首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
4.
5.
Long-lasting alternative splicing of neuronal acetylcholinesterase (AChE) pre-mRNA occurs during neuronal development and following stress, altering synaptic properties. To explore the corresponding molecular events, we sought to identify mRNAs encoding for abundant splicing factors in the prefrontal cortex (PFC) following stress. Here we show elevated levels of the splicing factor SC35 in stressed as compared with na?ve mice. In cotransfections of COS-1 and HEK293 cells with an AChE minigene allowing 3' splice variations, SC35 facilitated a shift from the primary AChE-S to the stress-induced AChE-R variant, while ASF/SF2 caused the opposite effect. Transfection with chimeric constructs comprising of SC35 and ASF/SF2 RRM/RS domains identified the SC35 RRM as responsible for AChE mRNA's alternative splicing. In poststress PFC neurons, increased SC35 mRNA and protein levels coincided with selective increase in AChE-R mRNA. In the developing mouse embryo, cortical progenitor cells in the ventricular zone displayed transient SC35 elevation concomitant with dominance of AChE-R over AChE-S mRNA. Finally, transgenic mice overexpressing human AChE-R, but not those overexpressing AChE-S, showed significant elevation in neuronal SC35 levels, suggesting a reciprocal reinforcement process. Together, these findings point to an interactive relationship of SC35 with cholinergic signals in the long-lasting consequences of stress on nervous system plasticity and development.  相似文献   

6.
7.
8.
We have identified highly similar heterozygous COL6A1 genomic deletions, spanning from intron 8 to exon 13 or intron 13, in two patients with Ullrich congenital muscular dystrophy and the milder Bethlem myopathy. The 5' breakpoints of both deletions are located within a minisatellite in intron 8. The mutations cause in-frame deletions of 66 and 84 amino acids in the amino terminus of the triple-helical domain, leading to intracellular accumulation of mutant polypeptides and reduced extracellular collagen VI microfibrils. Our studies identify a deletion-prone region in COL6A1 and suggest that similar mutations can lead to congenital muscle disorders of different clinical severity.  相似文献   

9.
10.
At the vertebrate skeletal neuromuscular junction (NMJ), two closely related enzymes can hydrolyze acetylcholine (ACh): acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Advances in mouse genomics offer new approaches to assess the role of specific cholinesterases involved in neuromuscular transmission (Minic et al., 2003). AChE knockout mice provide a valuable tool for examining the effects of long-term complete and selective abolition of AChE activity (Xie et al., 2000). AChE and BChE genes encode two functional domains--the catalytic domain (exons 2, 3, and 4 of AChE, or exon 2 of BChE) and a C-terminal domain (exon 5 or 6 of AChE, or exon 3 of BChE)--that dictate the targeting of the enzymes (Massoulié, 2002). In mammals, the AChE gene produces three types of coding regions by deleting 5'- splice acceptor sites, which generate proteins; these proteins possess the same catalytic domain associated with distinct C-terminal peptides. AChE subunits of type R (readthrough) produce soluble monomers; they are expressed during development and are thought to be induced in the mouse brain by stress (Kaufer et al., 1998). AChE subunits of type H (hydrophobic) produce GPI-anchored dimers, mainly in blood cells. Subunits of type T (tailed) exist for both AChE and BChE. They represent the predominant AChE variant expressed in cholinergically innervated tissues (muscle and nerve). These subunits generate a variety of quaternary structures, including homomeric oligomers (monomers, dimers, tetramers), as well as hetero-oligomeric assemblies with anchoring proteins ColQ (Krejci et al., 1997) and PRiMA (Perrier et al., 2002). At the NMJ, AChE is clustered by the interaction of the coding sequence of exon 6 with ColQ (Feng et al., 1999). The deletion of exons 5 and 6 in the AChE gene transforms anchored AChE into a soluble enzyme (Camp et al., 2004). The present study was designed to evaluate neuromuscular transmission and nicotinic ACh receptor (nAChR) distribution in muscles from mutant mice with deletions of these two spliced exons (AChE-del-exons-5+6-/-).  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号