首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的制备一种包载多西他赛的聚乳酸羟基乙酸-聚乙二醇-聚乳酸羟基乙酸(PLGA-PEG-PLGA)三嵌段共聚物纳米胶束,并考察其相关性能。方法采用开环聚合法合成共聚物,直接溶解法制备载多西他赛共聚物纳米胶束,荧光光谱法测定临界胶束浓度,高效液相色谱检测载药胶束的包封率与载药率,透析法测定载药胶束体外释放情况,扫描电镜观察纳米胶束的形态,激光粒径仪测量共聚物纳米胶束粒径及分布,改良寇氏法测定载药胶束的半数致死量。结果直接溶解法制备的共聚物纳米胶束的临界胶束浓度为4.5×10-3 g/L,多西他赛与共聚物投料比为1∶20制备的载多西他赛共聚物纳米胶束的包封率为98.20%,载药率达4.68%,在体外平稳释放时间约3 d。扫描电子显微镜观察载多西他赛共聚物纳米胶束呈类圆形,分散良好,平均粒径为30.8 nm,多元分散系数0.42。载多西他赛共聚物纳米胶束静脉注射小鼠的半数致死量为273.5 mg/kg。结论采用直接溶解法可制备一种载多西他赛的PLGA-PEG-PLGA三嵌段共聚物纳米胶束,包封率高,体外释药平稳,毒副作用小,具有潜在的临床应用价值。  相似文献   

2.
A new approach is developed for the preparation of nanoporous gold (Au) films using diblock copolymer micelles as templates. Stable Au nanoparticles (NPs) with a narrow distribution are prepared by modifying NPs functionalized with 4‐(dimethylamino)pyridine ligands (DMAP Au NPs) and a spherical micelle formed through the epoxidation of poly(styrene‐b‐butadiene) diblock copolymer to produce poly(styrene‐b‐vinyl oxirane) (PS‐b‐PBO) in tetrahydrofuran–acetonitrile solution. The exchange reaction of 4‐aminothiophenol of PS‐b‐PBO diblock copolymer micelles with DMAP Au NPs can produce block copolymer–Au NPs composite films. After the pyrolysis of the diblock copolymer templates at a specific temperature to avoid the collapse of the Au NPs, a nanoporous Au film is prepared.  相似文献   

3.
Tian HY  Deng C  Lin H  Sun J  Deng M  Chen X  Jing X 《Biomaterials》2005,26(20):4209-4217
A novel amphiphilic biodegradable cationic hyperbranched poly(ethylene glycol)-polyethylenimine-poly(gamma-benzyl L-glutamate) (PEG-PEI-PBLG) block copolymer was successfully synthesized by ring-opening polymerization (ROP) of N-carboxyanhydride of gamma-benzyl-L-glutamate (BLG-NCA) with PEG-PEI as a macroinitiator. PEG-PEI was firstly prepared by coupling of PEG and PEI using hexamethylene diisocyanate (HMDI). The structural properties of PEG-PEI-PBLG copolymers were confirmed by 1H NMR and GPC. The copolymers were found to be self-assembled in water with critical micelle concentration (CMC) in the range of 0.00368-0.0125 g/l and high hydrophobic micelle core. The micelle size and CMC obviously depended on the hydrophobic block content in the copolymer and the ionic state of the PEI block. The CMC decreased with the increase in the PBLG block content. The decrease of micelle size and the increase of CMC simultaneously occurred with the protonated degree of PEI block by addition of HCl solution. ESEM and Gel retardation assay showed that the cationic micelles had ability to encapsulate plasmid DNA. The copolymer has potential medical applications in drug and gene delivery.  相似文献   

4.
Well-defined block copolymers consisting of hyperbranched polyamide (HBPA) and polystyrene (PSt) are synthesized, and their self-assembled structures in solutions are investigated. Atom transfer radical polymerization (ATRP) of styrene initiated from an HBPA macroinitiator, prepared by the chain-growth condensation polymerization of an AB2 monomer, followed by introduction of an ATRP initiator unit at the focal point, gives the desired block copolymers, PSt-b-HBPAs, with well-defined molecular weight and narrow molecular weight distribution. The block copolymer (PSt/HBPA = 84/16) undergoes self-assembly in toluene to form spherical micelles (≈10–20 nm), but upon addition of methanol to the toluene solution (toluene/methanol = 0.97/0.03), the morphology changes to vesicles. Further addition of methanol (toluene/methanol = 0.90/0.10) leads to an increase in vesicle size (200–300 nm) and the morphology further transforms from vesicles to large aggregates (>100 nm) at toluene/methanol = 0.80/0.20. In the case of PSt-b-HBPA with shorter PSt segments (PSt/HBPA = 76/24 and 60/40), spherical micelles are formed in toluene, but the micelle morphology remains unchanged when 10 wt% methanol is added, though large aggregates (>100 nm) are still formed in toluene/methanol = 0.80/0.20. Interestingly, the morphological transformations of linear/hyperbranched block copolymers are different from those of their double linear block copolymer counterparts.  相似文献   

5.
Onion‐type block copolymer micelles were prepared from polystyrene‐block‐poly(2‐vinylpyridine) (PS‐b‐PVP) inner micelles in an acidic solution by basifying in the presence of poly(2‐vinylpyridine)‐block‐poly‐(ethylene oxide) (PVP‐b‐PEO). This has the effect of depositing the PVP‐b‐PEO onto the collapsed corona of the PS‐b‐PVP micelle. These core PS‐b‐PVP micelles, the small micelles formed by PVP‐b‐PEO, and the resulting onion micelles were studied by small angle neutron scattering (SANS) techniques. Two recently developed evaluation techniques were employed: 1.Bare‐core approximation, which utilizes the data at larger scattering angles and provided information about the size and polydispersity of the micelle cores. 2. Application of the Pedersen and Gerstenberg micelle model, which utilizes the whole scattering curve. Due to their polyelectrolyte nature, the core micelles had very extended coronas corresponding to rather large statistical segment lengths. The SANS data at large scattering angles for the solution of onion‐type micelles revealed the presence of a significant number of the small PVP‐b‐PEO micelles. The contribution of the small micelles to the total scattering was subtracted and the properties and polydispersities of onion cores and stabilizing PEO coronas were obtained.  相似文献   

6.
The novel organometallic‐inorganic diblock copolymer, poly(ferrocenylphenylphosphine)‐block‐polydimethylsiloxane (PFP‐b‐PDMS), with narrow molecular weight distribution has been synthesized by living anionic polymerization through sequential monomer addition. These block copolymers self‐assemble into “star‐like” spherical micelles in hexane with a dense organometallic PFP core surrounded by a swollen corona of the PDMS chains. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) were used to characterize these micellar aggregates. It was found that the block copolymer micelles have a relatively narrow core size distribution, but an overall broader distribution of hydrodynamic size in hexane. Significantly, the preparation method of the micelle solution was also found to have an influence on the size and size distribution of the resulting micellar structures.  相似文献   

7.
Multi‐arm poly(THF)‐b‐polyglycerol linear‐hyperbranched copolymers consisting of a linear hydrophobic poly(THF) block and a hyperbranched hydrophilic polyglycerol block were synthesized by ring opening polymerization of tetrahydrofuran with silver trifluoromethane sulfonate as a catalyst and the consecutive polymerization of glycidol. Initiators with different geometries that propagated into different numbers of arms (e.g., 1, 2 or 4) were used to investigate the dependence of the micelle properties of the copolymers on the number of arms. The critical micelle concentration (CMC) first decreased and then increased with increasing numbers of arms showing a minimum CMC at an arm number of 2. A minimum CMC was difficult to obtain using multi‐arm block copolymers composed of linear polymers with the small number of arms investigated in this study. DLS showed that the 4‐arm poly(THF)‐b‐polyglycerol copolymer had a micelle size of approximately 83 nm under aqueous conditions, and the micelle size of the copolymers with different numbers of arms was similar. Unimolecular micelles could eventually be obtained using this system by increasing the number of arms, they are considered an ideal drug delivery carrier due to the concentration‐independent stability in the blood stream.

  相似文献   


8.
A novel polymeric amphiphile, mPEG-PA, was synthesized with methoxy poly(ethylene glycol) (mPEG) as the hydrophilic and palmitic acid (PA) as the hydrophobic segment. The conjugate prepared in a single-step reaction showed minimal toxicity on HeLa cells. (1)H nuclear magnetic resonance imaging and Fourier transform infrared spectroscopy revealed that the conjugation was through an ester linkage, which is biodegradable. Enzymes having esterase activity, such as lipase, can degrade the conjugate easily, as observed by in vitro studies. mPEG-PA conjugate undergoes self-assembly in an aqueous environment, as evidenced by fluorescence spectroscopic studies with pyrene as a probe. The mPEG-PA conjugate formed micelles in the aqueous solution with critical micelle concentration of 0.12 g l(-1). Atomic force microscopy and dynamic light scattering studies showed that the micelles were spherical in shape, with a mean diameter of 41.43 nm. The utility of mPEG-PA to entrap the potent chemopreventive agent curcumin in the core of nanocarrier was investigated. The encapsulation of a highly hydrophobic compound like curcumin in the nanocarrier makes the drug readily soluble in an aqueous system, which can increase the ease of dosing and makes intravenous dosing possible. Drug-loaded micelle nanoparticles showed good stability in physiological condition (pH 7.4), in simulated gastric fluid (pH 1.2) and in simulated intestinal fluid (pH 6.8). This micellar formulation can be used as an enzyme-triggered drug release carrier, as suggested by in vitro enzyme-catalyzed drug release using pure lipase and HeLa cell lysate. The IC(50) of free curcumin and encapsulated curcumin was found to be 14.32 and 15.58 microM, respectively.  相似文献   

9.
Lo CL  Huang CK  Lin KM  Hsiue GH 《Biomaterials》2007,28(6):1225-1235
A novel mixed micelle that comprised of poly(N-isopropylacrylamide-co-methacrylic acid)-graft-poly(D,L-lactide) (P(NIPAAm-co-MAAc)-g-PLA) with methoxy poly(ethylene glycol)-b-poly(D,L-lactide) (mPEG-b-PLA) was developed for application in cancer therapy. The mixed micelle had an multi-functional inner core of P(NIPAAm-co-MAAc)-g-PLA to enable intracellular drug delivery and an extended hydrophilic outer shell of mPEG to hide the inner core. Stability analysis of the mixed micelles in bovine serum albumin (BSA) solution indicates that the diblock copolymer mPEG efficiently protected the BSA adsorption on the mixed micelles because the hydrophobic groups of graft copolymer were efficiently screened by mPEG. From the drug release study, the mPEG-PLA diblock copolymer in mixed micelles slightly affected the functionalities of the P(NIPAAm-co-MAAc)-g-PLA graft copolymer; the graft copolymer still exhibited pH- and thermo-sensitivities in this core-shell structure. A change in pH deformed the structure of the inner core from that of aggregated P(NIPAAm-co-MAAc), causing the release of a significant quantity of doxorubicin (Dox) from mixed micelles. Clear differences between free Dox and Dox-mixed micelles were observed using confocal laser scanning microscopy (CLSM). This study presents not only a new micelle structure for a graft-diblock copolymer system, but also a method for overcoming some of the limitations on biomaterials used in intravenous injection.  相似文献   

10.
Mixed micelles formed by critical micelle concentration (Cmc) character's diblock copolymer, and temperature-sensitive character's diblock copolymer were studied for their capabilities in improving stability with and without drug. Experimental results showed that this type of mixed micellar systems possessed complementary effects in adjusting external temperature shift (storage vs. body temperature) and concentration change (dilution after intravenous injection). Therefore, they provided excellent stability as drug carriers. Further results obtained from physicochemical property and drug release kinetics studies demonstrated such systems could also be applied to physiological conditions, in compliance with varied pH environments. We concluded that the newly developed mixed micelles can serve as a potential injectable drug delivery system for anticancer drugs, such as doxorubicin and many others.  相似文献   

11.
A novel type of self-fluorescent unimolecular micelle nanoparticle (NP) formed by multi-arm star amphiphilic block copolymer, Boltron® H40 (H40, a 4th generation hyperbranched polymer)-biodegradable photo-luminescent polymer (BPLP)-poly(ethylene glycol) (PEG) conjugated with cRGD peptide (i.e., H40-BPLP-PEG-cRGD) was designed, synthesized, and characterized. The hydrophobic BPLP segment was self-fluorescent, thereby making the unimolecular micelle NP self-fluorescent. cRGD peptides, which can effectively target αvβ3 integrin-expressing tumor neovasculature and tumor cells, were selectively conjugated onto the surface of the micelles to offer active tumor-targeting ability. This unique self-fluorescent unimolecular micelle exhibited excellent photostability and low cytotoxicity, making it an attractive bioimaging probe for NP tracking for a variety of microscopy techniques including fluorescent microscopy, confocal laser scanning microscopy (CLSM), and two-photon microscopy. Moreover, this self-fluorescent unimolecular micelle NP also demonstrated excellent stability in aqueous solutions due to its covalent nature, high drug loading level, pH-controlled drug release, and passive and active tumor-targeting abilities, thereby making it a promising nanoplatform for targeted cancer theranostics.  相似文献   

12.
Drug resistance remains one of the primary obstacles to the success of cancer chemotherapy. In this work, we demonstrate a singlet-oxygen producible polymeric (SOPP) micelle based on photosensitizer (PS, chlorin e6 (Ce6)) conjugated amphiphilic copolymer (pluronic F127®, PF127) for overcoming drug resistance in cancer by applying photochemical internalization (PCI). The doxorubicin (DOX)-loaded SOPP micelles were self-assembled from Ce6-PF127 conjugates, which have a spherical shape with a uniform size of ∼30 nm. Compared with free Ce6, enhanced singlet-oxygen generation efficiency in the DOX-loaded SOPP micelles have been demonstrated in aqueous environments due to their increased water-dispersibility. Under low dose of laser power and anti-cancer drug (DOX) conditions, in vitro and in vivo studies on drug-resistant cancer cells demonstrated that singlet-oxygen-mediated cellular membrane damage (caused by lipid peroxidation) significantly increased the cellular uptake of drug (DOX), which led to overcoming the drug resistance in cancer cells without undesirable side effects. We believe this approach could represent a promising platform for drug-resistant cancer treatment.  相似文献   

13.
The influence of molar mass and chemical composition of the copolymer on the structural parameters of copolymer micelles was investigated. Two polystyrene-block-poly(ethylene-co-propene) copolymers with the same polystyrene block length but different poly(ethylene-co-propene) length were used. The micelles were studied in solutions of octane and 5-methyl-2-hexanone, selective solvents for poly(ethylene-co-propene) (PEP) and polystyrene (PS) blocks, respectively. Static light scattering and viscosity measurements were carried out in order to determine the weight-average molar mass, radius of gyration, second virial coefficient and hydrodynamic radius of the micelles. The association number of the micelles depends on the location of the largest copolymer block in the micelle structure. An influence of the copolymer structure on the micelle dimensions was also found.  相似文献   

14.
A new type of amphiphilic block copolymers, poly(ethylene glycol)-block-poly(2-methyl-acrylicacid 2-methoxy-5-methyl-[1,3]dioxin-5-ylmethyl ester) (PEG-b-PMME), bearing acid-labile six-membered ortho ester rings in side chains was synthesized by reversible addition–fragmentation chain-transfer polymerization, and the influence of chain length of the hydrophobic PMME block on micelle properties was investigated. The PEG-b-PMME micelles were stable in aqueous buffer at physiological pH with a low critical micelle concentration. Nile Red as a model drug was encapsulated into the micelles to explore the release profiles. The Nile Red-loaded polymeric micelles showed rapid release of Nile Red in weakly acidic environments (pH 5) but slow release under physiological condition (pH 7.4), due to different hydrolysis rate of ortho ester side chains of PEG-b-PMME. The Paclitaxel (PTX)-loaded micelles retained potency in killing lung cancer cells (A549), compared with the free PTX. No obvious toxicity was found in vitro and in vivo after intraperitoneal injection of the micelles, which confirms that the PEG-b-PMME micelles with unique acid-labile characteristic have great potential as nano-scaled carriers for drug delivery.  相似文献   

15.
Indocyanine green (ICG) is a Federal Drug Administration-approved near-infrared imaging agent susceptible to chemical degradation, nonspecific binding to blood proteins, and rapid clearance from the body. In this study, we describe the encapsulation of ICG within polymeric micelles formed from poly(styrene-alt-maleic anhydride)-block-poly(styrene) (PSMA-b-PSTY) diblock copolymers to stabilize ICG for applications in near-infrared diagnostic imaging. In aqueous solution, the diblock copolymers self-assemble to form highly stable micelles approximately 55 nm in diameter with a critical micelle concentration (CMC) of approximately 1 mg/L. Hydrophobic ICG salts readily partition into the PSTY core of these micelles with high efficiency, and produce no change in micelle morphology or CMC. Once loaded in the micelle core, ICG is protected from aqueous and thermal degradation, with no significant decrease in fluorescence emission over 14 days at room temperature and retaining 63% of its original emission at 37 degrees C. Free ICG does not release rapidly from the micelle core, with only 11% release over 24 h. The ICG-loaded micelles do not exhibit significant cell toxicity. This system has the potential to greatly improve near-infrared imaging in breast cancer detection by increasing the stability of ICG for formulation/administration, and by providing a means to target ICG to tumor tissue.  相似文献   

16.
Hydrophobized block copolymers have widely been developed for construction of polymeric micelles for stable delivery of nucleic acids as well as anticancer drugs. Herein, we elaborated an A-B-C type of triblock copolymer featuring shell-forming A-segment, nucleic acid-loading B-segment, and stable core-forming C-segment, directed toward construction of a three-layered polymeric micelle as a small interfering RNA (siRNA) vehicle. The triblock copolymer was prepared with nonionic and hydrophilic poly(ethylene glycol) (PEG), cationic poly(l-lysine) (PLys), and poly{N-[N-(2-aminoethyl)-2-aminoethyl]aspartamide} [PAsp(DET)] bearing a hydrophobic dimethoxy nitrobenzyl ester (DN) moiety in the side chain [PEG-PLys-PAsp(DET-DN)]. The resulting triblock copolymers spontaneously formed sub-100 nm-sized polymeric micelles with a hydrophobic PAsp(DET-DN) core as well as PEG shell in an aqueous solution. This micelle was able to incorporate siRNA into the intermediate PLys layer, associated with slightly reduced size and a narrow size distribution. The triblock copolymer micelles (TCMs) stably encapsulated siRNA in serum-containing medium, whereas randomly hydrophobized triblock copolymer [PEG-PLys(DN)-PAsp(DET-DN)] control micelles (RCMs) gradually released siRNA with time and non-PEGylated diblock copolymer [PLys-PAsp(DET-DN)] control micelles (DCMs) immediately formed large aggregates. The TCMs thus induced appreciably stronger sequence-specific gene silencing in cultured cancer cells, compared to those control micelles. The siRNA delivery with TCMs was further examined in terms of cellular uptake and intracellular trafficking. The flow cytometric analysis revealed that the cellular uptake of TCMs was more efficient than that of RCMs, but less efficient than that of DCMs. The intracellular trafficking study using confocal laser scanning microscopy combined with fluorescence resonance energy transfer (FRET) revealed that the TCMs could readily release the siRNA payload within cells, which was in contrast to the DCMs exhibiting much slower release profile. This result indicates that PEG shell contributed to the smooth release of siRNA from TCMs within the cells, presumably due to avoiding irreversible aggregate formation. The obtained results demonstrated that the design of separately functionalized polymer segments expanded the performance of polymeric micelles for successful siRNA delivery.  相似文献   

17.
Xiao Y  Hong H  Javadi A  Engle JW  Xu W  Yang Y  Zhang Y  Barnhart TE  Cai W  Gong S 《Biomaterials》2012,33(11):3071-3082
A multifunctional unimolecular micelle made of a hyperbranched amphiphilic block copolymer was designed, synthesized, and characterized for cancer-targeted drug delivery and non-invasive positron emission tomography (PET) imaging in tumor-bearing mice. The hyperbranched amphiphilic block copolymer, Boltorn(?) H40-poly(L-glutamate-hydrazone-doxorubicin)-b-poly(ethylene glycol) (i.e., H40-P(LG-Hyd-DOX)-b-PEG), was conjugated with cyclo(Arg-Gly-Asp-D-Phe-Cys) peptides (cRGD, for integrin α(v)β(3) targeting) and macrocyclic chelators (1,4,7-triazacyclononane-N, N', N'-triacetic acid [NOTA], for (64)Cu-labeling and PET imaging) (i.e., H40-P(LG-Hyd-DOX)-b-PEG-OCH(3)/cRGD/NOTA, also referred to as H40-DOX-cRGD). The anti-cancer drug, doxorubicin (DOX) was covalently conjugated onto the hydrophobic segments of the amphiphilic block copolymer arms (i.e., PLG) via a pH-labile hydrazone linkage to enable pH-controlled drug release. The unimolecular micelles exhibited a uniform size distribution and pH-sensitive drug release behavior. cRGD-conjugated unimolecular micelles (i.e., H40-DOX-cRGD) exhibited a much higher cellular uptake in U87MG human glioblastoma cells due to integrin α(v)β(3)-mediated endocytosis than non-targeted unimolecular micelles (i.e., H40-DOX), thereby leading to a significantly higher cytotoxicity. In U87MG tumor-bearing mice, H40-DOX-cRGD-(64)Cu also exhibited a much higher level of tumor accumulation than H40-DOX-(64)Cu, measured by non-invasive PET imaging and confirmed by biodistribution studies and ex vivo fluorescence imaging. We believe that unimolecular micelles formed by hyperbranched amphiphilic block copolymers that synergistically integrate passive and active tumor-targeting abilities with pH-controlled drug release and PET imaging capabilities provide the basis for future cancer theranostics.  相似文献   

18.
Chen YC  Liao LC  Lu PL  Lo CL  Tsai HC  Huang CY  Wei KC  Yen TC  Hsiue GH 《Biomaterials》2012,33(18):4576-4588
An optimized, biodegradable, dual temperature- and pH-responsive micelle system conjugated with functional group Cy5.5 was prepared in order to enhance tumor accumulation. The Dynamic light scattering (DLS) measurements showed that these diblock copolymers form micelle in PBS buffer with a size of around 50 nm by heating of an aqueous polymer solution from below to above the cloud point (CP). Anticancer drug, doxorubicin was incorporated into the inner core of micelle by hot shock protocol. The size and stability of the micelle were controlled by the copolymer composition and is fine tuned to extracellular pH of tumor. The mechanism then caused pH change and at body temperature which induce doxorubicin release from micelles and have strong effects on the viability of HeLa, ZR-75-1, MCF-7 and H661 cancer cells. Our in vivo results revealed a clear distribution of Doxorubicin-loaded mixed micelle (Dox-micelle) and efficiency targeting tumor site with particles increasing size in the tumor interstitial space, and the particles could not diffuse throughout the tumor matrix. In vivo tumor growth inhibition showed that Dox-micelle exhibited excellent antitumor activity and a high rate of anticancer drug in cancer cells by this strategy.  相似文献   

19.
Folate-conjugated amphiphilic hyperbranched block copolymer (H40–PLA-b-MPEG/PEG–FA) with a dendritic Boltorn® H40 core, a hydrophobic poly(l-lactide) (PLA) inner shell and a hydrophilic methoxy poly(ethylene glycol) (MPEG) and folate-conjugated poly(ethylene glycol) (PEG–FA) outer shell was synthesized as a carrier for tumor-targeted drug delivery. The block copolymer was characterized using 1H NMR and gel permeation chromatography (GPC) analysis. Due to its core–shell structure, this block polymer forms unimolecular micelles in aqueous solutions. The micellar properties of H40–PLA-b-MPEG/PEG–FA block copolymer were extensively studied by dynamic light scattering (DLS), fluorescence spectroscopy, and transmission electron microscopy (TEM). An anticancer drug, doxorubicin in the free base form (DOX) was encapsulated into H40–PLA-b-MPEG/PEG–FA micelles. The DOX-loaded micelles provided an initial burst release (up to 4 h) followed by a sustained release of the entrapped DOX over a period of about 40 h. Cellular uptake of the DOX-loaded H40–PLA-b-MPEG/PEG–FA micelles was found to be higher than that of the DOX-loaded H40–PLA-b-MPEG micelles because of the folate-receptor-mediated endocytosis, thereby providing higher cytotoxicity against the 4T1 mouse mammary carcinoma cell line. In vitro degradation studies revealed that the H40–PLA-b-MPEG/PEG–FA block copolymer hydrolytically degraded into polymer fragments within six weeks. These results indicated that the micelles prepared from the H40–PLA-b-MPEG/PEG–FA block copolymer have great potential as tumor-targeted drug delivery nanocarriers.  相似文献   

20.
Thermo-sensitive poly(N-isoproplacrylamide)m-block-hydroxyl-terminated polybutadiene-block-poly(N-isoproplacrylamide)m (PNIPAMm-b-HTPB-b-PNIPAMm, m = 1 or 2) block copolymers, AB4 four-armed star multiblock and linear triblock copolymers, were synthesized by ATRP with HTPB as central blocks, and characterization was performed by 1H NMR, Fourier transform infrared, and size exclusion chromatography. The multiblock copolymers could spontaneously assemble into more regular spherical core–shell nanoscale micelles than the linear triblock copolymer. The physicochemical properties were detected by a surface tension, nanoparticle analyzer, transmission electron microscope (TEM), dynamic light scattering, and UV–vis measurements. The multiblock copolymer micelles had lower critical micelle concentration than the linear counterpart, TEM size from 100 to 120 nm, and the hydrodynamic diameters below 150 nm. The micelles exhibited thermo-dependent size change, with low critical solution temperature of about 33–35 °C. The characteristic parameters were affected by the composition ratios, length of PNIPAM blocks, and molecular architectures. The camptothecin release demonstrated that the drug release was thermo-responsive, accompanied by the temperature-induced structural changes of the micelles. MTT assays were performed to evaluate the biocompatibility or cytotoxicity of the prepared copolymer micelles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号