia in mice 6 weeks after surgery was completely abolished by pretreatment with either naloxone, a nonselective opioid receptor antagonist, or beta-funaltrexamine, a selective mu-opioid receptor antagonist. Furthermore, pretreatment with naltrindole, a selective delta-opioid receptor antagonist, partially but significantly inhibited the antinociceptive effect of fluvoxamine in sciatic nerve ligated mice at the 6th postoperative week. The antinociceptive effect induced by i.t. 5-HT was also completely antagonized by either naloxone or beta-funaltrexamine, and partially inhibited by naltrindole. However, pretreatment with nor-binaltorphimine, a selective kappa-opioid receptor antagonist, had no effect against either s.c. fluvoxamine- or i.t. 5-HT-induced antinociception. These results suggest that the antinociceptive effect of s.c. fluvoxamine or i.t. 5-HT in the chronic state of sciatic nerve ligation-induced neuropathic pain may be related to opioidergic activity, mainly through the activation of spinal mu- and delta-opioid receptors.  相似文献   

2.
Zhao X  Xu Y  Zhao Q  Chen CR  Liu AM  Huang ZL 《Neuropharmacology》2012,62(2):843-854
Curcumin, a phenolic compound present in Curcuma longa, has been reported to exert antinociceptive effects in some animal models, but the mechanisms remain to be elucidated. This work aimed to investigate the antinociceptive action of curcumin on neuropathic pain and the underlying mechanism(s). Chronic constriction injury (CCI), a canonical animal model of neuropathic pain, was produced by loosely ligating the sciatic nerve in mice and von Frey hair or hot plate test was used to assess mechanical allodynia or thermal hyperalgesia (to heat), respectively. Chronic, but not acute, curcumin treatment (5, 15 or 45 mg/kg, p.o., twice per day for three weeks) alleviated mechanical allodynia and thermal hyperalgesia in CCI mice, accompanied by increasing spinal monoamine (or metabolite) contents. Chemical ablation of descending noradrenaline (NA) by 6-hydroxydopamine (6-OHDA), or depletion of descending serotonin by p-chlorophenylalanine (PCPA), abolished curcumin's antinociceptive effect on mechanical allodynia or thermal hyperalgesia, respectively. The anti-allodynic action of curcumin on mechanical stimuli was totally blocked by chronic co-treatment with the β(2)-adrenoceptor antagonist ICI 118,551, or by acute co-treatment with the delta-opioid receptor antagonist naltrindole. Meanwhile, co-treatment with the 5-HT(1A) receptor antagonist WAY-100635 chronically, or with the irreversible mu-opioid receptor antangonist β-funaltrexamine acutely, completely abrogated the anti-hyperalgesic action of curcumin on thermal stimuli. Collectively, these findings indicate that the descending monoamine system (coupled with spinal β(2)-adrenoceptor and 5-HT(1A) receptor) is critical for the modality-specific antinociceptive effect of curcumin in neuropathic pain. Delta- and mu-opioid receptors are likely rendered as downstream targets, accordingly. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'.  相似文献   

3.
Injury to the spinal nerves of mice induces allodynia and hyperalgesia. Intrathecal injection of the progesterone/estrogen receptor antagonist ICI 182,780 produced antinociceptive effects. Co-administration of estrogen did not reduce but tended to enhance the antinociceptive effect of ICI 182,780. On the other hand, co-administration of progesterone dose-dependently reduced the antinociceptive effect of ICI 182,780, indicating that the antinociceptive effect is through antiprogesterone receptor activity of ICI 182,780. These results suggest that spinal progesterone receptors play an important role in neuropathic pain, and that controlling the activity of progesterone receptors may be of great importance in the treatment of neuropathic pain.  相似文献   

4.
In this study, the effect of (S)-3,4-dicarboxyphenylglycine (DCPG), a selective mGlu8 receptor agonist, has been investigated in inflammatory and neuropathic pain models in order to elucidate the role of mGlu8 receptor in modulating pain perception. Inflammatory pain was induced by the peripheral injection of formalin or carrageenan in awake mice. Systemic administration of (S)-3,4-DCPG, performed 15 min before formalin, decreased both early and delayed nociceptive responses of the formalin test. When this treatment was carried out 15 min after the peripheral injection of formalin it still reduced the late hyperalgesic phase. Similarly, systemic (S)-3,4-DCPG reduced carrageenan-induced thermal hyperalgesia and mechanical allodynia when administered 15 min before carrageenan, but no effect on pain behaviour was observed when (S)-3,4-DCPG was given after the development of carrageenan-induced inflammatory pain. When microinjected into the lateral PAG (RS)-alpha-methylserine-O-phoshate (MSOP), a group III receptor antagonist, antagonised the analgesic effect induced by systemic administration of (S)-3,4-DCPG in both of the inflammatory pain models. Intra-lateral PAG (S)-3,4-DCPG reduced pain behaviour when administered 10 min before formalin or carrageenan; both the effects were blocked by intra-lateral PAG MSOP. (S)-3,4-DCPG was ineffective in alleviating thermal hyperalgesia and mechanical allodynia 7 days after the chronic constriction injury of the sciatic nerve, whereas it proved effective 3 days after surgery. Taken together these results suggest that stimulation of mGlu8 receptors relieve formalin and carrageenan-induced hyperalgesia in inflammatory pain, whereas it would seem less effective in established inflammatory or neuropathic pain.  相似文献   

5.
Neuropathic pain is a clinical manifestation characterized by the presence of spontaneous pain, allodynia and hyperalgesia. Here, we have evaluated the involvement of CB1 cannabinoid receptors in the development and expression of neuropathic pain. For this purpose, partial ligation of the sciatic nerve was performed in CB1 cannabinoid receptor knockout mice and their wild-type littermates. The development of mechanical and thermal allodynia, and thermal hyperalgesia was evaluated by using the von Frey filaments, cold-plate and plantar tests, respectively. Pre-surgical tactile and thermal withdrawal thresholds were similar in both genotypes. In wild-type mice, sciatic nerve injury led to a neuropathic pain syndrome characterized by a marked and long-lasting reduction of the paw withdrawal thresholds to mechanical and thermal stimuli. These manifestations developed similarly in mice lacking CB1 cannabinoid receptors. We have also investigated the consequences of gabapentin administration in these animals. Gabapentin (50 mg/kg/day, i.p.) induced a similar suppression of mechanical and thermal allodynia in both wild-type and CB1 knockout mice. Mild differences between genotypes were observed concerning the effect of gabapentin in the expression of thermal hyperalgesia. Taken together, our results indicate that CB1 cannabinoid receptors are not critically implicated in the development of neuropathic pain nor in the anti-allodynic and anti-hyperalgesic effects of gabapentin in this model.  相似文献   

6.
A growing body of evidence indicates that α7 nicotinic receptor subtypes play an important role in chronic inflammatory and neuropathic pain signaling. In the present study, we investigated the role of the endogenous α7 nicotinic receptors (nAChRs) signaling in pain and inflammation using transgenic mice. For that we evaluated pain-related behaviors in the α7 mutant mice (KO) and its complementary α7 hypersensitive mice (KI) expressing the L250T α7 nAChRs and their respective WT mice in acute, chronic inflammatory and neuropathic mouse models. α7 KO and KI mice showed no significant changes in pain responses evoked by acute noxious thermal and mechanical stimuli as compared with WT littermates. While α7 KO mice showed no alterations in thermal and mechanical allodynia compared to WT mice after chronic nerve injury in the CCI test, α7 KI mice showed a significant reduction in these pain-related responses. However, marked increase in edema, hyperalgesia, and allodynia associated with intraplantar CFA injection was observed in the α7 KO mice compared with the WT littermates. In contrast, α7 KI mice displayed lesser degree of hyperalgesia and allodynia after CFA injection. Finally, the ability of systemic nicotine to reverse already-developed mechanical allodynia produced by intraplantar CFA seen in WT mice was lost in the α7 KO animals. Overall, our results demonstrate that endogenous α7 nAChRs mechanisms play an important role in chronic inflammatory and neuropathic pain models. This provides an additional rationale for the utility of α7 nAChR agonists in the treatment of inflammatory and chronic pain.  相似文献   

7.
Orexin-A and orexin-1 receptors are found in the dorsal root ganglion cells and the spinal dorsal horn and this suggests that orexin-A is involved in the spinal nociceptive transmission. The authors examined the effect of intrathecally administered orexin-A on the level of mechanical allodynia and thermal hyperalgesia induced by paw carrageenan injection in the rat. Intrathecal injection of 0.3 and 3 nmol of orexin-A suppressed the level of mechanical allodynia, but not that of thermal hyperalgesia, and the effect of orexin-A on mechanical allodynia was antagonized by the pretreatment of 1-(2-methylbenzoxazol-6-yl)-3-[1,5]naphthyridin-4-yl urea hydrochloride, SB-334867, a selective orexin-1 receptor antagonist. These data suggest that the activation of spinal orexin-1 receptor modulates the mechanical information transmission, but not thermal information transmission, in the spinal cord during carrageenan test.  相似文献   

8.
Preclinical data, performed in a limited number of pain models, suggest that functional blockade of metabotropic glutamate (mGlu) receptors may be beneficial for pain management. In the present study, effects of 2-methyl-6-(phenylethynyl)-pyridine (MPEP), a potent, selective mGlu5 receptor antagonist, were examined in a wide variety of rodent nociceptive and hypersensitivity models in order to fully characterize the potential analgesic profile of mGlu5 receptor blockade. Effects of 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine (MTEP), as potent and selective as MPEP at mGlu5/mGlu1 receptors but more selective than MPEP at N-methyl-aspartate (NMDA) receptors, were also evaluated in selected nociceptive and side effect models. MPEP (3-30 mg/kg, i.p.) produced a dose-dependent reversal of thermal and mechanical hyperalgesia following complete Freund's adjuvant (CFA)-induced inflammatory hypersensitivity. Additionally, MPEP (3-30 mg/kg, i.p.) decreased thermal hyperalgesia observed in carrageenan-induced inflammatory hypersensitivity without affecting paw edema, abolished acetic acid-induced writhing activity in mice, and was shown to reduce mechanical allodynia and thermal hyperalgesia observed in a model of post-operative hypersensitivity and formalin-induced spontaneous pain. Furthermore, at 30 mg/kg, i.p., MPEP significantly attenuated mechanical allodynia observed in three neuropathic pain models, i.e. spinal nerve ligation, sciatic nerve constriction and vincristine-induced neuropathic pain. MTEP (3-30 mg/kg, i.p.) also potently reduced CFA-induced thermal hyperalgesia. However, at 100 mg/kg, i.p., MPEP and MTEP produced central nerve system (CNS) side effects as measured by rotarod performance and exploratory locomotor activity. These results suggest a role for mGlu5 receptors in multiple nociceptive modalities, though CNS side effects may be a limiting factor in developing mGlu5 receptor analgesic compounds.  相似文献   

9.
Botulinum toxin type A is a unique candidate for inhibition of pain transmission. In the present study we attempted to see the beneficial actions of A2 neurotoxin (NTX), an active subunit of botulinum toxin type A. Intraplantar injection of A2 NTX significantly suppressed mechanical allodynia and hypersensitivities to A-fiber stimuli in the diabetic neuropathic pain model. Spinal application of A2 NTX also showed a potent suppression of thermal hyperalgesia and mechanical allodynia in the spinal cord injury-induced neuropathic pain model. A2 NTX seems to be a long-lasting treatment for diabetic and spinal cord injury-induced neuropathic pain.  相似文献   

10.
11.
The analgesic properties of the synthetic cannabinoid WIN55,212-2 were investigated in a model of neuropathic pain. In male Wistar rats, bilateral hind limb withdrawal thresholds to cold, mechanical and noxious thermal stimuli were measured. Following this, unilateral L5 spinal nerve ligation was performed. Seven days later, sensory thresholds were reassessed and the development of allodynia to cold and mechanical stimuli and hyperalgesia to a noxious thermal stimulus confirmed. The effect of WIN55,212-2 (0.1 - 5.0 mg kg(-1), i.p.) on the signs of neuropathy was then determined; there was a dose related reversal of all three signs of painful neuropathy at doses which did not generally alter sensory thresholds in the contralateral unligated limb. This effect was prevented by co-administration of the CB(1) receptor antagonist SR141716a, but not by co-administration of the CB(2) receptor antagonist SR144528, suggesting this action of WIN55,212-2 is mediated via the CB(1) receptor. Administration of SR141716a alone had no affect on the observed allodynia and hyperalgesia, which does not support the concept of an endogenous analgesic tone. These data indicate that cannabinoids may have therapeutic potential in neuropathic pain, and that this effect is mediated through the CB(1) receptor.  相似文献   

12.
Trigeminal neuralgia is a disorder of paroxysmal and severely disabling facial pain and continues to be a real therapeutic challenge. At present there are few effective drugs. Here we have evaluated the effects of the synthetic cannabinoid WIN 55,212-2 on mechanical allodynia and thermal hyperalgesia in a rat model of trigeminal neuropathic pain produced by a chronic constriction injury (CCI) of the infraorbital branch of the trigeminal nerve (ION). Relative to sham operation controls, rats with the CCI-ION consistently displayed hyperresponsiveness to von Frey filament and heat stimulation of the vibrissal pad. Both mechanical allodynia and thermal hyperalgesia are seen both ipsilateral and contralateral to the side of nerve injury, but is significantly more severe ipsilaterally. Administration of WIN 55,212-2 (0.3-5 mg/kg i.p.) dose-dependently increased the mechanical and heat withdrawal thresholds. WIN 55,212-2 (0.3-3 mg/kg i.p.) produced no significant motor deficits in animals using the rotarod test. The effect of WIN 55,212-2 was mimicked by cannabinoid CB1 receptor agonist HU 210 and was antagonized by CB1 receptor antagonist AM 251, but not by CB2 receptor antagonist AM 630 or vanilloid receptor 1 antagonist capsazepine, suggesting the involvement of CB1 receptors. CCI-ION also induced a time-dependent upregulation of CB1 receptors primarily within the ipsilateral superficial laminae of the trigeminal caudal nucleus revealed by both Western blot and immunohistochemistry. Taken together, these results suggest that cannabinoids may be a useful therapeutic approach for the clinical management of trigeminal neuropathic pain disorders.  相似文献   

13.
Chronic inflammation induced by injection of complete Freund's adjuvant (CFA) into one hindpaw elicits thermal hyperalgesia and mechanical allodynia in the injected paw. Metabotropic glutamate receptors (mGluRs) have been implicated in dorsal horn neuronal nociceptive responses and pain associated with short-term inflammation. The goal of the present study was to assess the role of mGluR1 in the hyperalgesia and allodynia associated with the CFA model of chronic inflammation. Here we show that antisense (AS) oligonucleotide knockdown of spinal mGluR1 attenuates thermal hyperalgesia and mechanical allodynia in rats injected with CFA in one hindpaw. When intrathecal infusion of mGluR1 AS oligonucleotide (50 microg/day) began prior to CFA injection, mechanical allodynia was attenuated from Days 1 to 8 following CFA injection, whereas heat hyperalgesia was attenuated on Day 1 and then from Days 4 to 8. When intrathecal infusion of mGluR1 AS oligonucleotide was begun 2 days after CFA injection, both mechanical allodynia and heat hyperalgesia were attenuated at all time points following the oligonucleotide infusion. Thus, the present data suggest a role for mGluR1 in persistent inflammatory nociception.  相似文献   

14.
The effects of nociceptin/orphanin FQ (N/OFQ) peptide receptor antagonist JTC-801 on allodynia and hyperalgesia were examined in rats in order to explore the involvement of N/OFQ system in these pathological pain states. Tactile allodynia induced by L5/L6 spinal nerve ligation was reversed by both systemic (3–30 mg/kg) and spinal (22.5 and 45 pg) JTC-801 in a dose-dependent manner. Concerning hyperalgesia induced by formalin injection into the hindpaw, JTC-801 dose-dependently suppressed the second phase, but not the first phase, of the licking behavior. Furthermore, systemic JTC-801 reduced Fos-like immunoreactivity in the dorsal horn of the spinal cord (laminae I/II). In conclusion, N/OFQ receptor antagonist JTC-801 exerted anti-allodynic and anti-hyperalgesic effects in rats, suggesting that N/OFQ system might be involved in the modulation of neuropathic pain and inflammatory hyperalgesia.  相似文献   

15.
The administration of kappa-opioid receptor antagonists, nor-binaltorphimine (norBNI) and 5'-guanidinonaltrindole (GNTI) enhanced allodynia in rats and mice after sciatic nerve ligation. In order to understand the mechanism underlying this effect, we examined the possible involvement of the endogenous ligand of kappa-opioid receptor dynorphin. The experiments were carried out on male Wistar rats and on Albino-Swiss mice. The rats had been implanted with a catheter 7 days earlier in the subarachnoid space of the spinal cord. Intrathecal (i.t.) administrations in mice were made by lumbar puncture. The animals were i.t. injected with norBNI, GNTI (kappa-opioid receptor antagonists), dynorphin A1-17 antiserum (DYN A/S), ketamine (NMDA receptor antagonist) and their combinations. The nociceptive sensitivity was assessed using the mechanical (von Frey) and thermal allodynia tests on days 2-4 and 8-10 after the sciatic nerve ligation. Both antagonists, norBNI and GNTI, significantly enhanced mechanical and thermal allodynia in rats and mice with neuropathic pain. The potentiation of allodynia after the administration of norBNI or GNTI was inhibited by earlier administration of DYN A/S or by ketamine. Our results suggest that allodynia is mediated through nonopioid effect of the endogenous opioid peptide, dynorphin. The nonopioid action is potentiated by the blockade of kappa-opioid receptors, and corresponding to the elevation of prodynorphin mRNA level in neuropathic pain. Furthermore, the potentiation of allodynia after the administration of the above drugs appears to be mediated through the activation of NMDA receptors directly by dynorphin.  相似文献   

16.
1. RB 101, a complete inhibitor of enkephalin-catabolizing enzymes, has been previously shown to produce antinociception in normal rats after systemic administration. Moreover, its coadministration with a cholecystokinin-B (CCK-B) receptor antagonist has been shown to strongly enhance its antinociceptive effect in normal rats. In this work, we determined whether RB 101 was able to reduce hyperalgesia and allodynia in diabetic rats, a model of neuropathic pain. The type of opioid receptors (mu or delta) involved was determined using naloxone and naltrindole, respectively, and the interactions between endogenous enkephalins and CCK on nociception control was investigated using coadministration of RB 101 and the CCK-B receptor antagonist CI-988. 2. RB 101 suppressed mechanical hyperalgesia (paw pressure-induced vocalization test), partially alleviated mechanical allodynia (von Frey hair test), and was ineffective in thermal allodynia (tail immersion test). The analgesic effect was completely cancelled by naloxone or naltrindole, suggesting that is requires the availability of mu- and/or delta-opioid receptors. 3. The combination of an inactive dose of CI-988 with the lowest effective dose of RB 101 resulted in a stronger increase in the vocalization threshold comparatively to RB 101 alone. 4. The present study demonstrates that the antinociception generated by RB 101 induced by elevation of extracellular levels of endogenous enkephalins, can be extended to neuropathic pain in diabetic rats and that blockade of CCK-B receptors potentiated antinociceptive effects elicited by RB 101.  相似文献   

17.

Background and purpose:

The activation of CB2 receptors induces analgesia in experimental models of chronic pain. The present experiments were designed to study whether the activation of peripheral or spinal CB2 receptors relieves thermal hyperalgesia and mechanical allodynia in two models of bone cancer pain.

Experimental approach:

NCTC 2472 osteosarcoma or B16-F10 melanoma cells were intratibially inoculated to C3H/He and C57BL/6 mice. Thermal hyperalgesia was assessed by the unilateral hot plate test and mechanical allodynia by the von Frey test. AM1241 (CB2 receptor agonist), AM251 (CB1 receptor antagonist), SR144528 (CB2 receptor antagonist) and naloxone were used. CB2 receptor expression was measured by Western blot.

Key results:

AM1241 (0.3–10 mg·kg−1) abolished thermal hyperalgesia and mechanical allodynia in both tumour models. The antihyperalgesic effect was antagonized by subcutaneous, intrathecal or peri-tumour administration of SR144528. In contrast, the antiallodynic effect was inhibited by systemic or intrathecal, but not peri-tumour, injection of SR144528. The effects of AM1241 were unchanged by AM251 but were prevented by naloxone. No change in CB2 receptor expression was found in spinal cord or dorsal root ganglia.

Conclusions and implications:

Spinal CB2 receptors are involved in the antiallodynic effect induced by AM1241 in two neoplastic models while peripheral and spinal receptors participate in the antihyperalgesic effects. Both effects were mediated by endogenous opiates. The use of drugs that activate CB2 receptors could be a useful strategy to counteract bone cancer-induced pain symptoms.  相似文献   

18.
The effect of the non-selective, 1-aminoindan-1,5-dicarboxylic acid (AIDA), and selective (3,4-dihydro-2H-pyrano[2,3-b]quinolin-7-yl)-(cis-4-methoxycyclohexyl) methanone (JNJ16259685), metabotropic glutamate subtype 1 (mGlu1) receptor antagonists, on rat sciatic nerve chronic constrictive injury (CCI)-induced hyperalgesia, allodynia, spinal dorsal horn apoptosis, and gliosis was examined at 3 and 7 days post-injury. RT-PCR analysis showed increased expression of bax, apoptotic protease-activating factor-1 (apaf-1), nestin, GFAP, and caspase-7 mRNA in the dorsal horn spinal cord by 3 days post-CCI. At 7 days post-CCI, only over-expression of bcl-2, nestin and GFAP mRNA was observed. Administration of AIDA reduced thermal hyperalgesia and mechanical allodynia at 3 and 7 days post-CCI; administration of JNJ16259685 reduced thermal hyperalgesia at 3 and 7 days post-CCI, but not mechanical allodynia. AIDA decreased the mRNA levels of bax, apaf-1, GFAP and caspase-7 genes. JNJ16259685 increased the mRNA levels of bcl-2 and GFAP gene, and decreased APAF-1 and caspases-7 genes. Inhibiting mGlu1 receptors also reduced TUNEL-positive profiles and immunohistochemical reactivity for caspase-7. We report here that despite inhibiting CCI-induced over-expression of pro-apoptotic genes in the spinal cord dorsal horn, the selective mGlu1 receptor antagonist JNJ16259685 exerted only a slight and transient allodynic effect. Moreover, JNJ16259685, but not the non-selective AIDA, increased astrogliosis which may account for its decreased analgesic efficacy. This study provides evidence that the contemporary and partial blockade of group I and likely ionotropic glutamate receptors may be a more suitable therapy than selective blockade of mGlu1 subtype receptors condition to decrease neuropathic pain symptoms.  相似文献   

19.
In the present study, we aimed to evaluate the effect of the spirocyclopiperazinium salt compound LXM-15 on chronic inflammatory pain and chronic neuropathic pain induced by complete Freund’s adjuvant (CFA) or chronic constriction injury (CCI) in mice and rats. The results showed that administration with LXM-15 significantly reduced paw edema and ankle swelling and increased the mechanical withdrawal threshold and paw withdrawal latency after CFA injection in mice. LXM-15 significantly alleviated the mechanical allodynia and thermal hyperalgesia in CCI rats. The effect was abolished by pretreatment with hexamethonium (a peripheral nAChR antagonist) or methyllycaconitine citrate (an α7 nAChR antagonist). Furthermore, LXM-15 significantly inhibited the phosphorylation of JAK2 and STAT3, and suppressed the expressions of TNF-α and c-fos in dorsal root ganglia of CCI rats. Collectively, we reported that LXM-15 relieved chronic inflammatory pain in CFA mice and chronic neuropathic pain in CCI rats. The underlying mechanism might be related to the activation of peripheral α7 nicotinic receptor, further inhibiting JAK2/STAT3 signaling pathway, and eventually suppressing the expressions of TNF-α and c-fos.  相似文献   

20.
AIM: The present study aimed to elucidate the role of T-subtype calcium channels (Cav3.1, Cav3.2, and Cav3.3) in the pathogenesis of neuropathic pain at spinal level. METHODS: The chronic compression of the dorsal root ganglion (CCD) rat model was adopted. The antisense oligonucleotide of Cav3.1, Cav3.2, and Cav3.3 or normal saline (NS) were intrathecally administered twice per day from the first day to the fourth day after operation. Paw mechanical withdrawal threshold and paw thermal withdrawal latency were measured to evaluate the tactile allodynia and thermal hyperalgesia, respectively. RESULTS: CCD rats developed reliable tactile allodynia and thermal hyperalgesia after operation. Intrathecal administration of antisense oligonucleotide of Cav3.2 and Cav3.3 significantly relieved tactile allodynia and thermal hyperalgesia in CCD rats, but not Cav3.1. CONCLUSION: Cav3.2 and Cav3.3 subtype calcium channels in the spinal cord may play an important role in the pathogenesis of neuropathic pain, which may contribute to the management of the neuropathic pain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号