首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thymic CD4+ FoxP3+ regulatory T (Treg) cells are critical for the development of immunological tolerance and immune homeostasis and requires contributions of both thymic dendritic and epithelial cells. Although B cells have been reported to be present within the thymus, there has not hitherto been a definition of their role in immune cell development and, in particular, whether or how they contribute to the Treg cellular thymic compartment. Herein, using both phenotypic and functional approaches, we demonstrate that thymic B cells contribute to the maintenance of thymic Treg cells and, using an in vitro culture system, demonstrate that thymic B cells contribute to the size of the thymic Treg compartment via cell–cell MHC II contact and the involvement of two independent co-stimulatory pathways that include interactions between the CD40/CD80/CD86 co-stimulatory molecules. Our data also suggest that thymic B cells promote the generation of thymic Treg cell precursors (pre-Treg cells), but not the conversion of FoxP3+ Treg cells from pre-Treg cells. In addition, thymic B cells directly promote the proliferation of thymic Treg cells that is MHC II contact dependent with a minimal if any role for co-stimulatory molecules including CD40/CD80/CD86. Both pathways are independent of TGFβ. In conclusion, we rigorously define the critical role of thymic B cells in the development of thymic Treg cells from non-Treg to precursor stage and in the proliferation of mature thymic Treg cells.  相似文献   

2.
《Molecular immunology》2015,66(2):416-428
The “A Disintegrin And Metalloproteinases” (ADAMs) form a subgroup of the metzincin endopeptidases. Proteolytically active members of this protein family act as sheddases and govern key processes in development and inflammation by regulating cell surface expression and release of cytokines, growth factors, adhesion molecules and their receptors. In T lymphocytes, ADAM10 sheds the death factor Fas Ligand (FasL) and thereby regulates T cell activation, death and effector function. Although FasL shedding by ADAM10 was confirmed in several studies, its regulation is still poorly defined. We recently reported that ADAM10 is highly abundant on T cells whereas its close relative ADAM17 is expressed at low levels and transiently appears at the cell surface upon stimulation. Since FasL is also stored intracellularly and brought to the plasma membrane upon stimulation, we addressed where the death factor gets exposed to ADAM proteases. We report for the first time that both ADAM10 and ADAM17 are associated with FasL-containing secretory lysosomes. Moreover, we demonstrate that TCR/CD3/CD28-stimulation induces a partial positioning of both proteases and FasL to lipid rafts and only the activation-induced raft-positioning results in FasL processing. TCR/CD3/CD28-induced FasL proteolysis is markedly affected by reducing both ADAM10 and ADAM17 protein levels, indicating that in human T cells also ADAM17 is implicated in FasL processing. Since FasL shedding is affected by cholesterol depletion and by inhibition of Src kinases or palmitoylation, we conclude that it requires mobilization and co-positioning of ADAM proteases in lipid raft-like platforms associated with an activation of raft-associated Src-family kinases.  相似文献   

3.
4.
To date, intraperitoneal (i.p.) injection seems to be the most effective vaccination route in aquaculture, as many i.p. administered fish vaccines are capable of conferring strong and long-lasting immune responses. Despite this, how peritoneal leukocytes are regulated upon antigen encounter has only been scarcely studied in fish. Although, in the past, myeloid cells were thought to be the main responders to peritoneal inflammation, a recent study revealed that IgM+ B cells are one of the main cell types in the teleost peritoneal cavity in response to pathogenic bacteria. Thus, in the current work, we have focused on establishing how IgM+ B cells are recruited into the peritoneum in rainbow trout (Oncorhynchus mykiss) comparing different antigens: Escherichia coli as a bacterial model, E. coli-derived lipopolysaccharide (LPS) or viral hemorrhagic septicemia virus (VHSV). In addition to studying their capacity to dominate the peritoneal cavity, we have established how these IgM+ B cells are regulated in response to the different antigens, determining their levels of IgM secretion, surface MHC II expression, cell size and phagocytic abilities. Our results reveal that IgM+ B cells are one of the main cell types amplified in the peritoneum in response to either bacterial or viral antigens and that these immunogenic stimulations provoke a differentiation of some of these cells towards plasmablasts/plasma cells whereas others seem to be implicated in antigen presentation. These findings contribute to a better understanding of the immune processes that regulate peritoneal inflammation in teleost fish.  相似文献   

5.
Despite presence of circulating retina-specific T cells in healthy individuals, ocular immune privilege usually averts development of autoimmune uveitis. To study the breakdown of immune privilege and development of disease, we generated transgenic (Tg) mice that express a T cell receptor (TCR) specific for interphotoreceptor retinoid-binding protein (IRBP), which serves as an autoimmune target in uveitis induced by immunization. Three lines of TCR Tg mice, with different levels of expression of the transgenic R161 TCR and different proportions of IRBP-specific CD4+ T cells in their peripheral repertoire, were successfully established. Importantly, two of the lines rapidly developed spontaneous uveitis, reaching 100% incidence by 2 and 3 months of age, respectively, whereas the third appeared “poised” and only developed appreciable disease upon immune perturbation. Susceptibility roughly paralleled expression of the R161 TCR. In all three lines, peripheral CD4+ T cells displayed a naïve phenotype, but proliferated in vitro in response to IRBP and elicited uveitis upon adoptive transfer. In contrast, CD4+ T cells infiltrating uveitic eyes mostly showed an effector/memory phenotype, and included Th1, Th17 as well as T regulatory cells that appeared to have been peripherally converted from conventional CD4+ T cells rather than thymically derived. Thus, R161 mice provide a new and valuable model of spontaneous autoimmune disease that circumvents the limitations of active immunization and adjuvants, and allows to study basic mechanisms involved in maintenance and breakdown of immune homeostasis affecting immunologically privileged sites such as the eye.  相似文献   

6.
Thymic epithelial cells (TEC) and dendritic cells (DC) play a role in T cell development by controlling the selection of the T cell receptor repertoire. DC have been described to take up antigens in the periphery and migrate into the thymus where they mediate tolerance via deletion of autoreactive T cells, or by induction of natural regulatory T cells. Migration of DC to thymus is driven by chemokine receptors. CCL2, a major ligand for the chemokine receptor CCR2, is an inflammation-associated chemokine that induces the recruitment of immune cells in tissues. CCL2 and CCR2 are implicated in promoting experimental autoimmune encephalomyelitis (EAE), a mouse model for multiple sclerosis. We here show that CCL2 is constitutively expressed by endothelial cells and TEC in the thymus. Transgenic mice overexpressing CCL2 in the thymus showed an increased number of thymic plasmacytoid DC and pronounced impairment of T cell development. Consequently, CCL2 transgenic mice were resistant to EAE. These findings demonstrate that expression of CCL2 in thymus regulates DC homeostasis and controls development of autoreactive T cells, thus preventing development of autoimmune diseases.  相似文献   

7.
The lysosomal cysteine carboxypeptidase cathepsin X (CTSX), localized predominantly in immune cells, has been associated with the development and progression of cancer. To determine its specific role in colorectal carcinoma (CRC), we analyzed CTSX expression in non-malignant mucosa and carcinoma of 177 patients as well as in 111 adenomas and related it with clinicopathological parameters. Further, the role of CTSX in the adhesion and invasion of the colon carcinoma cell lines HT-29 and HCT116 was investigated in an in vitro culture cell system with fibroblasts and monocytes, reflecting the situation at the tumor invasion front.Epithelial CTSX expression significantly increased from normal mucosa to adenoma and carcinoma, with highest expression levels in high grade intraepithelial neoplasia and in early tumor stages. Loss of CTSX occurred with tumor progression, and correlated with advanced local invasion, lymph node and distal metastasis, lymphatic vessel and vein invasion, tumor cell budding and poorer overall survival of patients with CRC. The subcellular distribution of CTSX changed from vesicular paranuclear expression in the tumor center to submembranous expression in cells of the invasion front. Peritumoral macrophages showed highest expression of CTSX. In vitro assays identified CTSX as relevant factor for cell–cell adhesion and tumor cell anchorage to fibroblasts and basal membrane components, whereas inhibition of CTSX caused increased invasiveness of colon carcinoma cells in mono- and co-culture. In conclusion, CTSX is involved in early tumorigenesis and in the stabilization of tumor cell formation in CRC. The results suggest that loss of CTSX may be needed for tumor cell detachment, local invasion and tumor progression. In addition, CTSX in tumor-associated macrophages indicates a role for CTSX in the anti-tumor immune response.  相似文献   

8.
We propose a model by which an increase in the genomic modification, 5-hydroxymethylcytosine (5hmC), contributes to B cell death within the chicken bursa of Fabricus (BF) infected with infectious bursal disease virus (IBDV). Our findings indicate that, following an IBDV infection, Rhode Island Red (RIR) chickens have fewer surviving B cells and higher levels of 5hmC in the BF than the more resistant 15l line of birds. Elevated genomic 5hmC levels within the RIR BF are associated with markers of immune responses: infiltrating T cells and increased expression of CD40L, FasL and iNOS. Such changes correlate with genomic fragmentation and the presence of IBDV capsid protein, VP2. To explore the effects of CD40L, the immature B cell line, DT40, was exposed to recombinant chicken CD40L that resulted in changes in nuclear 5hmC distribution. Collectively, our observations suggest that T cell infiltration exacerbates early immunopathology within the BF during an IBDV infection contributing to B cell genomic instability and death to facilitate viral egress and immunosuppression.  相似文献   

9.
Inflammatory mechanisms play a key role in the pathogenesis of type 1 and type 2 diabetes. IL6, a pleiotropic cytokine with impact on immune and non-immune cell types, has been proposed to be involved in the events causing both forms of diabetes and to play a key role in experimental insulin-dependent diabetes development. The aim of this study was to investigate how beta-cell specific overexpression of IL-6 influences diabetes development. We developed two lines of rat insulin promoter (RIP)-lymphocytic choriomeningitis virus (LCMV) mice that also co-express IL6 in their beta-cells. Expression of the viral nucleoprotein (NP), which has a predominantly intracellular localization, together with IL6 led to hyperglycemia, which was associated with a loss of GLUT-2 expression in the pancreatic beta-cells and infiltration of CD11b+ cells, but not T cells, in the pancreas. In contrast, overexpression of the LCMV glycoprotein (GP), which can localize to the surface, with IL-6 did not lead to spontaneous diabetes, but accelerated virus-induced diabetes by increasing autoantigen-specific CD8+ T cell responses and reducing the regulatory T cell fraction, leading to increased pancreatic infiltration by CD4+ and CD8+ T cells as well as CD11b+ and CD11c+ cells. The production of IL-6 in beta-cells acts prodiabetic, underscoring the potential benefit of targeting IL6 in diabetes.  相似文献   

10.
Primary biliary cirrhosis (PBC) is an enigmatic disease mediated by autoimmune destruction of cholangiocytes in hepatic bile ducts. The early immunological events leading to PBC are poorly understood; clinical signs of disease occur very late in the pathological process. We have used our unique murine model of PBC in dominant-negative TGF-β receptor type II transgenic mice to delineate critical early immunopathological pathways, and previously showed that dnTGFβRII CD8 T cells transfer biliary disease. Herein we report significantly increased numbers of hepatic dnTGFβRII terminally differentiated (KLRG1+) CD8 T cells, a CD8 subset previously shown to be enriched in antigen specific cells during hepatic immune response to viral infections. We performed bone marrow chimera studies to assess whether dnTGFβRII CD8 mediated disease was cell intrinsic or extrinsic. Unexpectedly, mixed (dnTGFβRII and B6) bone marrow chimeric (BMC) mice were protected from biliary disease compared to dnTGFβRII single bone marrow chimerics. To define the protective B6 cell subset, we performed adoptive transfer studies, which showed that co-transfer of B6 Tregs prevented dnTGFβRII CD8 T cell mediated cholangitis. Treg mediated disease protection was associated with significantly decreased numbers of hepatic KLRG1+ CD8 T cells. In contrast, co-transfer of dnTGFβRII Tregs offered no protection, and dnTGFβRII Treg cells were functionally defective in suppressing effector CD8 T cells in vitro compared to wild type B6 Tregs. In vitro cholangiocyte cytotoxicity assays demonstrated significantly increased numbers of cytotoxic hepatic dnTGFβRII KLRG1+ CD8 cells compared to B6. Protection from disease by B6 Tregs was associated with elimination of hepatic dnTGFβRII CD8 mediated cholangiocyte cytotoxicity. These results emphasize that autoimmune cholangitis requires defects in both the T effector and regulatory compartments, and that an intrinsic T cell effector defect is not sufficient to mediate autoimmune biliary disease in the setting of intact immune regulation. These results have important implications for understanding the early pathogenesis of human PBC.  相似文献   

11.
12.
B cell-activating factor of the TNF family (BAFF) is an essential B cell survival factor. However, high levels of BAFF promote systemic lupus erythematosus (SLE) in mice and humans. Belimumab (anti-human BAFF) limits B cell survival and is approved for use in patients with SLE. Surprisingly, the efficacy of rituximab (anti-human CD20) in SLE remains controversial, despite depleting B cells more potently than belimumab. This raises the question of whether B cell depletion is really the mechanism of action of belimumab. In BAFF transgenic mice, SLE development is T cell-independent but relies on innate activation of B cells via TLRs, and TLR expression is modulated by the BAFF receptor TACI. Here, we show that loss of TACI on B cells protected against BAFF-mediated autoimmune manifestations while preserving B cells, suggesting that loss of BAFF signaling through TACI rather than loss of B cells may underpin the effect of belimumab in the clinic. Therefore, B cell-sparing blockade of TACI may offer a more specific and safer therapeutic alternative to broad B cell depletion in SLE.  相似文献   

13.
Celiac disease (CD) is a common CD4+ T cell mediated enteropathy driven by gluten in wheat, rye, and barley. Whilst clinical feeding studies generally support the safety of oats ingestion in CD, the avenin protein from oats can stimulate intestinal gluten-reactive T cells isolated from some CD patients in vitro. Our objective was to establish whether ingestion of oats or other grains toxic in CD stimulate an avenin-specific T cell response in vivo.We fed participants a meal of oats (100 g/day over 3 days) to measure the in vivo polyclonal avenin-specific T cell responses to peptides contained within comprehensive avenin peptide libraries in 73 HLA-DQ2.5+ CD patients. Grain cross-reactivity was investigated using oral challenge with wheat, barley, and rye.Avenin-specific responses were observed in 6/73 HLA-DQ2.5+ CD patients (8%), against four closely related peptides. Oral barley challenge efficiently induced cross-reactive avenin/hordein-specific T cells in most CD patients, whereas wheat or rye challenge did not. In vitro, immunogenic avenin peptides were susceptible to digestive endopeptidases and showed weak HLA-DQ2.5 binding stability.Our findings indicate that CD patients possess T cells capable of responding to immuno-dominant hordein epitopes and homologous avenin peptides ex vivo, but the frequency and consistency of these T cells in blood is substantially higher after oral challenge with barley compared to oats. The low rates of T cell activation after a substantial oats challenge (100 g/d) suggests that doses of oats commonly consumed are insufficient to cause clinical relapse, and supports the safety of oats demonstrated in long-term feeding studies.  相似文献   

14.
Islet-reactive memory CD4+ T cells are an essential feature of type 1 diabetes (T1D) as they are involved in both spontaneous disease and in its recurrence after islet transplantation. Expansion and enrichment of memory T cells have also been shown in the peripheral blood of diabetic patients. Here, using high-throughput sequencing, we investigated the clonal diversity of the TCRβ repertoire of memory CD4+ T cells in the pancreatic lymph nodes (PaLN) of non-obese diabetic (NOD) mice and examined their clonal overlap with islet-infiltrating memory CD4 T cells. Both prediabetic and diabetic NOD mice exhibited a restricted TCRβ repertoire dominated by clones expressing TRBV13-2, TRBV13-1 or TRBV5 gene segments. There is a limited degree of TCRβ overlap between the memory CD4 repertoire of PaLN and pancreas as well as between the prediabetic and diabetic group. However, public TCRβ clonotypes were identified across several individual animals, some of them with sequences similar to the TCRs from the islet-reactive T cells suggesting their antigen-driven expansion. Moreover, the majority of the public clonotypes expressed TRBV13-2 (Vβ8.2) gene segment. Nasal vaccination with an immunodominat peptide derived from the TCR Vβ8.2 chain led to protection from diabetes, suggesting a critical role for Vβ8.2+ CD4+ memory T cells in T1D. These results suggest that memory CD4+ T cells bearing limited dominant TRBV genes contribute to the autoimmune diabetes and can be potentially targeted for intervention in diabetes. Furthermore, our results have important implications for the identification of public T cell clonotypes as potential novel targets for immune manipulation in human T1D.  相似文献   

15.
The thymus plays a primary role in early-onset Myasthenia Gravis (MG) mediated by anti-acetylcholine receptor (AChR) antibodies. As we recently showed an inflammatory and anti-viral signature in MG thymuses, we investigated in detail the contribution of interferon (IFN)-I and IFN-III subtypes in thymic changes associated with MG. We showed that IFN-I and IFN-III subtypes, but especially IFN-β, induced specifically α-AChR expression in thymic epithelial cells (TECs). We also demonstrated that IFN-β increased TEC death and the uptake of TEC proteins by dendritic cells.In parallel, we showed that IFN-β increased the expression of the chemokines CXCL13 and CCL21 by TECs and lymphatic endothelial cells, respectively. These two chemokines are involved in germinal center (GC) development and overexpressed in MG thymus with follicular hyperplasia. We also demonstrated that the B-cell activating factor (BAFF), which favors autoreactive B-cells, was overexpressed by TECs in MG thymus and was also induced by IFN-β in TEC cultures.Some of IFN-β effects were down-regulated when cell cultures were treated with glucocorticoids, a treatment widely used in MG patients that decreases the number of thymic GCs.Similar changes were observed in vivo. The injections of Poly(I:C) to C57BL/6 mice triggered a thymic overexpression of IFN-β and IFN-α2 associated with increased expressions of CXCL13, CCL21, BAFF, and favored the recruitment of B cells. These changes were not observed in the thymus of IFN-I receptor KO mice injected with Poly(I:C), even if IFN-β and IFN-α2 were overexpressed.Altogether, these results demonstrate that IFN-β could play a central role in thymic events leading to MG by triggering the overexpression of α-AChR probably leading to thymic DC autosensitization, the abnormal recruitment of peripheral cells and GC formation.  相似文献   

16.
Resistance to respiratory pathogens, including coronavirus-induced infection and clinical illness in chickens has been correlated with the B (MHC) complex and differential ex vivo macrophage responses. In the current study, in vitro T lymphocyte activation measured by IFNγ release was significantly higher in B2 versus B19 haplotypes. AIV infection of macrophages was required to activate T lymphocytes and prior in vivo exposure of chickens to NP AIV plasmid enhanced responses to infected macrophages. This study suggests that the demonstrated T lymphocyte activation is in part due to antigen presentation by the macrophages as well as cytokine release by the infected macrophages, with B2 haplotypes showing stronger activation. These responses were present both in CD4 and CD8 T lymphocytes. In contrast, T lymphocytes stimulated by ConA showed greater IFNγ release of B19 haplotype cells, further indicating the greater responses in B2 haplotypes to infection is due to macrophages, but not T cells. In summary, resistance of B2 haplotype chickens appears to be directly linked to a more vigorous innate immune response and the role macrophages play in activating adaptive immunity.  相似文献   

17.
Dendritic cells (DC) are antigen-presenting cells that can be classified into three major cell subsets: conventional DC1 (cDC1), cDC2 and plasmacytoid DCs (pDC), none of which have been identified in horses. Therefore, the objective of this study was to identify and characterize DC subsets in equine peripheral blood, emphasizing on pDC. Surface marker analysis allowed distinction of putative DC subsets, according to their differential expression of CADM-1 and MHC class II. Equine pDC were found to be Flt3+ CD4low CD13 CD14 CD172a CADM-1 MHCIIlow. The weak expression of CD4 on equine pDC contrasts with findings in several other mammals. Furthermore, pDC purified by fluorescence-activated cell sorting were found to be the only cell subset able to produce large amounts of IFN-α upon TLR9-agonist stimulation. The pDC identity was confirmed by demonstrating high-levels of PLAC8, RUNX2 and TCF4 expression, showing pDC-restricted expression in other mammals.  相似文献   

18.
《Acta histochemica》2014,116(8):1374-1381
In order to evaluate the function of the repaired or regenerated eccrine sweat glands, we must first localize the proteins involved in sweat secretion and absorption in normal human eccrine sweat glands. In our studies, the cellular localization of Na+–K+-ATPase α/β, Na+–K+–2Cl-cotransporter 1 (NKCC1) and aquaporin-5 (AQP5) in eccrine sweat glands were detected by immunoperoxidase labeling. The results showed that Na+–K+-ATPase α was immunolocalized in the cell membrane of the basal layer and suprabasal layer cells of the epidermis, the basolateral membrane of the secretory coils, and the cell membrane of the outer cells and the basolateral membrane of the luminal cells of the ducts. The localization of Na+–K+-ATPase β in the secretory coils was the same as Na+–K+-ATPase α, but Na+–K+-ATPase β labeling was absent in the straight ducts and epidermis. NKCC1 labeling was seen only in the basolateral membrane of the secretory coils. AQP5 was strongly localized in the apical membrane and weakly localized in the cytoplasm of secretory epithelial cells. The different distribution of these proteins in eccrine sweat glands was related to their functions in sweat secretion and absorption.  相似文献   

19.
The cytokine milieu is critical for orchestration of lineage development towards effector T cell (Teff) or regulatory T cell (Treg) subsets implicated in the progression of cancer and autoimmune disease. Importantly, the fitness and survival of the Treg subset is dependent on the cytokines Interleukin-2 (IL-2) and transforming growth factor beta (TGF-β). The production of these cytokines is impaired in autoimmunity increasing the probability of Treg conversion to aggressive effector cells in a proinflammatory microenvironment. Therapy using soluble TGF-β and IL-2 administration is hindered by the cytokines' toxic pleiotropic effects and hence bioavailability to CD4+ T cell targets. Thus, there is a clear need for a strategy that rectifies the cytokine milieu in autoimmunity and inflammation leading to enhanced Treg stability, frequency and number. Here we show that inert biodegradable nanoparticles (NP) loaded with TGF-β and IL-2 and targeted to CD4+ cells can induce CD4+ Tregs in-vitro and expand their number in-vivo. The stability of induced Tregs with cytokine-loaded NP was enhanced leading to retention of their suppressive phenotype even in the presence of proinflammatory cytokines. Our results highlight the importance of a nanocarrier-based approach for stabilizing and expanding Tregs essential for cell-immunotherapy of inflammation and autoimmune disease.  相似文献   

20.
Pleomorphic hyalinizing angiectatic tumor (PHAT) is a recently described, non-metastasizing tumor of uncertain lineage. This tumor distributes equally between the genders and has a predilection for the subcutaneous soft tissue, particularly in lower extremity, other locations are rare. Based on the recent literature, PHAT is suspected to encompass the morphological spectrum with other tumors such as myxoinflammatory fibroblastic sarcoma (MIFS) and hemosiderotic fibrolipomatous tumor (HFLT), although cytogenetic data remain inconsistent. We report a case of PHAT that arose in the upper arm with unusual morphology which showed ganglion-like cells similar to Reed-Sternberg-like cells found in MIFS. The tumor had strong immunohistochemical expression of CD34, CD99, and was negative for S-100. The ganglion-like cells were positive for both CD34 and CD68 but negative for CD30. The translocation between chromosome 1 and 10, a frequent finding of MIFS and HFLT, was not identified by FISH excluding the possibility of hybrid PHAT and MIFS. We conclude FISH can be a potential useful tool to separate PHAT with atypical morphology from hybrid tumor in doubted cases. Due to the rarity of PHAT and lack of consistent pathogenetic signatures, more cases and further studies will be needed to elucidate the pathogenesis and nature of this tumor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号