首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In mammalian hosts, Leishmania amastigotes are obligatory intracellular parasites of macrophages and multiply within parasitophorous vacuoles of phagolysosomal origin. To understand how they escape the harmful strategies developed by macrophages to kill ingested microorganisms, it is important to obtain information on the functional state of parasitophorous vacuole. For this purpose, we studied the intracellular distribution and activity of host lysosomal proteases in rat bone marrow-derived macrophages infected with Leishmania amazonensis amastigotes. Localization of cathepsins B, H, L, and D was investigated by using specific immunoglobulins. In uninfected macrophages, these enzymes were located in perinuclear granules (most of them were probably secondary lysosomes) which, after infection, disappeared progressively. In infected macrophages, cathepsins were detected mainly in the parasitophorous vacuoles, suggesting that the missing secondary lysosomes had fused with these organelles. Biochemical assays of various proteases (cathepsins B, H, and D and dipeptidyl peptidases I and II) showed that infection was accompanied by a progressive increase of all activities tested, except that of dipeptidyl peptidase II, which remained constant. No more than 1 to 10% of these activities could be attributed to amastigotes. These data indicate that (i) Leishmania infection is followed by an increased synthesis and/or a reduced catabolism of host lysosomal proteases, and (ii) amastigotes grow in a compartment rich in apparently fully active proteases. Unexpectedly, it was found that infected and uninfected macrophages degraded endocytosed proteins similarly. The lack of correlation in infected macrophages between increase of protease activities and catabolism of exogenous proteins could be linked to the huge increase in volume of the lysosomal compartment.  相似文献   

2.
Leishmania amastigotes are intracellular protozoan parasites of mononuclear phagocytes which reside within parasitophorous vacuoles of phagolysosomal origin. The pH of these compartments was studied with the aim of elucidating strategies used by these microorganisms to evade the microbicidal mechanisms of their host cells. For this purpose, rat bone marrow-derived macrophages were infected with L. amazonensis amastigotes. Intracellular acidic compartments were localized by using the weak base 3-(2,4-dinitroanilino)-3'-amino-N-methyldipropylamine as a probe. This indicator, which can be detected by light microscopy by using immunocytochemical methods, mainly accumulated in perinuclear lysosomes of uninfected cells, whereas in infected cells, it was essentially localized in parasitophorous vacuoles, which thus appeared acidified. Phagolysosomal pH was estimated quantitatively in living cells loaded with the pH-sensitive endocytic tracer fluoresceinated dextran. After a 15- to 20-h exposure, the tracer was mainly detected in perinuclear lysosomes and parasitophorous vacuoles of uninfected and infected macrophages, respectively. Fluorescence intensities were determined from digitized video images of single cells after processing and automatic subtraction of background. We found statistically different mean pH values of 5.17 to 5.48 for lysosomes and 4.74 to 5.26 for parasitophorous vacuoles. As for lysosomes of monensin-treated cells, the pH gradient of parasitophorous vacuoles collapsed after monensin was added. This very likely indicates that these vacuoles maintain an acidic internal pH by an active process. These results show that L. amazonensis amastigotes are acidophilic and opportunistic organisms and suggest that these intracellular parasites have evolved means for survival under these harsh conditions and have acquired plasma membrane components compatible with the environment.  相似文献   

3.
The process of interaction between macrophages and promastigote and amastigote forms of Leishmania mexicana amazonensis was analyzed using freeze fracture and cytochemistry. The promastigotes inside endocytic vacuoles of macrophages presented an altered distribution of intramembranous particles and a wavy aspect of the plasma membrane. However, amastigotes did not show such alterations. The membrane alterations are probably caused by intracellular cell lysis of the promastigotes by the macrophages. An accumulation of intramembranous particles was seen in the plasma membrane of amastigote forms in the area of adhesion to the macrophages. The parasitophorous vacuole membrane had intramembranous particles randomly distributed. The enzyme activity of Mg++-ATPase, 5'-nucleotidase and NAD(P)H-oxidase was cytochemically detected, at the ultrastructural level, in normal mouse peritoneal macrophages and in macrophages infected with Leishmania mexicana amazonensis. Mg++-ATPase and 5'-nucleotidase are uniformly distributed throughout the macrophage's plasma membrane but were not detected in the membrane lining endocytic vacuoles containing ingested parasites (parasitophorous vacuole). NAD(P)H-oxidase activity was seen in those portions of the macrophage's plasma membrane which enter in direct contact with parasites and also in association with the membrane of the parasitophorous vacuole. The amount of reaction product, indicative of NAD(P)H-oxidase activity, was larger in macrophages which interacted with the promastigote than in those which interacted with the amastigote form of L. mexicana amazonensis. Concanavalin A binding sites and anionic sites of the macrophage's surface, labeled before the interaction, are not interiorized together with the parasites, however, are observed in endocytic vacuoles which do not contain parasites.  相似文献   

4.
5.
We describe here that parasites of the genus Leishmania contain a cytolytic activity which acts optimally at pH 5.0 to 5.5 and at 37 degrees C in vitro. or the four species examined, Leishmania (Leishmania) amazonensis and Leishmania (Leishmania) major presented considerable hemolytic activity, whereas Leishmania (Viannia) panamensis and Leishmania (Viannia) guyanensis showed little and no hemolytic activity, respectively. The cytolytic factor of L. amazonensis promastigotes was characterized as a protein with no protease-, phospholipase-, or detergent-like activity, probably localized inside membranous vesicles. The use of osmotic protectants revealed the colloid-osmotic nature of hemolysis, which is indicative of pore formation in the membranes of target cells. This putative pore-forming protein also damaged nucleated cells, including macrophages, causing an increase in their membrane permeability with leakage of cytoplasmic proteins. Both promastigotes and amastigotes express this lytic activity, suggesting that the cytolysin may have a function in both stages of this parasite. The pH and temperature required for optimal activity indicate that it might be more effective within the mammalian host, particularly inside the macrophage parasitophorous vacuole. In promastigotes of L. amazonensis, the expression of lytic activity seems to be regulated during their growth in vitro, being maximal at the early stationary phase.  相似文献   

6.
To investigate the importance of serine proteases in Leishmania amazonensis promastigotes, we analyzed the effects of classical serine protease inhibitors and a Kunitz-type inhibitor, obtained from sea anemone Stichodactyla helianthus (ShPI-I), on the viability and morphology of parasites in culture. Classical inhibitors were selected on the basis of their ability to inhibit L. amazonensis serine proteases, previously described. The N-tosyl-L: -phenylalanine chloromethyl ketone (TPCK) and benzamidine (Bza) inhibitors, which are potential Leishmania proteases inhibitors, in all experimental conditions reduced the parasite viability, with regard to time dependence. On the other hand, N-tosyl-lysine chloromethyl ketone (TLCK) did not significantly affect the parasite viability, as it was poor Leishmania enzymes inhibitor. Ultrastructural analysis demonstrated that both Bza and TPCK induced changes in the flagellar pocket region with membrane alteration, including bleb formation. However, TPCK effects were more pronounced than those of Bza in Leishmania flagellar pocket in plasma membrane, and intracellular vesicular bodies was visualized. ShPI-I proved to be a powerful inhibitor of L. amazonensis serine proteases and the parasite viability. The ultrastructural alterations caused by ShPI-I were more dramatic than those induced by the classical inhibitors. Vesiculation of the flagellar pocket membrane, the appearance of a cytoplasmic vesicle that resembles an autophagic vacuole, and alterations of promastigotes shape resulted.  相似文献   

7.
The hypoxia-inducible factor-1alpha (HIF-1alpha) is expressed in response to hypoxia and has been recently demonstrated in a variety of cells such as tumor cells and tumor-associated macrophages. Several characteristics of leishmanial lesions in humans and in animal models, such as microcirculation impairment, metabolic demand for leukocyte infiltration into infected tissue, parasite proliferation, and secondary bacterial infection, are strong indications of a hypoxic microenvironment in the lesions. We evaluated HIF-1alpha expression in the cutaneous lesions of BALB/c mice during Leishmania amazonensis infection. Immunohistochemical analyses of the lesions demonstrated, only in the later stages of infection when the lesion size is maximal and parasite burden is enormous and massive numbers of recruited macrophages and ulcers are observed, positive HIF-1alpha-infected cells throughout the lesions. HIF-1alpha is expressed mainly in the cytoplasm and around parasites inside the parasitophorous vacuoles of macrophages. This is the first evidence that macrophages in the microenvironment of lesions caused by a parasite produce a hypoxia-inducible factor.  相似文献   

8.
In mammalian hosts, Leishmania sp. parasites are obligatory intracellular organisms that invade macrophages and dendritic cells (DC), where they reside in endocytic organelles termed parasitophorous vacuoles (PV). Most of the present knowledge of the characteristics of PV harboring Leishmania sp. is derived from studies with infected macrophages. Since DC play a key role in host resistance to leishmaniasis, there is a need to understand the properties and biogenesis of PV in Leishmania sp.-infected DC. Therefore, we determined the acquisition of endosomal and lysosomal molecules by Leishmania major-containing compartments in DC at different maturation stages, using fluorescence labeling and confocal microscopy. The results show that newly formed phagosomes in DC rapidly develop into late endosomal compartments. However, the small GTPase Rab7, which regulates late fusion processes, was found only in PV of mature bone marrow-derived DC (BMDC); it was absent in immature BMDC, suggesting an arrest of their PV biogenesis at the stage of late endosomes. Indeed, fusion assays with endocytic tracers demonstrated that the fusion activity of L. major-harboring PV toward lysosomes is higher in mature BMDC than in immature BMDC. The inhibition of PV-lysosome fusion in DC is dependent upon the viability and life cycle stage of the parasite, because live promastigotes blocked the fusion almost completely, whereas killed organisms and amastigotes induced a considerable level of fusion activity. The differences in the fusion competences of immature and mature DC may be relevant for their distinct functional activities in the uptake, transport, and presentation of parasite antigens.  相似文献   

9.
Resistance to leishmanial infections depends on intracellular parasite killing by activated host macrophages through the L-arginine-nitric oxide (NO) metabolic pathway. Here we investigate the cell death process induced by NO for the intracellular protozoan Leishmania amazonensis. Exposure of amastigotes to moderate concentrations of NO-donating compounds (acidified sodium nitrite NaNO(2) or nitrosylated albumin) or to endogenous NO produced by lipopolysaccharide or gamma interferon treatment of infected macrophages resulted in a dramatic time-dependent cell death. The combined use of several standard DNA status analysis techniques (including electrophoresis ladder banding patterns, YOPRO-1 staining in flow cytofluorometry, and in situ recognition of DNA strand breaks by TUNEL [terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling] assay) revealed a rapid and extensive fragmentation of nuclear DNA in both axenic and intracellular NO-treated amastigotes of L. amazonensis. Despite some similarities to apoptosis, the nuclease activation responsible for characteristic DNA degradation was not under the control of caspase activity as indicated by the lack of involvement of cell-permeable inhibitors of caspases and cysteine proteases. In contrast, exposure of NO-treated amastigotes with specific proteasome inhibitors, such as lactacystin or calpain inhibitor I, markedly reduced the induction of the NO-mediated apoptosis-like process. These data strongly suggest that NO-induced oligonucleosomal DNA fragmentation in Leishmania amastigotes is, at least in part, regulated by noncaspase proteases of the proteasome. The determination of biochemical pathways leading up to cell death might ultimately allow the identification of new therapeutic targets.  相似文献   

10.
Leishmania-infected macrophages are potential antigen-presenting cells for CD4+ T lymphocytes, which recognize parasite antigens bound to major histocompatibility complex class II molecules (Ia). However, the intracellular sites where Ia and antigens may interact are far from clear, since parasites grow within the modified lysosomal compartment of the host cell, whereas Ia molecules seem to be targeted to endosomes. To address this question, the expression and fate of Ia molecules were studied by immunocytochemistry in Leishmania amazonensis-infected murine macrophages stimulated with gamma interferon. In uninfected macrophages, Ia molecules were localized on the plasma membrane and in perinuclear vesicles, but they underwent a dramatic redistribution after infection, since most of the intracellular staining was then associated with the periphery of the parasitophorous vacuoles (p.v.) and quite often polarized towards amastigote-binding sites. The Ii invariant chain, which is transiently associated with Ia during their intracellular transport, although well expressed in infected macrophages, apparently did not reach the p.v. Similar findings were observed with macrophages from mice either resistant or highly susceptible to Leishmania infection. In order to determine the origin of p.v.-associated Ia, the fate of plasma membrane, endosomal, and lysosomal markers, detected with specific antibodies, was determined after infection. At 48 h after infection, p.v. was found to exhibit a membrane composition typical of mature lysosomes. Overall, these data suggest that (i) Ia located in p.v. originate from secondary lysosomes involved in the biogenesis of this compartment or circulate in several endocytic organelles, including lysosomes and (ii) p.v. could play a role in antigen processing and presentation. Alternatively, the presence of high amounts of Ia in p.v. could be due to a Leishmania-induced mechanism by means of which this organism may evade the immune response.  相似文献   

11.
Leishmania are protozoan parasites which invade mammalian macrophages and multiply as amastigotes in phagolysosomes (parasitophorous vacuoles). Using L. mexicana and bone marrow-derived macrophages (BMM), the question is addressed whether infected BMM induced to express major histocompatibility complex class II molecules can present defined antigens to specific T helper type 1 cells. As a model antigen, a membrane-bound acid phosphatase (MAP), a minor protein associated with intracellular vesicles in amastigotes, was either overexpressed at the surface of the parasites or overexpressed in a soluble form leading to antigen secretion into the parasitophorous vacuole. Presentation of MAP epitopes by these three types of amastigotes was then compared for macrophages containing live parasites or amastigotes inactivated by drug treatment. It is shown that surface-exposed and secreted MAP can be efficiently presented to T cells by macrophages harboring live amastigotes. Therefore, the parasitophorous vacuole communicates by vesicular membrane traffic with the plasmalemma of the host cell. The intracellular MAP of wild-type cells or the abundant lysosomal cysteine proteinases are not or only inefficiently presented, respectively. After killing of the parasites, abundant proteins such as overexpressed MAP and the cysteine proteinases efficiently stimulate T cells, while wild-type MAP levels are not effective. We conclude that intracellular proteins of intact amastigotes are not available for presentation, while after parasite inactivation, presentation depends on antigen abundance and possibly stability. The cell biological and possible immunological consequences of these results are discussed.  相似文献   

12.
Leishmania amastigotes lodge and multiply within parasitophorous vacuoles, which can fuse with secondary lysosomes of the host macrophages. This study examines the effect of infection with amastigotes ofL. mexicana amazonensis on the secondary lysosomes of mouse macrophage cultures. The cultures were stained for the activities of two lysosomal enzyme markers, acid phosphatase and arylsulfatase, and the light microscopic observations were supplemented by electron microscopy. Nearly all noninfected macrophages contained numerous stained secondary lysosomes. The number of such lysosomes was markedly reduced 24 h postinfection, and the reduction persisted for at least 10 days. Stained secondary lysosomes reppeared after the amastigotes were destroyed by exposure of the cultures to phenazine methosulfate or by placing them at 37.5° C. The depletion of lysosomes shown by cytochemical methods may reflect a high rate of fusion of the lysosomes with the parasitophorous vacuoles, exceeding the rate of formation of new secondary lysosomes. Alternatively, the parasites may inhibit the synthesis of lysosomal hydrolases, or the assembly or formation of primary or secondary lysosomes.  相似文献   

13.
Hypoxia (low oxygen tension) is a common feature of inflamed and infected tissues. The influence of hypoxia on macrophage responses to micro-organisms has only recently been studied. This study demonstrates that hypoxia induced macrophages to control Leishmania amazonensis, an intracellular parasite that causes cutaneous and cutaneous metastatic lesions. The mechanisms that contribute to the control of macrophages against L. amazonensis infection under a hypoxic microenvironment are not known. Nitric oxide, TNF-α, IL-10 or IL-12 is not responsible for the decrease in parasitism under hypoxia. Live L. amazonensis entry or exocytosis of internalized particles as well as energetic metabolism was not impaired in infected macrophages; no apoptosis-like death was detected in intracellular parasites. Reactive oxygen species (ROS) is likely to be involved, because treatment with antioxidants N-acetylcysteine (NAC) and ebselen inhibits the leishmanicidal effect of macrophages under hypoxia. Leishmania amazonensis infection induces macrophages to express hypoxia-inducible factor-1 (HIF-1α) and -2 (HIF-2α). Data indicate that hypoxia affects the microbial activities and protein expression of macrophages leading to a different phenotype from that of the normoxic counterpart and that it plays a role in modulating Leishmania infection.  相似文献   

14.
The intracellular fate of liposomes administered intracardially was examined in the liver and spleen of hamsters experimentally infected withLeishmania donovani. Separate groups of animals were treated with liposomes containing either an antileishmanial agent, a colloidal gold marker, or saline. Ultrastructural examinations of lysosomal interactions with the parasitophorous vacuole and with phagocytized liposomes were made. Lysosomes readily fused with the parasitophorous vacuoles but appeared to have little effect on the parasite, possibly due to the production of enzyme inhibitors. Liposomes rapidly became localized in lysosomes subsequent to endocytosis by macrophages. Morphologic evidence suggested that secondary lysosomes containing liposomal residues then fused with the parasitophorous vacuole. Aspects of one possible pathway are discussed which may account for the greatly enhanced effectiveness of liposomal chemotherapy for experimental visceral leishmaniasis.  相似文献   

15.
Leishmania species are intracellular parasites that inhabit a parasitophorous vacuole (PV) within host macrophages and engage with the host endo-membrane network to avoid clearance from the cell. Intracellular Leishmania amastigotes exhibit a high degree of proteolytic/lysosomal activity that may assist degradation of MHC class II molecules and subsequent interruption of antigen presentation. As an aid to further analysis of the endosomal/lysosomal events that could facilitate this process, we have characterised a Leishmania homologue of the late endosomal marker, Rab7, thought to be involved in the terminal steps of endocytosis and lysosomal delivery. The Leishmania major Rab7 (LmRAB7) protein is expressed throughout the life-cycle, shows 73 and 64% identity to Trypanosoma cruzi and Trypanosoma brucei Rab7s (TcRAB7 and TbRAB7), respectively, and includes a kinetoplastid-specific insertion. The recombinant protein binds GTP and polyclonal antibodies raised against this antigen recognise structures in the region of the cell between the nucleus and kinetoplast. By immunoelectron microscopy of axenic amastigotes, Leishmania mexicana Rab7 (LmexRAB7) is found juxtaposed to and overlapping membrane structures labelled for the megasomal marker, cysteine proteinase B, confirming a late-endosomal/lysosomal localisation.  相似文献   

16.
Coxiella burnetii, a rickettsia, and Leishmania amazonensis, a protozoan flagellate, lodge in their host cells within large phagolysosome-like vacuoles. In the present study, C. burnetii-infected Vero or CHO cells were superinfected with L. amazonensis amastigotes to determine if these parasites can home to and survive within heterologous vacuoles. Six hours after superinfection, Leishmania amastigotes were located almost exclusively within large Coxiella-containing vacuoles. Thereafter, the numbers of parasites in the vacuoles increased at the same rate as those in cells infected with L. amazonensis alone. Furthermore, in cultures shifted to 25 degrees C, some of the amastigotes transformed into promastigote-like forms that moved their flagella within the adoptive vacuoles. Thus, L. amazonensis amastigotes not only entered Coxiella vacuoles, most likely by fusion of donor and recipient vacuoles, but temporarily survived, differentiated, and replicated therein. This appears to be the first account of the temporary cohabitation of two living pathogens within the same vacuole in a mammalian cell.  相似文献   

17.
We showed previously that insulin-like growth factor (IGF)-I induces an exacerbation of the lesion development in experimental cutaneous leishmaniasis favouring parasite growth within host macrophages. Here we studied the effect of IGF-I in vitro in BALB/c mouse peritoneal macrophages infected with stationary phase Leishmania amazonensis promastigotes. IGF-I was used to pre-incubate either macrophage or parasite before infection of the macrophages or adding it at the start of the Leishmania-macrophage culture and maintaining it throughout the experimental period. Independent of stimulation protocol, IGF-I induced significantly increased parasite growth within macrophages. Arginase activation considered as a key factor in Leishmania growth was studied, and its expression and activity were increased in Leishmania-infected macrophages but significantly more in infected cells upon IGF-I stimulus, an effect specifically inhibited by NOHA. Arginase known to be present on Leishmania was also studied, and its expression and activity were seen in the absence of any stimulus but significantly increased after 5 min of incubation with IGF-I. In addition, Leishmania was pre-incubated with NOHA for 5 min, washed, then macrophages infected observing a significantly reduced parasite burden in both IGF-I-stimulated and non-stimulated macrophages. Reciprocal decrease in the nitric oxide (NO) level and inhibition of nitric oxide synthase (NOS2) expression were also observed in IGF-I-stimulated infected macrophages. Our data strongly suggest that IGF-I induces preferential expression and activation of Leishmania promastigote arginase, contributes to the alternative activation of macrophages in the context of innate immunity and interferes with NOS pathway in infected macrophages probably as a reciprocal effect.  相似文献   

18.
The purpose of this study was to quantitate biochemically and to localize histochemically the proteases cathepsin B (Cath B), dipeptidyl peptidase I (DPP I), and dipeptidyl peptidase II (DPP II) in experimental pulmonary granulomatosis and fibrosis. These were compared to the prototypical lysosomal hydrolase acid phosphatase (AP). Granulomatosis was induced by the intravenous injection of complete Freund's adjuvant (CFA, 0.2 ml) and fibrosis was induced by the intratracheal instillation of bleomycin sulfate (1 unit) in rats (Wistar, 200 g). Total Cath B, DPP I, and AP activities were markedly elevated over control values five days following both treatments when expressed as activity per lung or as specific activity per milligram protein or milligram DNA. By 14 and 28 days, total activity was elevated for all three enzymes, and activity per milligram DNA remained elevated for Cath B following both treatments and for DPP I 28 days following CFA treatment. Total lung activity of DPP II was significantly elevated at 28 days for both treatments. Histochemical staining indicated that these changes are due, in part, to the influx of inflammatory monocytes and their maturation to macrophages. This study provides a basis for examining the role of these proteases in connective tissue matrix injury during inflammatory processes in the lungs.This work supported in part by NIH grant ES07141.  相似文献   

19.
Leishmania amastigotes, obligatory parasites of macrophages, lodge and multiply within long-lived phagolysosomelike "parasitophorous vacuoles" (PV). The glycoprotein horseradish peroxidase (HRP) was shown, by light and electron microscopic cytochemistry, to enter the PVs of rat in vitro-derived bone marrow macrophages infected with Leishmania mexicana amazonensis. Uptake was obtained both in preinfected macrophages incubated with HRP and in macrophages pulsed with HRP, infected, and further incubated in ligand-free medium. Peroxidase positive and negative PVs could coexist in the same macrophages. Infected macrophages commonly displayed fewer labeled secondary lysosomes than noninfected cells. Lactoperoxidase (LP) was also shown, by light microscopy, to enter the PVs of rat macrophages. Uptake of HRP and of LP was blocked by mannan, supporting the mannose receptor mediated recognition of these ligands. Transfer of HRP to PVs was much less efficient in resident mouse peritoneal macrophages, even at 50 X higher ligand concentrations. Such macrophages expressed negligible mannose receptor function. The efficient mannan-inhibitable uptake of HRP by rat marrow macrophages was confirmed biochemically. Bulk HRP uptake in infected and noninfected cultures was found to be similar. Peroxidases should be useful in further studies of endocytosis by Leishmania-infected macrophages and in the development of lysosomotropic macrophage-targeted drug carriers.  相似文献   

20.
Leishmania donovani causes visceral leishmaniasis (VL) by infecting the monocyte/macrophage lineage and residing inside specialized structures known as parasitophorous vacuoles. The protozoan parasite has adopted several means of escaping the host immune response, with one of the major methods being deactivation of host macrophages. Previous reports highlight dampened macrophage signaling, defective antigen presentation due to increased membrane fluidity, and the downregulation of several genes associated with L. donovani infection. We have reported previously that the defective antigen presentation in infected hamsters could be corrected by a single injection of a cholesterol-containing liposome. Here we show that cholesterol in the form of a liposomal formulation can stimulate the innate immune arm and reactivate macrophage function. Augmented levels of reactive oxygen species (ROS) and reactive nitrogen intermediates (RNI), along with proinflammatory cytokines such as tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6), corroborate intracellular parasite killing. Cholesterol incorporation kinetics is favored in infected macrophages more than in normal macrophages. Such an enhanced cholesterol uptake is associated with preferential apoptosis of infected macrophages in an endoplasmic reticulum (ER) stress-dependent manner. All these events are coupled with mitogen-activated protein (MAP) kinase activation, while inhibition of such pathways resulted in increased parasite loads. Hence, liposomal cholesterol is a potential facilitator of the macrophage effector function in favor of the host, independently of the T-cell arm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号