首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A fundamental problem associated with using the conventional electrocardiograph (ECG) to monitor a subject's cardiac activity during magnetic resonance imaging (MRI) is the distortion of the ECG due to electromagnetic interference. This problem is particularly pronounced in MR microscopy (MRI of small animals at microscopic resolutions (< 0.03 mm(3))) because the strong, rapidly-switching magnetic field gradients induce artifacts in the animal's ECG that often mimic electrophysiologic activity, impairing the use of the ECG for cardiac monitoring and gating purposes. The fiber-optic stethoscope system offers a novel approach to measuring cardiac activity that, unlike the ECG, is immune to electromagnetic effects. The fiber-optic stethoscope is perorally inserted into the esophagus of small animals to optically detect pulsatile compression of the esophageal wall. The optical system is shown to provide a robust cardiac monitoring and gating signal in rats and mice during routine cardiac MR microscopy.  相似文献   

2.
Cardiac MR imaging in small animals presents some difficulties due to shorter cardiac cycles and smaller dimensions than in human beings, but prospectively gated techniques have been successfully applied. As with human imaging, there may be certain applications in animal imaging for which retrospective gating is preferable to prospective gating. For example, cardiac imaging in multiple mice simultaneously is one such application. In this work we investigate the use of retrospective gating for cardiac imaging in a mouse. Using a three-dimensional imaging protocol, we show that image quality with retrospective gating is comparable to prospectively gated imaging. We conclude that retrospective gating is applicable for small animal cardiac MRI and show how it can be applied to the problem of cardiac MRI in multiple mice.  相似文献   

3.
4.
Functional magnetic resonance imaging (FMRI) is a noninvasive method of imaging brain function in vivo. However, images produced in FMRI experiments are imperfect and contain several artifacts that contaminate the data. These artifacts include rigid-body motion effects, B0-field inhomogeneities, chemical shift, and eddy currents. To investigate these artifacts, with the eventual aim of minimizing or removing them completely, a computational model of the FMR image acquisition process was built that can simulate all of the above-mentioned artifacts. This paper gives an overview of the development of the FMRI simulator. The simulator uses the Bloch equations together with a geometric definition of the object (brain) and a varying T2* model for the BOLD activations. Furthermore, it simulates rigid-body motion of the object by solving Bloch equations for given motion parameters that are defined for an object moving continuously in time, including during the read-out period, which is a novel approach in the area of MRI computer simulations. With this approach it is possible, in a controlled and precise way, to simulate the full effects of various rigid-body motion artifacts in FMRI data (e.g. spin-history effects, B0-motion interaction, and within-scan motion blurring) and therefore formulate and test algorithms for their reduction.  相似文献   

5.
Segmented cardiac acquisitions generally require the use of an electrocardiogram (ECG) in combination with a breathhold or a respiratory navigator placed on the diaphragm. These techniques necessitate patient cooperation and increase the complexity of cardiac imaging. The ECG signal may be distorted inside the magnet by interferences from radiofrequency and gradient action. Breathhold acquisition limits the total scan time, while navigators on the diaphragm might not fully reflect respiratory‐induced motion of the heart. To overcome some of these problems, several self‐gating (SG) or “wireless” techniques have recently been presented. All of these approaches, however, are based on either cardiac triggering or respiratory gating, or the data are processed retrospectively, reducing the efficiency of data acquisition. In this work a prospective SG approach for free‐breathing imaging is presented that requires neither ECG gating nor respiratory navigation. The motion data used for cardiac triggering and respiratory gating are extracted from the repeatedly acquired k‐space center. Based on computer simulations and in vivo data of the heart, it is shown that cardiac as well as respiratory motion can be accurately extracted in real time. Using the method proposed, the scan efficiency could be significantly increased while preserving image quality relative to retrospective SG approaches. Magn Reson Med 60:683–690, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

6.
7.
ECG-gated cardiac MRI in the mouse is hindered by many technical difficulties in ECG signal recording inside static and variable high magnetic scanner fields. The present study proposes an alternative robust method of acquiring auto-gated cardiac and respiratory cine images in mouse heart. In our approach, a motion synchronization signal is extracted from the echo peak MR signal of a non-triggered radial acquisition. This signal is then used for both cardiac and respiratory retrospective gating before cine image reconstruction. Highly asymmetric echoes were acquired to achieve the radial k-space sampling in order to avoid radial acquisition related artifacts and to increase auto-gating robustness. In vivo experiments demonstrated the feasibility and robustness of self-gated cine-MRI in the mouse heart at 7T. The signal-to-noise and contrast-to-noise ratios of the self-gated and ECG-gated images were comparable, all parameters being equal. Magn Reson Med, 2006. (c) 2006 Wiley-Liss, Inc.  相似文献   

8.
A motion-detection method is described that is specifically suited for MR spectroscopic imaging (MRSI) studies. Information on in-plane rotation and translation of the subject was obtained using external spatial reference markers that are uniquely identified via their chemical shift. The marker locations were obtained directly from the acquired data at each encoding step, and no additional data acquisition was required. This method was applied to brain 1H MRSI studies that include subcutaneous lipid signals, which otherwise result in enhanced sensitivity to subject motion.  相似文献   

9.
RATIONALE AND OBJECTIVES: Electrocardiographic (ECG) gating of cardiac magnetic resonance (MR) imaging has been problematic for many reasons. The purpose of this study was to demonstrate the feasibility of using Doppler ultrasound (US) gating, either directly off the moving cardiac wall or the systolic upstroke of the arterial signal from the great vessels in neck, in alternative gating modes. MATERIALS AND METHODS: A 2.5-MHz, range-gated Doppler US device was used with A-mode guidance for gating directly off left ventricular wall motion. A 4- or 8.1-MHz, continuous-wave (CW) Doppler US device was used for gating off the systolic upstroke from the great vessels in the neck. The subject undergoing imaging held the transducer against his chest for range-gated Doppler US and against his neck for 8.1-MHz CW Doppler US. The 4-MHz transducer was strapped to the subject's neck. Modified Doppler signals were fed back into the gating circuitry of the MR imager to achieve cardiac synchrony. RESULTS: Cardiac gating was achieved by using both the range-gated technique directly off the cardiac wall and the CW method off blood flow from the great vessels. Problems occurred with radiofrequency shielding during the range-gated method; however, these problems were almost completely removed by use of the CW Doppler probes. CONCLUSION: Doppler US gating of MR images is possible and potentially could overcome many shortcomings of ECG gating. Subsequent embodiments of the technique will require improved radiofrequency shielding in the range-gated technique.  相似文献   

10.
Development of high magnetic field MRI techniques is hampered by the significant artifacts produced by B0 field inhomogeneities in the excited slices. A technique, gradient-echo slice excitation profile imaging (GESEPI), is presented for recovering the signal lost caused by intravoxel phase dispersion in T2*-weighted images. This technique superimposes an incremental gradient offset on the slice refocusing gradient to sample Jr-space over the full range of spatial frequencies of the excitation profile. A third Fourier transform of the initial two-dimensional image set generates an image set in which the artifacts produced by the low-order B0 inhomogeneity field gradients in the sample are separated and removed from the high-order microscopic field gradients responsible for T2* contrast. Application to high field brain imaging, at 3.0 T for human and at 9.4 T for immature rat imaging demonstrates the significant improvement in quality of the T2*-weighted contrast images.  相似文献   

11.
RATIONALE AND OBJECTIVES: An image registration method was developed to automatically correct motion artifacts, mostly from breathing, from cardiac cine magnetic resonance (MR) images. MATERIALS AND METHODS: The location of each slice in an image stack was optimized by maximizing a similarity measure of the slice with another image slice stack. The optimization was performed iteratively and both image stacks were corrected simultaneously. Two procedures to optimize the similarity were tested: standard gradient optimization and stochastic optimization in which one slice is chosen randomly from the image stacks and its location is optimized. In this work, cine short- and long-axis images were used. In addition to visual inspection results from real data, the performance of the algorithm was evaluated quantitatively by simulating the movements in four real MR data sets. The mean error and standard deviation were defined for 50 simulated movements as each slice was randomly displaced. The error rate, defined as the percentage of non-satisfactory registration results, was evaluated. The paired t-test was used to evaluate the statistical difference between the tested optimization methods. RESULTS: The algorithm developed was successfully applied to correct motion artifacts from real and simulated data. The results, where typical motion artifacts were simulated, indicated an error rate of about 3%. Subvoxel registration accuracy was also achieved. When different optimization methods were compared, the registration accuracy of the stochastic approach proved to be superior to the standard gradient technique (P < 10(-9)). CONCLUSIONS: The novel method was capable of robustly and accurately correcting motion artifacts from cardiac cine MR images.  相似文献   

12.
13.
Mouse cardiac MR gating using ECG is affected by the hostile MR environment. It requires appropriate signal processing and correct QRS detection, but gating software methods are currently limited. In this study we sought to demonstrate the feasibility of digital real-time automatically updated gating methods, based on optimizing a signal-processing technique for different mouse strains. High-resolution MR images of mouse hearts and aortic arches were acquired using a chain consisting of ECG signal detection, digital signal processing, and gating signal generation modeled using Simulink (The MathWorks, Inc., Natick, MA, USA). The signal-processing algorithms used were respectively low-pass filtering, nonlinear passband, and wavelet decomposition. Both updated and nonupdated gating signal generation methods were tested. Noise reduction was assessed by comparison of the ECG signal-to-noise ratio (SNR) before and after each processing step. Gating performance was assessed by measuring QRS detection accuracy before and after online trigger-level adjustments. Low-pass filtering with trigger-level adjustment gave the best performance for mouse cardiovascular imaging using gradient-echo (GE), spin-echo (SE), and fast SE (FSE) sequences with minimum induced delay and maximum gating efficiency (99% sensitivity and R-peak detection). This simple digital gating interface will allow various gating strategies to be optimized for cardiovascular MR explorations in mice.  相似文献   

14.
PURPOSE: To correct for spatial misregistration of multi-breath-hold short-axis (SA), two-chamber (2CH), and four-chamber (4CH) cine cardiac MR (CMR) images caused by respiratory and patient motion. MATERIALS AND METHODS: Twenty CMR studies from consecutive patients with separate breath-hold 2CH, 4CH, and SA 20-phase cine images were considered. We automatically registered the 2CH, 4CH, and SA images in three dimensions by minimizing the cost function derived from plane intersections for all cine phases. The automatic alignment was compared with manual alignment by two observers. RESULTS: The processing time for the proposed method was <20 seconds, compared to 14-24 minutes for the manual correction. The initial plane displacement identified by the observers was 2.8 +/- 1.8 mm (maximum = 14 mm). A displacement of >/=5 mm was identified in 15 of 20 studies. The registration accuracy (defined as the difference between the automatic parameters and those obtained by visual registration) was 1.0 +/- 0.9 mm, 1.1 +/- 1.0 mm, 1.1 +/- 1.2 mm, and 2.0 +/- 1.8 mm for 2CH-4CH alignment and SA alignment in the mid, basal, and apical regions, respectively. The algorithm variability was higher in the apex (2.0 +/- 1.9 mm) than in the mid (1.4 +/- 1.4 mm) or basal (1.2 +/- 1.2 mm) regions (ANOVA, P < 0.05). CONCLUSION: An automated preprocessing algorithm can reduce spatial misregistration between multiple CMR images acquired at different breath-holds and plane orientations.  相似文献   

15.

Purpose:

To introduce and evaluate a method of prospective motion correction for localized proton magnetic resonance spectroscopy (1H‐MRS) using a single‐camera optical tracking system.

Materials and Methods:

Five healthy participants were scanned at 3T using a point‐resolved spectroscopic sequence (PRESS) with a motion‐tracking module and phase navigator. Head motion in six degrees was tracked with a Retro‐Grate Reflector (RGR) tracking system and target via a mirror mounted inside the bore. Participants performed a series of three predetermined motion patterns during scanning.

Results:

Left–right rotation (Rz) (average 12°) resulted in an increase in the total choline to total creatine ratio (Cho/Cr) of +14.6 ± 1.5% (P = 0.0009) for scans without correction, but no change for scans with correction (+1.1 ± 1.5%; P = 0.76). Spectra with uncorrected Z‐translations showed large lipid peaks (skull) with changes in Cho/Cr of ?13.2 ± 1.6% (P = 0.02, no motion correction) and ?2.2 ± 2.4% (P = 0.51) with correction enabled. There were no significant changes in the ratios of N‐acetylaspartate, glutamate+glutamine, or myo‐inositol to creatine compared to baseline scans for all experiments.

Conclusion:

Prospective motion correction for 1H‐MRS, using single‐camera RGR tracking, can reduce spectral artifacts and quantitation errors in Cho/Cr ratios due to head motion and promises improved spectral quality and reproducibility. J. Magn. Reson. Imaging 2011. © 2011 Wiley‐Liss, Inc.
  相似文献   

16.
A new modified type of gating is presented that shows the ability to reduce the total scan time with almost conserved image quality compared with conventional gating. This new motion-adapted gating approach is based on a k-space-dependent gating threshold function. MR data acquired are only accepted if the motion-induced displacements measured from a reference position are below the chosen gating threshold function. During the MR measurement the scanner analyses respiratory motion decides in real-time which data in k-space could be measured according to the gating threshold function and performs data acquisition. In the present paper the approach will be described and discussed. Simulations based on in vivo data and initial in vivo experiments are presented to compare different variants of the new approach mutually and to the conventional technique. The analysis given is focused on spin warp type sequences, which are the best candidates for this approach.  相似文献   

17.
18.
19.
Geometric distortion, signal-loss, and image-blurring artifacts in echo planar imaging (EPI) are caused by frequency shifts and T(2)(*) relaxation distortion of the MR signal along the k-space trajectory due to magnetic field inhomogeneities. The EPI geometric-distortion artifact associated with frequency shift can be reduced with parallel imaging techniques such as SENSE, while the signal-loss and blurring artifacts remain. The gradient-echo slice excitation profile imaging (GESEPI) method has been shown to be successful in restoring tissue T(2)(*) relaxation characteristics and is therefore effective in reducing signal-loss and image-blurring artifacts at a cost of increased acquisition time. The SENSE and GESEPI methods are complementary in artifact reduction. Combining these two techniques produces a method capable of reducing all three types of EPI artifacts while maintaining rapid acquisition time.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号