首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
There is an interesting potential for the use of GFRP-pultruded profiles in hybrid GFRP-concrete structural elements, either for new constructions or for the rehabilitation of existing structures. This paper provides experimental and numerical investigations on the flexural performance of reinforced concrete (RC) specimens composite with encased pultruded GFRP I-sections. Five simply supported composite beams were tested in this experimental program to investigate the static flexural behavior of encased GFRP beams with high-strength concrete. Besides, the effect of using shear studs to improve the composite interaction between the GFRP beam and concrete as well as the effect of web stiffeners of GFRP were explored. Encasing the GFRP beam with concrete enhanced the peak load by 58.3%. Using shear connectors, web stiffeners, and both improved the peak loads by 100.6%, 97.3%, and 130.8%, respectively. The GFRP beams improved ductility by 21.6% relative to the reference one without the GFRP beam. Moreover, the shear connectors, web stiffeners, and both improved ductility by 185.5%, 119.8%, and 128.4%, respectively, relative to the encased reference beam. Furthermore, a non-linear Finite Element (FE) model was developed and validated by the experimental results to conduct a parametric study to investigate the effect of the concrete compressive strength and tensile strength of the GFRP beam. The developed FE model provided good agreement with the experimental results regarding deformations and damaged patterns.  相似文献   

2.
Glass fiber-reinforced polymer (GFRP) reinforcing bars have relatively low shear strength, which limits their possible use in civil infrastructure applications with high shear demand, such as concrete reinforcing dowels. We suggest that the horizontal shear strength of GFRP bars can be significantly improved by nanomodification of the vinyl ester resin prior to pultrusion. The optimal content of functionalized multiwalled carbon nanotubes (MWCNTs) well dispersed into the vinyl ester resin was determined using viscosity measurements and scanning electron micrographs. Longitudinal tension and short beam shear tests were conducted to determine the horizontal shear strength of the nanomodified GFRP reinforcing bars. While the tensile strength of the GFRP reinforcing bars was improved by 20%, the horizontal shear strength of the bars was improved by 111% compared with the shear strength of neat GFRP bars pultruded using the same settings. Of special interest is the absence of the typical broom failure observed in GFRP when MWCNTs were used. Differential scanning calorimetry measurements and fiber volume fraction confirmed the quality of the new pultruded GFRP bars. Fourier-transform infrared (FTIR) measurements demonstrated the formation of carboxyl stretching in nanomodified GFRP bars, indicating the formation of a new chemical bond. The new pultrusion process using nanomodified vinyl ester enables expanding the use of GFRP reinforcing bars in civil infrastructure applications.  相似文献   

3.
This study investigates the durability of glass fiber-reinforced polymer (GFRP) reinforcing bars (rebars) and their bond in concrete. Accelerated aging tests were first conducted on bare rebars that were either subjected to direct immersion in an alkaline solution or previously embedded in concrete before immersion in the solution (indirect immersion). Accelerated aging was conducted at different temperatures of the solution (20 °C, 40 °C and 60 °C) and for various periods up to 240 days. Residual tensile properties were determined for rebars subjected to direct immersion and served as input data of a predictive Arrhenius model. A large decrease in the residual tensile strength assigned to the alkali-attack of glass fibers was extrapolated in the long term, suggesting that direct immersion is very severe compared to actual service conditions. Short-beam tests were also performed on rebars conditioned under direct/indirect immersion conditions, but did not reveal any significant evolution of the interlaminar shear strength (ILSS). In a second part, bond tests were performed on pull-out specimens after immersion in the alkaline solution at different temperatures, in order to assess possible changes in the concrete/GFRP bond properties over aging. Results showed antagonistic effects, with an initial increase in bond strength assigned to a confinement effect of the rebar resulting from changes in the concrete properties over aging, followed by a decreasing trend possibly resulting from interfacial degradation. Complementary characterizations by scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) spectroscopy were also carried out to evaluate the effects of aging on the physical/microstructural properties of GFRPs.  相似文献   

4.
The problem with composite rebars in the civil engineering industry is often described as the material’s brittleness while overloaded. To overcome this drawback, researchers pay attention to the pseudo-ductility effect. The paper presents four-point bending tests of pure unidirectional (UD) rods with additional composite layers obtained by filament winding and hand braiding techniques. Two types of core materials, glass FRP (fibre reinforced polymer) and carbon FRP, were used. Regarding the overwrapping material, the filament winding technique utilized carbon and glass roving reinforcement in the epoxy matrix, while in the case of hand braiding, the carbon fibre sleeve was applied with the epoxy matrix. Microstructural analysis using scanning electron microscopy (SEM) and computed tomography (CT) was performed to reveal the structural differences between the two proposed methods. Mechanical test results showed good material behaviour exhibiting the pseudo-ductility effect after the point of maximum force. The two applied overwrapping techniques had different influences on the pseudo-ductility effect. Microstructural investigation revealed differences between the groups of specimens that partially explain their different characters during mechanical testing.  相似文献   

5.
To address flexural fractures and predict fatigue life, an ordinary state-based peridynamic (PD) fatigue model is proposed for the initiation and propagation of flexural fractures. The key to this model is to replace the traditional partial differential fracture model with a spatially integral peridynamic model. Based on the contact and slip theory, the nonlocal peridynamic contact algorithm is confirmed and the load transfer is through the contact area. With the 3D peridynamic J-integration and the energy-based bond failure criterion, the peridynamic fatigue model for flexural cracks’ initiation and propagation is constructed. The peridynamic solid consists of a pair of gear contact surfaces and the formation and growth of flexural fatigue cracks evolved naturally over many loading cycles. The repeated load is transferred from the drive gear to the follower gear using the nonlocal peridynamic contact algorithm. The improved adaptive dynamic relaxation approach is used to determine the static solution for each load cycle. The fatigue bending crack angle errors are within 2.92% and the cycle number errors are within 10%. According to the experimental results, the proposed peridynamic fatigue model accurately predicts the location of the crack without the need for additional criteria and the fatigue life predicted by the simulation agrees quite well with the experimental results.  相似文献   

6.
The present study experimentally and numerically investigated the impact behavior of composite reinforced concrete (RC) beams with the pultruded I-GFRP and I-steel beams. Eight specimens of two groups were cast in different configurations. The first group consisted of four specimens and was tested under static load to provide reference results for the second group. The four specimens in the second group were tested first under impact loading and then static loading to determine the residual static strengths of the impacted specimens. The test variables considered the type of encased I-section (steel and GFRP), presence of shear connectors, and drop height during impact tests. A mass of 42.5 kg was dropped on the top surface at the mid-span of the tested beams from five different heights: 250, 500, 1000, 1500, and 1900 mm. Moreover, nonlinear Finite Element (FE) models were developed and validated using the experimental data. Static loading was defined as a displacement-controlled loading and the impact loading was modeled as dynamic explicit analysis with different drop velocities. The validated models were used to conduct a parametric study to investigate the effect of the concrete compressive strength on the performance of the composite beams under static and impact loadings. For the composite specimen with steel I-sction, the maximum impact force was 190% greater than the reference specimen NR-I at a drop height of 1900 mm, whereas the maximum impact forces for the specimens composite specimens with GFRP I-sction without and with shear connectors were 19% and 77%, respectively, more significant than the reference beam at the same drop height. The high stiffness for the steel I-beams relative to the GFRP I-beam was the reason for this difference in behavior. The concrete compressive strength was more effective in improving the impact behavior of the composite specimens relative to those without GFRP I-beams.  相似文献   

7.
Rough- and intermediate-rolled composite billets and finished clad rebars were cut using flying shears. The law of metal rheology and the mechanism of composite interface generation during clad rebar formation were then investigated using metallographic microscopy, electron backscatter diffraction, and scanning electron microscopy. The radial deformation trend of the clad rebars was greater than that of HRB400 rebars and “ears” were more likely to appear during the rolling process. The widths of the decarburization and composite zones and diffusion distances of each element decreased as the cumulative reduction rate increased. Furthermore, as deformation increased, the number of oxides on the composite interface significantly decreased, the proportion of recrystallized grains increased, and the grains became more refined. These changes led to increases in the bond and tensile strengths of the composite interface. According to the research above, the pass filling degree should be within 0.85–0.9 and the cumulative reduction rate should be over 80% when rolling clad rebars.  相似文献   

8.
This study presents three-point bending fracture tests on glass fiber-reinforced polymer (GFRP) reinforced concrete notched beams. Few studies have been conducted to date to understand the fracture behavior of this type of specimens. The specimens have nominal depth, width, and length equal to 150 mm, 150 mm, and 550 mm. Plain concrete notched beams with the same dimensions are cast from the same batch of concrete to compare the responses with GFRP reinforced concrete notched beams. The notch of the plain concrete specimens is either saw cut or cast. These two notch fabrication methods are compared based on the load responses. The peak load, crack mouth opening displacement (CMOD), GFRP bar slip at two ends, and load point displacement are used to discuss the results of the fracture tests. In addition, digital image analysis is performed to identify the fracture process zone (FPZ) and the location of the neutral axis, which are used to determine the force in the GFRP bar via cross-sectional analysis. Finally, the GFRP bar force versus slip responses are compared with those from the pull-out tests performed on the same bar to show that the bond of the bar in the pull-out tests represents an upper bound limit compared to the behavior in bending.  相似文献   

9.
In recent years, the application of fiber-reinforced plastics (FRPs) as structural members has been promoted. Metallic bolts and rivets are often used for the connection of FRP structures, but there are some problems caused by corrosion and stress concentration at the bearing position. Fiber-reinforced thermoplastics (FRTPs) have attracted attention in composite material fields because they can be remolded by heating and manufactured with excellent speed compared with thermosetting plastics. In this paper, we propose and evaluate the connection method using rivets produced of FRTPs for FRP members. It was confirmed through material tests that an FRTP rivet provides stable tensile, shear, and bending strength. Then, it was clarified that non-clearance connection could be achieved by the proposed connection method, so initial sliding was not observed, and connection strength linearly increased as the number of FRTP rivets increased through the double-lapped tensile shear tests. Furthermore, the joint strength of the beam using FRTP rivets could be calculated with high accuracy using the method for bolt joints in steel structures through a four-point beam bending test.  相似文献   

10.
Some types of fiber-reinforced concrete (FRC) such as steel fiber-reinforced concrete (SFRC) or polyolefin fiber-reinforced concrete (PFRC) are suitable for structural uses but there is still scarce knowledge regarding their flexural fatigue behavior. This study aimed to provide some insight into the matter by carrying out flexural fatigue tests in pre-cracked notched specimens that previously reached the Service Limit State (SLS) or the Ultimate Limit State (ULS). The fatigue cycles applied between 30% and 70% of the pre-crack load at 5 Hz until the collapse of the material or until 1,000,000 cycles were reached. The results showed that the fatigue life of PFRC both at SLS or ULS was remarkably higher than the correspondent of SFRC. The fracture surface analysis carried out found a linear relation between the fibers present in the fracture surface and the number of cycles that both SFRC and PFRC could bear.  相似文献   

11.
This paper describes methods, procedures, and results of cyclic loading tensile tests of a PBO FRCM composite. The main objective of the research is the evaluation of the effect of low- and high-cycle fatigue on the composite tensile properties, namely the tensile strength, ultimate tensile strain, and slope of the stress–strain curve. To this end, low- and high-cycle fatigue tests and post-fatigue tests were performed to study the composite behavior when subjected to cyclic loading and after being subjected to a different number of cycles. The results showed that the mean stress and amplitude of fatigue cycles affect the specimen behavior and mode of failure. In high-cycle fatigue tests, failure occurred due to progressive fiber filaments rupture. In low-cycle fatigue, the stress–strain response and failure mode were similar to those observed in quasi-static tensile tests. The results obtained provide important information on the fatigue behavior of PBO FRCM coupons, showing the need for further studies to better understand the behavior of existing concrete and masonry members strengthened with FRCM composites and subjected to cyclic loading.  相似文献   

12.
This study investigated the flexural and impact performances of mortar composite made with carbon fibers (MCCF). Four mortar composites (MCCF1, MCCF2, MCCF3, and MCCF4) were produced, using 1%, 2%, 3%, and 4% carbon fibers by volume, respectively. Another mortar composite without any carbon fibers (MCCF0) was prepared for its use as a control mix. The freshly mixed mortar composites were tested for inverted slump cone flow time to ensure they had an adequate workability to cast test specimens under vibration. In addition, all fresh mortar composites were examined for density and air content. The hardened mortar composites were tested for their first-crack flexural strength, ultimate flexural strength, first-crack impact resistance, and ultimate impact resistance. Moreover, the first-crack flexural toughness, ultimate flexural toughness, first-crack impact toughness, and ultimate impact toughness were determined for all hardened mortar composites. The correlations among the hardened properties of the mortar composites were also sought. Finally, the optimum fiber content was defined from the overall test results and considering the costs of the mortar composites. The test results showed that the workability and density of the fresh mortar composite decreased, whereas its air content increased due to the inclusion of carbon fibers. However, MCCF3 possessed the highest density and lowest air content among all MCCF mixes. It also had a higher workability than MCCF4. In the hardened state, the first-crack flexural strength and impact resistance, as well as the ultimate flexural strength and impact resistance of mortar composite, increased significantly with the increasing volume content of carbon fibers. In addition, the first-crack flexural toughness, ultimate flexural toughness, first-crack impact toughness, and ultimate impact toughness increased greatly with the higher volume content of carbon fibers. Strong correlations between the flexural strength and impact resistance, and between the flexural toughness and impact toughness of the mortar composites, were observed. Above all, excellent flexural strength, flexural toughness, impact resistance, and impact toughness values were observed for MCCF4 (4% carbon fibers). The 28-day ultimate flexural strength and impact resistance of MCCF4 increased by 4.6 MPa and 134 blows, respectively, as compared to MCCF0. Moreover, the 28-day ultimate flexural toughness and ultimate impact toughness values of MCCF4 were higher than that of MCCF0, by 3739.7 N-mm and 2703.3 J, respectively. However, MCCF3 (3% carbon fibers) also exhibited a good performance under flexural and impact loadings. Based on the costs of all mortar composites and their performances in both fresh and hardened states, MCCF3 was derived as the best mortar mix. This implies that 3% carbon fibers can be defined as the optimum fiber content in the context of the present study.  相似文献   

13.
A full-scale experimental test was conducted to analyze the composite behavior of insulated concrete sandwich wall panels (ICSWPs) subjected to wind pressure and suction. The experimental program was composed of three groups of ICSWP specimens, each with a different type of insulation and number of glass-fiber-reinforced polymer (GFRP) shear grids. The degree of composite action of each specimen was analyzed according to the load direction, type of the insulation, and number of GFRP shear grids by comparing the theoretical and experimental values. The failure modes of the ICSWPs were compared to investigate the effect of bonds according to the load direction and type of insulation. Bonds based on insulation absorptiveness were effective to result in the composite behavior of ICSWP under positive loading tests only, while bonds based on insulation surface roughness were effective under both positive and negative loading tests. Therefore, the composite behavior based on surface roughness can be applied to the calculation of the design strength of ICSWPs with continuous GFRP shear connectors.  相似文献   

14.
Due to the demand for increasing trainload and enhancing some existing heavy-haul railways, the low reserve value of bearing capacity is a problem for the 32 m-span simply supported beam. The fatigue behavior of prestressed concrete beams in a heavy-haul railway loaded by 33 t and larger axle weight of trains was experimentally investigated. The experimental results of the fatigue behaviors, including fatigue deformation, crack propagation behavior, and strains of classical materials were obtained and analyzed. A fatigue behavior assessment model was established to investigate the residual stiffness and yield point degradation of the beams loaded by the trainload. The effects of train fatigue cycles and prestress loss on the residual stiffness and yield point degradation models of the beams were analyzed. The results indicated that the crack development process had three stages during the fatigue process: the derivative stage, gradual development stage, and fatigue failure stage. Trainload was the main external factor influencing the fatigue behavior of prestressed concrete beams. The increase in trainload accelerated the degradation rate of the residual stiffness of the beams and yield point, reducing the fatigue life. The prestressing strand was primarily used to delay the concrete cracking in the tension zone. When the beam was not cracked, the prestressed concrete beam showed good fatigue performance, and the degree of prestressing did not affect the fatigue life of the beams. When the maximum fatigue load exceeded the cracking load of the beam, prestress loss in beams became a critical issue that accelerated the degradation rate of fatigue strength and reduced fatigue life. The higher the fatigue damage degree, the more pronounced the effect of prestress loss on the fatigue strength of the beams. The fatigue failure of prestressed concrete beams occurred in the bottom tensile steel bar. Therefore, when the trainload of a heavy-haul railway is greater than the cracking load of the beam, it is recommended to strengthen the beam by prestressing and strictly control the trainload to avoid yield failure.  相似文献   

15.
In view of the problems of traditional repair materials for anchorage concrete of expansion joints, such as ease of damage and long maintenance cycles, the design of polyurethane concrete was optimized in this article, which could be used for rapid repair of concrete in anchorage zone of expansion joints. A new type of carbon fiber grid–polyurethane concrete system was designed, which makes the carbon fiber grid have an excellent synergistic effect with the quick-hardening and high-strength polyurethane concrete, and improved the flexural bearing capacity of the polyurethane concrete. Through the four-point bending test, the influence of the parameters such as the number of grid layers, grid width, and grid density on the flexural bearing capacity of polyurethane concrete beams was tested. The optimum preparation process parameters of carbon fiber grid were obtained to improve the flexural performance of polyurethane concrete. Compared with the Normal specimen, C-80-1’s average flexural strength increased by 47.7%, the failure strain along the beam height increased by 431.1%, and the failure strain at the bottom of the beam increased by 68.9%. The best width of the carbon fiber grid was 80 mm, and the best number of reinforcement layers was one layer. The test results show that the carbon fiber grid could improve the flexural bearing capacity of polyurethane concrete. The carbon fiber grid–polyurethane concrete system provides a new idea for rapid repair of the anchorage zone of bridge expansion joints, and solves the problems such as ease of damage and long maintenance cycles of traditional repair materials, which can be widely used in the future.  相似文献   

16.
The use of synthetic fibers in fiber-reinforced concretes (FRCs) is often avoided due to the mistrust of lower performance at changing temperatures. This work examines the effect of moderate temperatures on the flexural strengths of FRCs. Two types of polypropylene fibers were tested, and one steel fiber was employed as a reference. Three-point bending tests were carried out following an adapted methodology based on the standard EN 14651. This adapted procedure included an insulation system that allowed the assessment of FRC flexural behavior after being exposed for two months at temperatures of 5, 20, 35 and 50 °C. In addition, the interaction of temperature with a pre-cracked state was also analyzed. To do this, several specimens were pre-cracked to 0.5 mm after 28 days and conditioned in their respective temperature until testing. The findings suggest that this range of moderate temperatures did not degrade the behavior of FRCs to a great extent since the analysis of variances showed that temperature is not always a significant factor; however, it did have an influence on the pre-cracked specimens at 35 and 50 °C.  相似文献   

17.
This study evaluated the influence of cyclic loading on zirconia bar-shaped specimens after being subjected to three different surface treatments: particle abrasion with either 50 μm or 110 μm alumina and grinding with diamond points, while polished specimens served as a control. Statistical analysis revealed significant reduction (38-67%) in flexure strength (P < 0.001) after three million cycles of dynamic loading for all surface treatments. Scanning electron imaging revealed grain boundary thickening, grain pull-out, and micro-cracking as the main structural defects. The results suggest that various surface treatments of zirconia based dental ceramics may significantly influence their long term fatigue resistance in the oral environment.  相似文献   

18.
Nowadays, a relatively small number of studies concern the study of corrosion processes in reinforced concrete structures under load. Additionally, rather little research has been carried out concerning changes in the stress–strain state parameters of structures under the simultaneous action of aggressive environment and load. This issue requires additional experimental and theoretical investigation. Determination of mechanical properties, fatigue characteristics and susceptibility to corrosion cracking was performed on samples of reinforcing St3GPF steel. The chemical composition of steel was determined by structural analysis. The spectral method for the determination of alloying elements and impurities in steels is based on the excitation of iron atoms and admixtures by electric discharge, decomposition of radiation into a spectrum, followed by its registration on photoplate with the use of electrograph. Experimental tests of samples in an aggressive environment under the action of statically applied tensile force showed that corrosion damage has little effect on the strength characteristics. At the same time, the decrease in area reduction and the decrease in strain were recorded. Additionally, the action of cyclic loads in an aggressive environment leads to a significant reduction in the fatigue limit to values from 20 to 24% of the yield strength of the original samples, which is 2–3 times lower than the fatigue limit of undamaged samples.  相似文献   

19.
Through proper arranging of a hybrid combination of longitudinal fiber reinforced polymer (FRP) bars and steel bars in the tensile region of the beam, the advantages of both FRP and steel materials can be sufficiently exploited to enhance the flexural capacity and ductility of a concrete beam. In this paper, a methodology for the flexural strength design of hybrid FRP-steel reinforced concrete (RC) beams is proposed. Firstly, based on the mechanical features of reinforcement and concrete and according to the latest codified provisions of longitudinal reinforcement conditions to ensure ductility level, the design-oriented allowable ranges of reinforcement ratio corresponding to three common flexural failure modes are specified. Subsequently, the calculation approach of nominal flexural strength of hybrid FRP-steel RC beams is established following the fundamental principles of equilibrium and compatibility. In addition to the common moderately-reinforced beams, the proposed general calculation approach is also applicable to lightly-reinforced beams and heavily-reinforced beams, which are widely used but rarely studied. Furthermore, the calculation process is properly simplified and the calculation accuracy is validated by the experimental results of hybrid FRP-steel RC beams in the literature. Finally, with the ductility analysis, a novel strength reduction factor represented by net tensile steel strain and reinforcement ratio is proposed for hybrid FRP-steel RC beams.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号