共查询到20条相似文献,搜索用时 15 毫秒
1.
TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-beta 总被引:1,自引:0,他引:1
Toll-like receptor 4 (TLR4) induces two distinct signaling pathways controlled by the TIRAP-MyD88 and TRAM-TRIF pairs of adaptor proteins, which elicit the production of proinflammatory cytokines and type I interferons, respectively. How TLR4 coordinates the activation of these two pathways is unknown. Here we show that TLR4 activated these two signaling pathways sequentially in a process organized around endocytosis of the TLR4 complex. We propose that TLR4 first induces TIRAP-MyD88 signaling at the plasma membrane and is then endocytosed and activates TRAM-TRIF signaling from early endosomes. Our data emphasize a unifying theme in innate immune recognition whereby all type I interferon-inducing receptors signal from an intracellular location. 相似文献
2.
Kawai T Takahashi K Sato S Coban C Kumar H Kato H Ishii KJ Takeuchi O Akira S 《Nature immunology》2005,6(10):981-988
3.
Sánchez D Lefebvre C Rioux J García LF Barrera LF 《International journal of immunogenetics》2012,39(3):216-223
Immunological studies have supported the idea that innate immunity is critical for the control of Mycobacterium tuberculosis (Mtb) infection in humans. Despite the overwhelming evidence showing the critical role of Toll-like receptors (TLRs) in the in vitro recognition of Mtb, the in vivo significance of individual TLRs has been more difficult to demonstrate consistently. We were interested in examining the role of genes of TLRs and molecules involved in their signalling cascades, and a case-control study was designed to test the association of polymorphisms of these innate immune genes with pulmonary tuberculosis (TB) in a Colombian population. In this study, we did not find an association with TLR2, TLR4, TLR9, MyD88 or MAL/TIRAP polymorphic variants. These findings suggest that those genes are not involved as risk factors for pulmonary TB in our population. 相似文献
4.
A series of recent studies, including an article in this issue of the European Journal of Immunology, have demonstrated that the administration of CpG-rich oligodeoxynucleotides (CpG-ODN) in experimental settings may lead to the activation of the immunosuppressive pathway of tryptophan catabolism, depending on several factors, including the route of CpG-ODN administration. These studies call attention to the need for a careful evaluation of the modalities of inclusion of CpG-ODN in vaccines for human use. At the same time, these studies may offer novel opportunities for use of CpG-ODN as immunosuppressive agents and may also lead to an improved understanding of the cellular events mediated by Toll-like receptor 9 signaling. 相似文献
5.
Shingai M Azuma M Ebihara T Sasai M Funami K Ayata M Ogura H Tsutsumi H Matsumoto M Seya T 《International immunology》2008,20(9):1169-1180
Monocyte-derived dendritic cells (mDCs) recognize viral RNA extrinsically by Toll-like receptor (TLR) 3 on the membrane and intrinsically retinoic acid-inducible gene I (RIG-I)/melanoma differentiation-associated gene 5 (MDA5) in the cytoplasm to induce type I IFNs and mDC maturation. When mDCs were treated with live or UV-irradiated respiratory syncytial virus (RSV), early ( approximately 4 h) induction of IFN-beta usually occurs in other virus infections was barely observed. Live RSV subsequently replicated to activate the cytoplasmic IFN-inducing pathway leading to robust type I IFN induction. We found that RSV initial attachment to cells blocked polyI:C-mediated IFN-beta induction, and this early IFN-beta-modulating event was abrogated by antibodies against envelope proteins of RSV, demonstrating the presence of a IFN-regulatory mode by early RSV attachment to host cells. By IFN-stimulated response element (ISRE) reporter analysis in HEK293 cells, polyI:C- or LPS-mediated ISRE activation was dose dependently inhibited by live and inactive RSV to a similar extent. Of the RSV envelope proteins, simultaneously expressed or exogenously added RSV G or soluble G (sG) proteins inhibited TLR3/4-mediated ISRE activation in HEK293 cells. sG proteins expressed in cells did not affect the RIG-I/MDA5 pathway but inhibited the TLR adaptor TRIF/TICAM-1 pathway for ISRE activation. Finally, extrinsically added sG protein suppressed the production of IFN-beta in mDCs. Although the molecular mechanism of this extrinsic functional mode of the RSV G glycoprotein (G protein) remains undetermined, G proteins may neutralize the fusion glycoprotein function that promotes IFN-mediated mDC modulation via TLR4 and may cause insufficient raising cell-mediated immunity against RSV. 相似文献
6.
7.
The calcium-independent protein kinase C participates in an early process of CD3/CD28-mediated induction of thymocyte apoptosis 下载免费PDF全文
Asada A Zhao Y Komano H Kuwata T Mukai M Fujita K Tozawa Y Iseki R Tian H Sato K Motegi Y Suzuki R Yokoyama M Iwata M 《Immunology》2000,101(3):309-315
Thymocyte negative selection eliminates self-reactive clones and involves both a T-cell receptor (TCR)/CD3-mediated signal and a costimulatory signal, which can be delivered via CD28. Anti-CD3/anti-CD28-triggered apoptosis in isolated CD4+CD8+ thymocytes in vitro provides a basic model for negative selection. Effects of isoform-selective and non-isoform-selective inhibitors of protein kinase C (PKC) on this apoptotic process suggest that activation of Ca2+-independent PKC isoforms during the first 2-3 hr of culture is essential for inducing apoptosis, and that Ca2+-dependent PKC isoforms may be influential, but not essential, for apoptosis. To assess the CD3/CD28-mediated activation of PKC in the apoptotic process, we prepared CD4+CD8+ thymocytes (without contamination with cells that had received negative or positive selection signals in vivo) by establishing TCR-transgenic mice with RAG-2-deficient and non-selecting major histocompatibility complex (MHC) backgrounds, in addition to a CD4+CD8+ thymocyte-enriched population from normal mice. Translocation of Ca2+-independent PKC from the cytosolic fraction to the particulate fraction of CD4+CD8+ thymocytes was induced by CD3/CD28-mediated stimulation, but not by CD3- or CD28-mediated stimulation alone, and peaked 2 hr after the start of culture. The kinase activity of the translocated Ca2+-independent PKC was dependent on cofactors in vitro, indicating that novel (n)PKC, but not atypical (a)PKC or a proteolytic PKC fragment, was responsible for the activity. Immunoblotting analysis indicated that the nPKC-theta isoform was the major contributor among nPKC isoforms, and that the classical (c)PKC-alpha isoform was the major contributor among cPKC isoforms. These results suggest that activation of nPKC (especially the theta isoform) in CD4+CD8+ thymocytes is involved in a pathway for negative selection. 相似文献
8.
DAP12 is a signaling adaptor containing an immunoreceptor tyrosine-based activation motif (ITAM) that pairs with receptors on myeloid cells and natural killer cells. We examine here the responses of mice lacking DAP12 to stimulation through Toll-like receptors (TLRs). Unexpectedly, DAP12-deficient macrophages produced higher concentrations of inflammatory cytokines in response to a variety of pathogenic stimuli. Additionally, macrophages deficient in spleen tyrosine kinase (Syk), which signals downstream of DAP12, showed a phenotype identical to that of DAP12-deficient macrophages. DAP12-deficient mice were more susceptible to endotoxic shock and had enhanced resistance to infection by the intracellular bacterium Listeria monocytogenes. These data suggest that one or more DAP12-pairing receptors negatively regulate signaling through TLRs. 相似文献
9.
10.
11.
Spitzer JH Visintin A Mazzoni A Kennedy MN Segal DM 《European journal of immunology》2002,32(4):1182-1187
Toll-like receptor 4 (TLR4) is the signal-transducing component of the LPS recognition complex and is essential for LPS-induced septic shock. Here we demonstrate that TLR1 has the capacity to abrogate TLR4 signaling. Human microvascular endothelial cells express TLR4 but not TLR1 and respond to LPS through TLR4. The ability of these cells to respond to LPS was lost, however, when they were transfected with TLR1. Inhibition was specific for TLR1 because TL5 failed to block TLR4 function. Moreover, TLR1 had no effect upon TNF-alpha signaling, indicating that TLR1 operated at a step upstream of the convergence between the two pathways. Inhibition of TLR4 signaling was mediated by the extracellular, but not cytoplasmic domain of TLR1. In addition, TLR1 physically associated with TLR4 in co-precipitation experiments. These findings suggest that TLR1 might restrain potentially dangerous innate response to LPS by binding to TLR4 and preventing the formation of active signaling complexes. 相似文献
12.
Sterile-alpha and Armadillo motif containing protein (SARM) was recently identified as the fifth member of the Toll-like receptor (TLR) adaptor family. Whilst the Caenorhabditis elegans SARM homologue, TIR-1, is crucial for efficient immune responses against bacterial infections, human SARM was demonstrated to function as a specific inhibitor of TRIF-dependent TLR signaling. The opposing role of SARM in C. elegans and human is intriguing, prompting us to seek clarification on the enigmatic function of SARM in an ancient species which relies solely on innate immunity for survival. Here, we report the discovery of a primitive but functional SARM (CrSARM) in the immune defense of a "living fossil", the horseshoe crab, Carcinoscorpius rotundicauda. CrSARM shares numerous signature motifs and displays significant homology with vertebrate and invertebrate SARM homologues. CrSARM downregulates TRIF-dependent TLR signaling suggesting the conservation of SARM function from horseshoe crab to human. During infection by Pseudomonas aeruginosa, CrSARM is rapidly upregulated within 3h and strongly repressed at 6h, coinciding with the timing of bacterial clearance, thus demonstrating its dynamic role in innate immunity. Furthermore, yeast-two-hybrid screening revealed several potential interaction partners of CrSARM implying the role of SARM in downregulating TLR signaling events. Altogether, our study shows that, although C. elegans SARM upregulates immune signaling, its disparate role as a suppressor of TLR signaling, specifically via TRIF and not MyD88, is well-conserved from horseshoe crab to human. 相似文献
13.
Avlas O Fallach R Shainberg A Porat E Hochhauser E 《Antioxidants & redox signaling》2011,15(7):1895-1909
Toll-like receptors (TLRs) have been identified as primary innate immune receptors for the recognition of pathogen-associated molecular patterns by immune cells, initiating a primary response toward invading pathogens and recruitment of the adaptive immune response. TLRs, especially Toll-like receptor 4 (TLR4), can also be stimulated by host-derived molecules and are expressed in the cardiovascular system, thus acting as a possible key link between cardiovascular diseases and the immune system. TLR4 is involved in the acute myocardial dysfunction caused by septic shock and myocardial ischemia. We used wild-type (WT) mice, TLR4-deficient (TLR4-knockout [ko]) mice, and chimeras that underwent myeloablative bone marrow transplantation to dissociate between TLR4 expression in the heart (TLR4-ko/WT) and the immunohematopoietic system (WT/TLR4-ko). Following lipopolysaccharide (LPS) challenge (septic shock model) or coronary artery ligation, myocardial ischemia (MI) model, we found WT/TLR4-ko mice challenged with LPS or MI displayed reduced cardiac function, increased myocardial levels of interleukin-1β and tumor necrosis factor-α, and upregulation of mRNA encoding TLR4 prior to myocardial leukocyte infiltration. The cardiac function of TLR4-ko or WT/TLR4-ko mice was less affected by LPS and demonstrated reduced suppression by MI compared with WT. These results suggest that TLR4 expressed in the cardiomyocytes plays a key role in this acute phenomenon. 相似文献
14.
15.
Reconstitution of synaptic vesicle formation in vitro has revealed a pathway of synaptic vesicle biogenesis from endosomes that requires the heterotetrameric adaptor complex AP3. Because synaptic vesicles have a distinct protein composition, the AP3 complex should selectively recognize some or all of the synaptic vesicle proteins. Here we show that one element of this recognition process is the v-SNARE, VAMP-2, because tetanus toxin, which cleaves VAMP-2, inhibited the formation of synaptic vesicles and their coating with AP3 in vitro. Mutant tetanus toxin and botulinum toxins, which cleave t-SNAREs, did not inhibit synaptic vesicle production. AP3-containing complexes isolated from coated vesicles could be immunoprecipitated by a VAMP-2 antibody. These data imply that AP3 recognizes a component of the fusion machinery, which may prevent the production of inert synaptic vesicles. 相似文献
16.
Profile of Toll-like receptor expressions and induction of nitric oxide synthesis by Toll-like receptor agonists in chicken monocytes 总被引:1,自引:0,他引:1
Toll-like receptors (TLRs) play a major role in the innate immune system for initial recognition of microbial pathogens and pathogen associated components. Nitric oxide (NO) is generated in immune cells in response to microbial stimulation and is involved in pathogenesis and control of infection. We used RT-PCR analysis to examine the TLR expression profile on chicken monocytes and demonstrated these cells express chicken TLR2, 3, 4, 6, and 7. TLR5 was not detected by the TR-PCR. We also investigated the differential induction of NO synthesis in chicken monocytes by TLR agonists, including flagellin (FGN, from Salmonella typhimurium), synthetic lipoprotein Pam3CSK4 (PAM), lipopolysaccharide (LPS, from Salmonella enteritidis), lipoteichoic acid (LTA, from Staphylococcus aureus), the synthetic double stranded RNA analog (poly I:C), the guanosine analog, loxoribine (LOX), and synthetic CpG oligodeoxydinucleotide (CpG-ODN). Our results indicate that there was a vast difference among these agonists for their ability to induce NO production. CpG-ODN and LPS were the most potent stimuli and induced significant quantities of NO in cultured monocytes, whereas LTA stimulated significant NO production only at high concentrations. Other agonists such as FGN and poly I:C stimulated very little NO, while PAM, LOX, and nCpG-ODN (control ODN) did not induce NO production. RT-PCR analysis demonstrated that LPS, LTA, and CpG-ODN induced inducible nitric oxide synthase (iNOS) expression in monocytes; whereas the other agonists did not. The presence of TLRs on chicken monocytes and the differential induction of NO production in chicken monocytes by various TLR agonists suggest the differentiation of signaling pathways downstream of individual TLRs. 相似文献
17.
Distribution of Toll-like receptor 1 and Toll-like receptor 2 in human lymphoid tissue 总被引:2,自引:0,他引:2
To determine how distinct receptors of the immune system can contribute to innate immunity, we investigated the pattern of Toll-like receptor 1 (TLR1) and TLR2 expression in human lymphoid tissue. We found that TLR1 and TLR2 were co-expressed on cells of the innate immune system, including macrophages and dendritic cells. In addition, TLR1 and TLR2 were expressed in mucosa-associated lymphoid tissue on tonsillar crypt epithelium. Of the lymphoid tissue examined, spleen expressed the highest levels of TLR2. Although TLR1- and TLR2-positive cells were in close proximity to T lymphocytes in vivo, lymphocytes themselves were devoid of TLR1 and TLR2 expression. The co-expression of TLR1 and TLR2 on myeloid cells in lymphoid tissue provides the host with the ability to respond to a variety of microbial ligands at sites conducive to the generation of an immune response. 相似文献
18.
19.
Interleukin 1 receptor (IL-1R) and Toll-like receptors (TLRs) induce inflammatory genes through the complex of MyD88, IL-1R-associated protein kinase (IRAK) and tumor necrosis factor receptor-associated factor 6 (TRAF6), which is believed to function 'upstream' of the cascades of IkappaB kinase (IKK) and nuclear factor-kappaB (NF-kappaB); extracellular signal-regulated protein kinase (ERK); c-Jun N-terminal kinase (JNK); and p38 mitogen-activated protein kinase (MAPK). Here we show that MAPK-ERK kinase kinase (MEKK3) is an essential signal transducer of the MyD88-IRAK-TRAF6 complex in IL-1R-TLR4 signaling. MEKK3 forms a complex with TRAF6 in response to IL-1 and lipopolysaccharide (LPS) but not CpG, and is required for IL-1R- and TLR4-induced IL-6 production. Furthermore, MEKK3 is crucial for IL-1- and LPS-induced activation of NF-kappaB and JNK-p38 but not ERK, indicating that MAPKs are differentially activated during IL-1R-TLR4 signaling. These data demonstrate that MEKK3 is crucial for IL-1R and TLR4 signaling through the IKK-NF-kappaB and JNK-p38 MAPK pathways.*Note: In the version of this article originally published online, the third author's name was incorrect. The correct author name should be Yong Lin. This error has been corrected for the HTML and print versions of this article. 相似文献
20.