首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cutaneous burn injury-induced T lymphocyte suppression is a well-known phenomenon. In this study, we evaluated the effect of treatment of burn rats with pentoxifylline (PTX) on the burn-induced suppression of T lymphocytes. Anesthetized rats were subjected to 30% total body surface area burn by exposing skin to 95 degrees C water for 10 s. T lymphocytes were isolated from sham and burn rats with or without PTX treatment (120 mg/kg, ip). T cell proliferation and interleukin (IL)-2 production in response to T cell mitogen concanavalin A was measured using 3 H-thymidine uptake and enzyme-linked immunosorbent assay, respectively. P59 fyn autophosphorylation and its kinase activity was determined using in vitro kinase assay. In addition, T lymphocyte Ca2+ signaling was assessed using Ca2+ imaging technique. Two days after injury, there was a significant decrease in mesenteric lymph node T cell proliferation and IL-2 production in burn injured rats compared with those obtained from sham-injured rats. This decrease in T cell proliferation and IL-2 production in burn-injured rats was accompanied by a significant suppression in both P59 autophophorylation and kinase activity as well as Ca2+ signaling. Treatment of burn-injured rats with PTX produced a near complete recovery of T cell proliferation and IL-2 production. Furthermore, PTX treatment also prevented the burn-mediated suppression in P59fyn and kinase activity as well as restored Ca2+ signaling similar to those observed in sham injured rats. These findings altogether suggested that PTX treatment attenuate T cell suppression in burn-injured rats and that the effects of PTX are mediated via modulating P59 fyn and Ca2+ signaling.  相似文献   

2.
Increased gut bacterial translocation in burn and trauma patients has been demonstrated in a number of previous studies, however, the mechanism for such an increased gut bacterial translocation in injured patients remains poorly understood. Utilizing a rat model of burn injury, in the present study we examined the role of intestinal immune defense by analyzing the T cell functions. We investigated if intestinal T cells dysfunction contributes to bacterial translocation after burn injury. Also our study determined if burn-mediated alterations in intestinal T cell functions are related to enhanced release of PGE2. Finally, we examined whether or not burn-related alterations in intestinal T cell function are due to inappropriate activation of signaling molecule P59fyn, which is required for T cell activation and proliferation. The results presented here showed an increase in gut bacterial accumulation in mesenteric lymph nodes after thermal injury. This was accompanied by a decrease in the intestinal T cell proliferative responses. Furthermore, the treatments of burn-injured animals with PGE2 synthesis blocker (indomethacin or NS398) prevented both the decrease in intestinal T cell proliferation and enhanced bacterial translocation. Finally, our data suggested that the inhibition of intestinal T cell proliferation could result via PGE2-mediated down-regulation of the T cell activation-signaling molecule P59fyn. These findings support a role of T cell-mediated immune defense against bacterial translocation in burn injury.  相似文献   

3.
TGF-beta is known to inhibit many of the immune cell functions including T cell proliferation and IL-2 production. The mechanism of such TGF-beta-mediated inhibition of T cell functions is poorly understood. The present study examined the effects of TGF-beta on the activation of protein tyrosine kinases (PTK) P56lck, P59fyn, and Zap-70, and protein tyrosine phosphatases (PTP) SHP-1 and SHP-2. A balance between the actions of PTK and PTP is critical for appropriate T cell activation. These studies were carried out using nylon wool-purified splenic T cells from healthy Sprague-Dawley rats. Results from these studies showed that incubation of T cells with TGF-beta inhibited the activation of P56lck, P59fyn and Zap-70. The decrease in these three protein tyrosine kinases was accompanied by an increase in the activation of the protein tyrosine phosphatase SHP-1. There was no change in the phosphorylation of SHP-2 with and without pretreatment of T cells with TGF-beta. The decrease in P56lck, P59fyn kinase activity, and Zap-70 phosphorylation was prevented when T cells were stimulated with anti-CD3 in the presence of pervanadate, an inhibitor of PTP. These results suggested that TGF-beta-mediated inhibition of P56lck, P59fyn, and Zap-70 is likely due to an up-regulation of protein tyrosine phosphatases such as SHP-1.  相似文献   

4.
OBJECTIVE: To determine the effects of an immune-enhancing diet supplemented with glutamine, arginine, fish oil, and dietary nucleotides on mesenteric lymph node T-cell functional disturbances encountered after burn injury in rats. DESIGN: A prospective animal study. SETTING: University medical center research laboratory. SUBJECTS: Adult male Sprague-Dawley rats. INTERVENTIONS: Rats received a 30%, total body surface, full-thickness burn. Burn-injury rats received the IMPACT diet supplemented with glutamine, arginine, fish oil, and nucleotides or arginine, fish oil, and nucleotides, or an isocaloric/isonitrogenous diet without supplementation with glutamine, arginine, fish oil, or nucleotides. MEASUREMENTS AND MAIN RESULTS: Two days after injury, we found a significant decrease in the proliferation and interleukin-2 production by mesenteric lymph node T cells derived from rats fed on conventional chow compared with sham rats. The burn-related suppression of mesenteric lymph node T-cell proliferation and interleukin-2 production was prevented when the rats were fed on a high-protein diet rich in glutamine, arginine, fish oil, and nucleotides. We found that the immunostimulatory effects of the enriched diet are dependent on the presence of glutamine, arginine, fish oil, and nucleotides as feeding of rats on the isocaloric/isonitrogenous diet deficient in glutamine, arginine, fish oil, and nucleotides did not prevent the burn-related suppression of mesenteric lymph node T-cell dysfunction. Finally, our studies suggested that immunostimulatory effects of the diet are mediated by prostaglandin E(2) regulation of T-cell activation signaling molecule P59fyn. CONCLUSION: These results suggest that a diet rich in arginine, fish oil, and nucleotides, with and without glutamine, can effectively prevent T-cell dysfunction encountered after burn injury.  相似文献   

5.
6.
Although there are many reports of circadian variation in hormone secretion, there are only a few reports on the relationship between circadian rhythm and cytokine production. The aim of the present studies was to investigate whether there is a circadian effect on cytokine production of splenic lymphocytes and adherent splenocytes in mice after burn or sham injury. We selected day 7 after injury for our determinations because we have previously shown day 7 is the time of maximal suppression of T cell IL-2 and IFNgamma production and maximal increase in adherent cell proinflammatory cytokine secretion in this model. IL-2 and TNFalpha were chosen as reference cytokines since the former is known to be produced by T cells and the latter by adherent cells of the innate immune system. The results showed that seven days after sham or thermal injury both T cell IL-2 and adherent cell TNFalpha production were altered by time of injury or time of cell harvest. IL-2 secretion was significantly decreased in burn compared to sham animals when splenocytes were harvested in the morning; the decrease was non-significant when splenocytes were harvested in the afternoon. TNFalpha secretion was significantly increased in burn vs. sham adherent cells only when injury took place in the morning. The observed circadian variations in cytokine production could have a significant effect on cytokine levels measured in clinical and animal studies of injury and may explain some of the reported discrepancies among these studies.  相似文献   

7.
Previously, we have shown that acute alcohol (EtOH) intoxication before burn injury potentiates the suppression of mesenteric lymph node T-cell effector responses. Moreover, the suppression in T-cell was accompanied with a decrease in p-38 and extracellular-signal-regulated kinase (ERK) activation. This study examined the role of protein tyrosine phosphatases (PTP) in suppressed T-cell p-38, ERK, and cytokine production after EtOH intoxication and burn injury. A blood EtOH level of approximately 100 mg/dl in male rats (approximately 250 g) was achieved by gavaging animals with 5 ml of 20% EtOH suspension 4 hours before burn or sham injury (approximately 12.5% or 25% total body surface area [TBSA]). One day after injury, rats were killed and mesenteric lymph node T-cell cytokine (IL-2/IFN-gamma) production, p-38, and ERK activation were measured. As compared with shams, there was a significant decrease in T-cell cytokine production after 25% and not 12.5% TBSA burn injury. However, T-cell IL-2/IFN-gamma levels were significantly decreased in rats receiving a combined insult of EtOH and burn injury regardless of the percentage of burn area. Furthermore, we found a significant decrease in p-38 and ERK-1/2 phosphorylation in T-cells of rats receiving a combined insult of EtOH and 12.5% TBSA burn compared with shams. Treatment of cells with PTP inhibitor pervanadate (10 muM) prevented T-cell p-38/ERK suppression. The suppression in IL-2/IFN-gamma production was also attenuated in T-cells cultured in the presence of pervanadate. These findings suggest that an increase in PTP activity may contribute to T-cell suppression after EtOH intoxication and burn injury.  相似文献   

8.
Recent observations suggest that the src-related tyrosine protein kinase p59fyn may be involved in antigen-induced T lymphocyte activation. As a result of alternative splicing, p59fyn exists as two isoforms that differ exclusively within a short sequence spanning the end of the Src Homology 2 (SH2) region and the beginning of the tyrosine protein kinase domain. While one p59fyn isoform (fynB) is highly expressed in brain, the alternative product (fynT) is principally found in T lymphocytes. To further understand the role of p59fyn in T cell activation and to test the hypothesis that p59fynT serves a tissue-specific function in T lymphocytes, we have examined the effects of expression of activated versions (tyrosine 528 to phenylalanine 528 mutants) of either form of p59fyn on the physiology of an antigen-specific mouse T cell hybridoma. Our results demonstrated that the two forms of fyn, expressed in equivalent amounts, efficiently enhanced antibody-induced T cell receptor (TCR)-mediated signals. In contrast, only p59fynT increased interleukin 2 production in response to antigen stimulation. This finding implies that the distinct p59fyn isoform expressed in T lymphocytes regulates the coupling of TCR stimulation by antigen/major histocompatibility complex to lymphokine production.  相似文献   

9.
10.
11.
12.
Intracellular signaling from the T cell receptor (TCR)zeta/CD3 complex is likely to be mediated by associated protein tyrosine kinases such as p59fyn(T), ZAP-70, and the CD4:p56lck and CD8:p56lck coreceptors. The nature of the signaling cascade initiated by these kinases, their specificities, and downstream targets remain to be elucidated. The TCR- zeta/CD3:p59fyn(T) complex has previously been noted to coprecipitate a 120/130-kD doublet (p120/130). This intracellular protein of unknown identity associates directly with p59fyn(T) within the receptor complex. In this study, we have shown that this interaction with p120/130 is specifically mediated by the SH2 domain (not the fyn-SH3 domain) of p59fyn(T). Further, based on the results of in vitro kinase assays, p120/130 appears to be preferentially associated with p59fyn(T) in T cells, and not with p56lck. Antibody reprecipitation studies identified p120/130 as a previously described 130-kD substrate of pp60v- src whose function and structure is unknown. TCR-zeta/CD3 induced activation of T cells augmented the tyrosine phosphorylation of p120/130 in vivo as detected by antibody and GST:fyn-SH2 fusion proteins. p120/130 represents the first identified p59fyn(T):SH2 binding substrate in T cells, and as such is likely to play a key role in the early events of T cell activation.  相似文献   

13.
14.
15.
Spleen cells of diabetes-prone BB Wistar rats were found to generate excessively low proliferative responses, and interleukin 2 (IL-2) levels in response to T-dependent mitogens. This abnormality was not due solely to abnormal T cell numbers since: (a) addition of BB spleen cells of BB splenic macrophages to normal major histocompatibility complex (MHC)-matched Wistar Furth (WF) spleen cells resulted in severe suppression of concanavalin A (Con A)-, phytohemagglutinin (PHA)-, and pokeweed mitogen (PWM)-mediated proliferation, and IL-2 production; (b) macrophage depletion from BB spleen cells, but not B cell or T cell depletion, removed completely the suppressive effects of BB cells on WF cells; (c) macrophage depletion greatly enhanced the response of BB lymphocytes to T-dependent mitogens. Although suppressor macrophages could also be found in the spleen of WF control rats they were present in much smaller numbers than in the spleen of BB rats. The suppressive effect of BB macrophages was partially reduced by addition of the prostaglandin synthetase inhibitor indomethacin to cultures. Furthermore, indomethacin (but not catalase or PMA) considerably augmented IL-2 secretion of Con A-stimulated BB spleen cells, but had little effect on WF spleen cells. In contrast, prostaglandins E1 and E2 (PGE1 and PGE2) suppressed IL-2 production. While IL-2 secretion was severely depressed in BB rats unstimulated and lipopolysaccharide (LPS)- stimulated IL-1 secretion by splenic macrophages was normal. BB macrophages did not inactivate IL-2. Low IL-2 production and macrophage- mediated suppression were features of all BB rats tested.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号