首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
目的:构建弓形虫SAG1基因原核表达质粒,诱导表达重组蛋白SAG1,分离纯化并检测其免疫反应性。方法:设计一对特异引物,体外扩增SAG1目的基因(双酶切纯化后)定向克隆至质粒pET29a(+)中,转化到大肠埃希菌(Escherichia coli)BL21,采用PCR、双酶切和测序等方法鉴定,并以异丙基-β-D-硫代半乳糖苷(IPTG)进行诱导表达,通过十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)分析重组蛋白的表达情况,经镍离子柱纯化重组蛋白后,用蛋白质印迹(Western blotting)分析与小鼠弓形虫阳性血清的免疫反应性。结果:重组质粒经PCR、双酶切反应和测序鉴定,产物的大小与结构均与预期值相符,经IPTG诱导后,稳定表达相对分子量(Mr)为28950的蛋白,纯化后的重组蛋白经Western blotting分析显示,与小鼠弓形虫感染血清有特异性反应条带。结论:成功构建重组表达质粒pET29a(+)-SAG1,使弓形虫表面抗原SAG1在体外获得表达,分离纯化的SAG1重组蛋白有免疫反应性。  相似文献   

2.
目的 在大肠杆菌中以可溶性形式高效表达弓形虫SAG1基因的截短片段,并进行纯化及免疫反应性鉴定。方法 利用,VcoI、HindⅢ双酶切,从本室建立的pET-30a( )-SAG1重组质粒中获取SAG1基因的截短片段,并将目的片段连接到经同样双酶切的质粒pET32a中,构建表达重组质粒pET-32a( )-trSAG1。将重组质粒转入E.coli BL21中并进行诱导表达。表达蛋白经Ni—NTA agarose纯化后,Western—blotting分析其免疫反应性。结果 成功构建重组质粒pET-32a( )-trSAG1,通过IPTG诱导得到了以可溶性形式表达的重组SAG1蛋白,相对分子质量40000,Western—blotting结果显示纯化的重组蛋白具有良好的免疫反应性,ELISA试验表明重组SAG1蛋白能被弓形虫免疫兔血清及弓形虫感染人血清识别。结论 在大肠杆菌中以可溶性形式高效表达了弓形虫SAG1基因的截短片段,表达蛋白能被弓形虫免疫兔血清及弓形虫感染人血清识别,有望成为一种有价值的诊断抗原。  相似文献   

3.
目的在大肠杆菌中以可溶性形式高效表达弓形虫SAG1基因的截短片段,并进行纯化及免疫反应性鉴定。方法利用NcoⅠ、HindⅢ双酶切,从本室建立的pET-30a( )-SAG1重组质粒中获取SAG1基因的截短片段,并将目的片段连接到经同样双酶切的质粒pET32a中,构建表达重组质粒pET-32a( )-trSAG1。将重组质粒转入E.coliBL21中并进行诱导表达。表达蛋白经Ni-NTA agarose纯化后, Western-blotting分析其免疫反应性。结果成功构建重组质粒pET-32a( )-trSAG1 ,通过IPTG诱导得到了以可溶性形式表达的重组SAG1蛋白,相对分子质量40 000,Western-blotting结果显示纯化的重组蛋白具有良好的免疫反应性,ELISA试验表明重组SAG1蛋白能被弓形虫免疫兔血清及弓形虫感染人血清识别。结论在大肠杆菌中以可溶性形式高效表达了弓形虫SAG1基因的截短片段,表达蛋白能被弓形虫免疫兔血清及弓形虫感染人血清识别,有望成为一种有价值的诊断抗原。  相似文献   

4.
目的:克隆并表达弓形虫SAG1基因成熟蛋白编码区片段,为下一步表达蛋白纯化奠定基础方法:将弓形虫SAG1基因成熟蛋白编码区片段克隆入高效融合表达载体pET32α,转化大肠杆菌B121(DE3),37℃、IPTG诱导表达,SDS—PAGE分析表达产物结果:成功构建重组质粒pET32α—SAG1,经诱导后表达出含外源基因的融合蛋白,SDS—PAGE分析表达产物分子质量约44kDa,结论:弓形虫SAG1成熟蛋白编码区在原核表达系统pET32α/BL21(DE3)中获得成功表达,为下一步表达蛋白纯化提供试验依据。  相似文献   

5.
目的构建弓形虫表面抗原SAG1、SAG3复合基因的真核表达重组质粒,为弓形虫疫苗的研制作准备。方法提取弓形虫基因组DNA;用PCR技术扩增出表面抗原SAG1、SAG3的基因,再分别重组入pGEM-T克隆载体;将pGEM-SAG1和pGEM-SAG3重组质粒分别经酶切、纯化后定向亚克隆入pcDNA3.1(+)真核表达载体,经PCR、酶切及测序等方法对重组子进行鉴定。结果从弓形虫基因组DNA中扩增出SAG1、SAG3基因;构建了pGEM-SAG1、pGEM-SAG3克隆质粒;成功构建pcDNA3.1(+)-SAG1-SAG3真核表达复合基因质粒,测序表明目的基因定向正确连接。结论构建了pcDNA3.1(+)-SAG1-SAG3复合基因表达质粒,为今后研制弓形虫复合多价疫苗提供候选抗原奠定了实验基础。  相似文献   

6.
唐菲  韩思琪  吴焜  陈晓光 《中国热带医学》2013,13(7):786-788,792
目的 克隆表达弓形虫RH株MIC3基因,并对重组蛋白进行免疫反应性分析.方法 应用PCR技术扩增弓形虫RH株MIC3基因,将目的基因片段分别克隆至pET28a(+)和pET32a(+)两种表达载体中构建重组质粒,重组质粒转化至大肠杆菌体BL21(DE3)中,经IPTG诱导表达后,表达产物进行SDS-PAGE电泳分析和Western-blot鉴定.结果 成功从弓形虫RH株基因组DNA中克隆出大小约1080bp MIC3基因片段;重组质粒pET28a-MIC3和pET32a-MIC3经过酶切和PCR鉴定,及测序分析,表明重组质粒构建正确.两种重组质粒分别诱导表达后进行SDS-PAGE电泳分析,诱导表达产物分别在50 KD及70KD左右出现目的条带,Westem-blot分析显示重组蛋白对弓形虫慢性感染小鼠血清具有特异免疫反应性.结论 原核表达了弓形虫MIC3重组蛋白,所表达的重组蛋白具有免疫反应性,为下一步利用重组蛋白进行弓形虫病的诊断和疫苗研究奠定基础.  相似文献   

7.
目的 在原核系统中高效表达弓形虫表面抗原SAG1并利用重组抗原检测弓形虫感染。方法 将截短的SAG1基因经PCR扩增后,定向亚克隆入原核表达载体pET-30a( ),酶切鉴定出阳性重组子并经序列测定证实读码框正确,将重组质粒转化大肠杆菌BL21(DE3),以IPTG诱导表达,对融合的表达产物进行纯化和复性,通过免疫印迹和ELISA实验检测其特异的免疫反应性。结果 成功构建截短型SAG1在原核系统中的重组表达质粒,并以融合蛋白的形式在大肠杆菌中得到了高效表达,其表达量占细菌裂解液中总蛋白量的31.58%。经过简易的纯化和复性过程,该重组抗原(rSAG1)能被弓形虫感染的人血清所识别。用rSAG1构建的ELISA试剂盒对弓形虫病的检测具有高度的敏感性和特异性。结论 截短型SAG1在大肠杆菌中得到了高效表达,重组抗原经纯化和复性后,能有效检测弓形虫的感染,可用于构建弓形虫病检测试剂盒。  相似文献   

8.
弓形虫SAG1成熟蛋白编码区基因在甲醇酵母中的初步表达   总被引:3,自引:0,他引:3  
目的:分析弓形虫主要表膜蛋白SAG1在甲醇酵母高效表达系统表达的可行性。方法:在5′端和3′端引物分别引入EcoRI和SpeI酶切位点,PCR扩增SAG1成熟肽编码区基因,定向克隆到甲醇酵母分泌型表达质粒pMETαA中,构建不带6个组氨酸尾序列的重组质粒。重组质粒被PacI酶切下表达盒,氯化锂化学法转化腺嘌呤营养缺陷型毕赤甲醇酵母株PMD11和PMD16,通过腺嘌呤营养缺陷型选择培养基YPD筛选酵母重组子,并利用MM/MD选择培养板分析外源基因表达盒整合到重组酵母染色体中的方式。筛选甲醇利用野生型的重组酵母,用甲醇诱导表达,并分析SAG1的表达水平,从中筛选高表达转化子。结果:获得了经非同源重组整合到酵母染色体上的能有效利用甲醇作为唯一碳源的PMD11和PMD16转化株。在甲醇诱导后第3天,细胞裂解液SDS-PAGE检测开始出现分子量与目的蛋白预测分子量相同的蛋白带,但PMD11重组株中的该蛋白随培养时间延长而减少,而PMD16重组株中的目的蛋白量未见减少。上清中有40kDa和27kDa的两种蛋白,后的量大于前,并与SAG1成熟肽的大小一致,PMD16株的表达量大于PMD11株,总蛋白量约35μg/ml。结论:弓形虫SAG1基因可在甲醇酵母表达系统中表达,但PMD11宿主菌会降解外源蛋白,而缺失了蛋白酶的PMD16宿主菌能比较高效地表达、分泌SAG1成熟蛋白。  相似文献   

9.
弓形虫SAG1基因功能片段的克隆、表达与抗原性分析   总被引:1,自引:0,他引:1  
目的 重组、表达与纯化弓形虫速殖子主要表面抗原1(SAG1)具有生物活性的功能多肽,分析其抗原性.方法 根据SAG1的基因序列设计引物,截除其前端的信号肽和后端的疏水区,只扩增650 bp的功能区域;将该片段重组入带有His标签的pET-30a(+)质粒,用异丙基-β-D-硫代半乳糖苷(IPTG)诱导其在E.coli中表达,调整诱导表达时间、IPTG浓度等条件,高效稳定地表达出目的 蛋白;镍柱亲和层析法纯化目的 蛋白,Western-blot检验纯化后蛋白的抗原性.结果 成功构建pET-30a(+)/SAG1重组质粒,使其在E.coli中高效稳定地可溶性表达,并确定出在0.5 mmol/L IPTG浓度下诱导12 h为最佳表达条件,Western-blot显示纯化后的蛋白具有良好的抗原性.结论 获得了可溶性的弓形虫SAG1基因功能片段表达的产物,其具有良好的抗原性.  相似文献   

10.
目的 构建弓形虫可遗传及可诱导的RNAi载体系统,为弓形虫基因功能研究提供工具.方法 通过PCR和酶切连接,首先构建弓形虫主要表面抗原1(SAG1)基因启动子驱动的绿色荧光蛋白基因载体pBSK-SAG1/5UTR-eGFP-SAG1/3UTR(pBSK-SAG1/GFP),然后构建以弓形虫热休克蛋白HSP70基因启动子驱动的反向重复序列RNAi载体pBSK-HSP70/5UTR-IntronC-HSP70/3UTR,将载体pBSK-SAG1/GFP中的SAG1/5UTR-eGFP-SAG1/3UTR片段克隆到载体pBSK-HSP70/5UTR-IntronC-HSP70/3UTR中形成载体pBSK-GFP-Hairpin,再将该载体中的GFP-Hairpin片段克隆到载体pHANA-0.5中形成弓形虫可遗传及可诱导的RNAi载体系统pHANA-hairpin.通过PCR分别扩增SAG1和缓殖子蛋白1(BAG1)基因的正向和反向序列,通过酶切连接.将正向和反向序列克隆到载体pHANA-hairpin中.分别构建靶向SAG1和BAG1基因的RNAi载体pHANA-hairpin/SAG1和pHANA-hairpin/BAG1.结果 酶切鉴定和测序结果表明成功构建载体pHANA-hairpin、pHANA-hairpin/SAG1和pHANA-hairpin/BAG1.结论 弓形虫可遗传及可诱导的RNAi载体系统成功构建,为下一步基因功能研究奠定基础.  相似文献   

11.
目的在大肠埃希氏菌(E.coli)中表达弓形虫表面抗原2(SAG2),纯化制备重组蛋白rSAG2。方法采用聚合酶链反应(PCR)技术从弓形虫基因组中扩增出SAG2编码基因片段,以pMD-18T质粒作TA克隆,序列测定后亚克隆入表达载体pGEX-4T-2,并转化E.coliJMl09感受态菌,IPTG诱导表达rSAG2蛋白,重组rSAG2蛋白采用B—PER谷胱甘肽巯基转移酶(GsT)融合蛋白纯化试剂盒纯化并进行SDS—PAGE与免疫印迹(Western—blot)鉴定。结果SAG2编码基因扩增片段大小为469bp;测序结果显示,克隆的SAG2基因序列与GenBank中弓形虫RH株的同源序列(序列号GI:161925)完全一致;所诱导表达的含GST的融合rSAG2蛋白大小约43kDa,纯化后的rSAG2经SDS—PAGE电泳显示一条纯化条带;蛋白免疫印迹结果显示rSAG2能够被兔弓形虫感染血清所识别。结论在大肠埃希氏菌中融合表达了弓形虫SAG2重组蛋白,纯化的rSAG2蛋白具有一定的免疫活性。  相似文献   

12.
目的:构建弓形虫ZS2分离株pWR450-1-MIC1原核表达重组质粒,为进一步表达及免疫做准备。方法:用PCGENE软件分析MIC1基因可能的TB抗原表位,自行设计引物,用聚合酶链反应(PCR)技术从弓形虫ZS2分离株的基因组DNA中扩增编码微线体蛋白1(MCC1)的基因片段,经酶切,连接,重组入pWR450-1原核表达载体,再经含氨苄培养基筛选,酶切,PCR鉴定和测序。结果:从ZS2分离株基因组DNA中扩增出特异的MIC1基因片段,克隆成功pWR450-1-MIC1重组质粒,测序表明MIC1这部分基因与RH株相应碱基序列完全一致。高度保守,为下一步表达及免疫奠定基础。  相似文献   

13.
14.
目的:表达和纯化弓形虫SAG1,分析其免疫原性。方法:将诱导表达SAG1后菌体裂解,离心,分别收集其上清和沉淀;亲和层析分离纯化裂解上清液中的SAG1,SDS-PAGE和Western blot鉴定SAG1纯度和免疫原性。结果:诱导后重组体pGEX-SAG1/Bl21超声裂解上清液、8M脲溶解沉淀的上清中都含有融合蛋白GST-SAG1,从超声裂解上清液中纯化获得融合蛋白GST-SAG1。结论:亲和层析获得具有免疫原性的SAG1。  相似文献   

15.
弓形虫表面抗原P35重组蛋白的表达、纯化及鉴定   总被引:2,自引:1,他引:1  
目的 构建弓形虫R0H株表面抗原P35基因重组表达质粒P35/pGEX-2T,并在大肠杆菌JMl09中进行表达、纯化及鉴定。方法 采用逆转录-聚合酶链反应(RT-PCR)技术从弓形虫CDNA库中扩增出编码P35抗原的基因片段,克隆入表达载体pGEX-2T,并在大肠杆菌JMl09中融合表达,经GSTmp^TM亲和层析柱纯化出P35重组融合蛋白,以SDS-PAGE电泳鉴定纯度、Western-blot鉴定抗原性。结果成功构建了重组表达质粒P35/pGEX-2T,融合表达产物的分子质量约为70kDa;该蛋白抗原能为谷胱甘肽S转移酶(GST)单克隆抗体及弓形虫感染的兔血清所识别。结论弓形虫表面抗原P35在大肠杆菌中有效表达,纯化蛋白有良好的免疫活性。  相似文献   

16.
弓形虫核酸(DNA)免疫系列研究   总被引:1,自引:0,他引:1       下载免费PDF全文
 本系列研究筛选了弓形虫(Toxoplasma)速殖子表膜主要抗原(SAG1或P30)及分泌排泄抗原棒状体蛋白基因(ROPl),并将二者拼接构建复合基因(sAG1/ROP1),对其进行扩增、克隆、表达,制备真核表达质粒,接种小鼠,研究其免疫保护效应,为弓形虫核酸疫苗的研制提供有积极意义的科学根据。  相似文献   

17.
目的构建弓形虫三种不同毒株pMD-18-T/GRA1重组质粒.方法从接种了弓形虫三种不同毒株RH株、桂弓株、B36株的小鼠腹水中收集、纯化虫体,提取基因组DNA.应用PCR技术,分别扩增出三个不同虫株的致密颗粒蛋白1(GRA1)目的基因片段.将此目的基因片段插入PCR产物克隆专用载体pMD-18-T中,转化大肠埃希菌JM109,PCR鉴定其准确性.结果获得弓形虫三种不同毒株GRA1目的基因片段为785 bp.构建了pMD-18-T/GRA1重组质粒,经鉴定与预期理论值相符.结论成功构建了弓形虫三种不同毒株pMD-18-T/GRA1重组质粒.进行弓形虫不同毒株的GRA1基因测序,为研究其同源性及进一步应用研究创造了条件.  相似文献   

18.
弓形虫ROP2基因的体外扩增及真核表达重组质粒的构建   总被引:5,自引:0,他引:5  
目的 构建弓形虫棒状体蛋白2(ROP2)基因真核表达重组质粒,方法 根据ROP2基因已知序列,设计合成一对引物,上,下游引物分别引入EcoRI,SalI酶切位点,用PCR方法从弓形虫RH株基因组DNA中扩增编码ROP2的基因片段,插入pGEX-4T-1质粒,构建原核表达重组质粒pGEX-4T-1-ROP2,而后经EcoRI,NotI双酶切除ROP2基因片段,再亚克隆到载体pcDNA3中构建真核表达重组质粒pcDNA3-ROP2。结果 ROP2基因体外扩增产物大小约1043bp,重组质粒经酶切及PCR鉴定表明获得正确重组子,克隆基因测序结果与已知序列基本吻合。结论 在国内首次克隆了弓形虫ROP2基因并构建了真核表达质粒pcDNA3-ROP2。为下一步弓形虫DNA疫苗研究打下了基础。  相似文献   

19.
目的 构建弓形虫棒状体蛋白2(POP2)基因真核表达重组质粒。方法 根据ROP2基因已知序列,设计合成一对引物,上、下游引物分别引入EcoRI、SalI酶切位点,用PCR方法从弓形虫RH株基因组DNA中扩增编码ROP2的基因片段,插入pGEX-4T-1质粒,构建原核表达重组质粒pGEX-4T-1-ROP2,而后经EcoR I、Not I双酶切出ROP2基因片段,再亚克隆到载体pcDNA3中构建真核表达重组质粒pcDNA3-ROP2。结果 ROP2基因体外扩增产物大小约1043bp,重组质粒经酶切及PCR鉴定表明获得正确重组子,克隆基因测序结果与已知序列基本吻合。结论 在国内首次克隆了弓形虫ROP2基因并构建了真核表达质粒pcDNA3-ROP2,为下一步弓形虫DNA疫苗研究打下了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号