首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ultrafine grained sheets were prepared from a twin-roll cast AA8006 aluminium alloy using accumulative roll-bonding process at room temperature. The evolution of microstructure of sheets after three accumulative roll-bonding passes during isochronal annealing with a constant step of 20 °C/20 min was studied by light and electron microscopy. The influence of the resulting microstructure on mechanical properties was monitored by microhardness measurements. The microhardness increases when the material is annealed up to 160 °C. Above this temperature a fast drop of microhardness occurs followed by a negligible variation at annealing temperatures exceeding 300 °C. In order to map continuously the microstructure changes during annealing, the in situ TEM experiments in the heating stage were performed as a supplement to post-mortem TEM observations.  相似文献   

2.
To explore the influence of annealing temperatures on the interfacial structure and peeling strength of Cu/Al clad sheets with a 304 stainless steel foil interlayer, an intermediate annealing treatment was performed at temperatures of 450 °C, 550 °C, and 600 °C, separately. The experimental results indicate that the interfacial atomic diffusion is significantly enhanced by increasing the intermediate annealing temperature. The average peeling strength of the clad sheets annealed at 550 °C can reach 34.3 N/mm and the crack propagation is along the steel/Cu interface, Cu-Al intermetallic compounds layer, and Al matrix. However, after high-temperature annealing treatment (600 °C), the liquid phase is formed at the bonding interface and the clear Cu/steel/Al interface is replaced by the chaotic composite interfaces. The clad sheet broke completely in the unduly thick intermetallic compounds layer, resulting in a sharp decrease in the interfacial bonding strength.  相似文献   

3.
To study the heat-treatment process of a semi-solid copper alloy, a thixotropic back-extruded tin–bronze shaft sleeve was heat-treated at 630 °C, 660 °C, 690 °C and 720 °C for 1 h, respectively. Microstructure changes and mechanical properties under different solution temperatures of shaft sleeve were characterized using a metallographic microscope (OM), scanning electron microscope (SEM), transmission electron microscope (TEM), hardness tester, and tensile tester. The results show that the tensile strength first increases and then decreases; the elongation decreases; and the Brinell hardness increases gradually with increasing solution temperature. When the solution treatment is at 690 °C, the tin–bronze shaft sleeve’s microstructure and comprehensive mechanical properties are the best. The shape factor is 0.75, the average grain size is 82.52 μm, the Brinell hardness is 122 HBW, the tensile strength is 437 MPa, and the elongation is 17.4%, which is 3.4 times higher than that before solution treatment.  相似文献   

4.
In this study, Fe40Cr19Mo18C15B8 amorphous coatings were prepared using high velocity oxygen fuel (HVOF) technology. Different temperatures were used in the heat treatment (600 °C, 650 °C, and 700 °C) and the annealed coatings were analyzed by DSC, SEM, TEM, and XRD. XRD and DSC results showed that the coating started to form a crystalline structure after annealing at 650 °C. From the SEM observation, it can be found that when the annealing temperature of the Fe-based amorphous alloy coating reached 700 °C, the surface morphology of the coating became relatively flat. TEM observation showed that when the annealing temperature of the Fe-based amorphous alloy coating was 700 °C, crystal grains in the coating recrystallized with a grain size of 5–20 nm. SAED analysis showed that the precipitated carbide phase was M23C6 phase with different crystal orientations (M = Fe, Cr, Mo). Finally, the corrosion polarization curve showed that the corrosion current density of the coating after annealing only increased by 9.13 μA/cm2, which indicated that the coating after annealing treatment still had excellent corrosion resistance. It also proved that the Fe-based amorphous alloy coating can be used in high-temperature environments. XPS analysis showed that after annealing FeO and Fe2O3 oxide components increased, and the formation of a large number of crystals in the coating resulted in a decrease in corrosion resistance.  相似文献   

5.
To improve the shape memory effect, the solutionized Fe-24Mn-6Si-9Cr-6Ni alloy was shot peened and subsequently annealed. The phase constituent was examined using the X-ray diffraction method. Microstructure evolution was characterized using an optical microscope and the electronic backscatter diffraction method, and the shape memory effect was evaluated using a bending test. The results show that α′-martensite and ε-martensite were introduced into the shot-peened surface layer. The α′-martensite remained after annealing even at 850 °C. Microstructure of the surface layer was refined through shot peening and subsequent annealing. Compared with those of the solutionized specimen, the shape recovery ratio and recovery strain of the specimens that are shot peened and subsequently annealed are significantly improved at different prestrains.  相似文献   

6.
The Fe-Mn-Si shape memory alloys are considered promising materials for the biodegradable bone implant application since their functional properties can be optimized to combine bioresorbability with biomechanical and biochemical compatibility with bone tissue. The present study focuses on the fatigue and corrosion fatigue behavior of the thermomechanically treated Fe-30Mn-5Si (wt %) alloy compared to the conventionally quenched alloy because this important functionality aspect has not been previously studied. Hot-rolled and water-cooled, cold-rolled and annealed, and conventionally quenched alloy samples were characterized by X-ray diffraction, transmission electron microscopy, tensile fatigue testing in air atmosphere, and bending corrosion fatigue testing in Hanks’ solution. It is shown that hot rolling at 800 °C results in the longest fatigue life of the alloy both in air and in Hanks’ solution. This advantage results from the formation of a dynamically recrystallized γ-phase grain structure with a well-developed dislocation substructure. Another important finding is the experimental verification of Young’s modulus anomalous temperature dependence for the studied alloy system, its minimum at a human body temperature, and corresponding improvement of the biomechanical compatibility. The idea was realized by lowering Ms temperature down to the body temperature after hot rolling at 800 °C.  相似文献   

7.
Thermal stability of composite bimetallic wires from five novel microalloyed aluminum alloys with different contents of alloying elements (Zr, Sc, and Hf) is investigated. The alloy workpieces were obtained by induction-casting in a vacuum, preliminary severe plastic deformation, and annealing providing the formation of a uniform microstructure and the nucleation of stabilizing intermetallide Al3(Zr,Sc,Hf) nanoparticles. The wires of 0.26 mm in diameter were obtained by simultaneous deformation of the Al alloy with Cu shell. The bimetallic wires demonstrated high strength and improved thermal stability. After annealing at 450–500 °C, a uniform fine-grained microstructure formed in the wire (the mean grain sizes in the annealed Al wires are 3–5 μm). An increased hardness and strength due to nucleation of the Al3(Sc,Hf) particles was observed. A diffusion of Cu from the shell into the surface layers of the Al wire was observed when heating up to 400–450 °C. The Cu diffusion depth into the annealed Al wire surfaces reached 30–40 μm. The maximum elongation to failure of the wires (20–30%) was achieved after annealing at 350 °C. The maximum values of microhardness (Hv = 500–520 MPa) and of ultimate strength (σb = 195–235 MPa) after annealing at 500 °C were observed for the wires made from the Al alloys alloyed with 0.05–0.1% Sc.  相似文献   

8.
This work focuses on the effect of different heat treatments on the Ti-6Al-4V alloy processed by means of electron beam melting (EBM). Super β-transus annealing was conducted at 1050 °C for 1 h on Ti-6Al-4V samples, considering two different cooling paths (furnace cooling and water quenching). This heat treatment induces microstructural recrystallization, thus reducing the anisotropy generated by the EBM process (columnar prior-β grains). Subsequently, the annealed furnace-cooled and water-quenched samples were aged at 540 °C for 4 h. The results showed the influence of the aging treatment on the microstructure and the mechanical properties of the annealed EBM-produced Ti-6Al-4V. A comparison with the traditional processed heat-treated material was also conducted. In the furnace-cooled specimens consisting of lamellar α+β, the aging treatment improved ductility and strength by inducing microstructural thickening of the α laths and reducing the β fraction. The effect of the aging treatment was also more marked in the water-quenched samples, characterized by high tensile strengths but limited ductility due to the presence of martensite. In fact, the aging treatment was effective in the recovery of the ductility loss, maintaining high tensile strength properties due to the variation in the relative number of α/α’ interfaces resulting from α’ decomposition. This study, therefore, offers an in-depth investigation of the potential beneficial effects of the aging treatment on the microstructure and mechanical properties of the EBM-processed super β-transus heat-treated Ti-6Al-4V alloy under different cooling conditions.  相似文献   

9.
High-purity (99.999%) nickel with lamellar-structure grains (LG) was obtained by room-temperature rolling and cryorolling in this research, and then annealed at different temperatures (75 °C, 160 °C, and 245 °C). The microstructure was characterized by transmission electron microscopy. The grain growth mechanism during annealing of the LG materials obtained via different processes was studied. Results showed that the LG high-purity nickel obtained by room-temperature rolling had a static discontinuous recrystallization during annealing, whereas that obtained by cryorolling underwent static and continuous recrystallization during annealing, which was caused by the seriously inhibited dislocation recovery in the rolling process under cryogenic conditions, leading to more accumulated deformation energy storage in sheets.  相似文献   

10.
In the present work, the mechanical properties of the DLD-processed Ti-6Al-4V alloy were obtained by tensile tests performed at different temperatures, ranging from 20 °C to 800 °C. Thereby, the process conditions were close to the conditions used to produce large-sized structures using the DLD method, resulting in specimens having the same initial martensitic microstructure. According to the obtained stress curves, the yield strength decreases gradually by 40% when the temperature is increased to 500 °C. Similar behavior is observed for the tensile strength. However, further heating above 500 °C leads to a significant increase in the softening rate. It was found that the DLD-processed Ti-6Al-4V alloy had a Young’s modulus with higher thermal stability than conventionally processed alloys. At 500 °C, the Young’s modulus of the DLD alloy was 46% higher than that of the wrought alloy. The influence of the thermal history on the stress relaxation for the cases where 500 °C and 700 °C were the maximum temperatures was studied. It was revealed that stress relaxation processes are decisive for the formation of residual stresses at temperatures above 700 °C, which is especially important for small-sized parts produced by the DLD method. The coefficient of thermal expansion was investigated up to 1050 °C.  相似文献   

11.
The structural and thermophysical characteristics of an Ni-rich NiTi alloy rod produced on a laboratory scale was studied. The soak temperature of the solution heat-treatment steps above 850 °C taking advantage of the precipitate dissolution to provide a matrix homogenization, but it takes many hours (24 to 48) when used without thermomechanical steps. Therefore, the suitable reheating to apply between the forging process steps is very important, because the product’s structural characteristics are dependent on the thermomechanical processing history, and the time required to expose the material to high temperatures during the processing is reduced. The structural characteristics were investigated after solution heat treatment at 900 °C and 950 °C for 120 min, and these heat treatments were compared with as-forged sample structural characteristics (one hot deformation step after 800 °C for a 30 min reheat stage). The phase-transformation temperatures were analyzed through differential scanning calorimetry (DSC), and the structural characterization was performed through synchrotron radiation-based X-ray diffraction (SR-XRD) at room temperature. It was observed that the solution heat treatment at 950 °C/120 min presents a lower martensitic reversion finish temperature (Af); the matrix was fully austenitic; and it had a hardness of about 226 HV. Thus, this condition is the most suitable for the reheating stages between the hot forging-process steps to be applied to this alloy to produce materials that can display a superelasticity effect, for applications such as crack sensors or orthodontic archwires.  相似文献   

12.
The present work describes the influence of different temperatures on mechanical properties and microstructure of additively manufactured high-strength 1.2709 maraging steel. For this purpose, samples produced by selective laser melting technology were used in their as-printed as well as their heat-treated state. Both samples were than exposed to temperatures ranging between 100 °C to 900 °C with a total dwell time of 2 h followed by water-cooling. The microhardness of the as-printed material reached its maximum (561 ± 6 HV0.1) at 500 °C, which corresponded to the microstructural changes. However, the heat-treated material retained its initial mechanical properties up to 500 °C. As the temperature increased, the microhardness of both the materials reduced, reaching their minimum at 900 °C. This phenomenon was accompanied by a change in the microstructure by forming coarse-grained martensite. This also resulted in a significant decrease in the ultimate tensile strength and an increase in the plasticity. TEM analysis confirmed the formation of Ni3Mo intermetallic phases in the as-printed material when exposed to a temperature of 500 °C. It was found that the same phase was present in the heat-treated sample and it remained stable up to a temperature of 500 °C.  相似文献   

13.
Semi-solid billets of GH3536 alloy were prepared by semi-solid isothermal treatment of wrought superalloy method. GH3536 samples were soaked at several semi-solid temperatures (1350 °C, 1360 °C, 1364 °C, and 1367 °C) for 5–120 min. The effects of temperature and soaking time on the microstructure of GH3536 billets were studied. The results indicated that the microstructure was affected by coalescence mechanism, Ostwald ripening mechanism, and breaking up mechanism. Semi-solid microstructure of GH3536 alloy was composed of spherical solid particles and liquid phases, and the liquid phases affected the microstructure greatly. At 1350 °C, the coalescence mechanism was dominant at the early stage of isothermal treatment, then the Ostwald ripening mechanism played a major role for the longer soaking times. At higher temperatures, the breaking up mechanism occurred to form large irregular grains and small spherical grains. As the heating continued, the Ostwald ripening mechanism was dominant. However, at 1364 °C and 1367 °C, the solid grains had irregular shapes and large sizes when the isothermal time was 120 min. The optimum parameters for the preparation of GH3536 semi-solid billets were: temperature of 1364–1367 °C and soaking time of 60–90 min.  相似文献   

14.
The carbide precipitation kinetics in a Fe-22Mn-0.45C TWIP steel subjected to three different cold-deformation levels, annealed at various temperatures, were studied. The studied carbides included chemical compositions, morphology, precipitation sites, volume fraction, and size. Manganese carbides were precipitated in a temperature range between 525 and 650 °C. Volume fraction increased with cold-deformation and decreased with annealing temperature. Carbide size increased with cold-deformation and annealing temperatures up to 625 °C, suffering a notable reduction at 650 °C. Precipitation kinetics were described by means of precipitation curves for 0.1% (vol.) of Fe-Mn-carbides. A kinetic model was used, and two stages were found. Complementarily, austenite grain size and microhardness were also measured. With increases in annealing time, microhardness decreased until it reached a nearly constant value, indicating that recrystallization was complete, while, with increases in annealing temperature, grain size increased.  相似文献   

15.
AISI H13 die steel specimens were subjected to heating at 1020 °C followed by oil quenching and double tempering at 520 °C. Subsequently, these specimens were subjected to deep cryogenic treatment at −185 °C in liquid nitrogen environment for 16 h and then subjected to soft tempering at 100 °C once the specimens attained room temperature. Thereafter, the specimens were subjected to scanning electron microscopy (SEM) analysis and electron backscatter diffraction (EBSD) analysis. The electrochemical corrosion activity was investigated in 3.5% NaCl at 23 ± 0.5 °C by evaluating the evolution of open circuit potential over time and potentiodynamic curves, and electrochemical impedance spectroscopy study was also carried out. The heat-treated specimens exhibited better resistance to corrosion through more electropositive values of open circuit potential. This could be attributed to lower grain boundary area in heat-treated specimens as compared to 16 h cryogenically treated specimen as higher grain boundary areas behave as an anode in an electrochemical cell, thereby enhancing the rate of corrosion. According to electrochemical tests, the cryogenically treated surface is more resistant to corrosion, followed by heated alloy. However, both surface modification treatments improved the corrosion behavior of the untreated alloy.  相似文献   

16.
Si single crystal was implanted with 230 keV He+ ions to a fluence of 5 × 1016/cm2 at 600 °C. The structural defects in Si implanted with He at 600 °C and then annealed at 1000 °C were investigated by transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). The microstructure of an as-implanted sample is provided for comparison. After annealing, rod-like defects were diminished, while tangled dislocations and large dislocation loops appeared. Dislocation lines trapped by cavities were directly observed. The cavities remained stable except for a transition of shape, from octahedron to tetrakaidecahedron. Stacking-fault tetrahedrons were found simultaneously. Cavity growth was independent of dislocations. The evolution of observed lattice defects is discussed.  相似文献   

17.
This paper investigates the effect of high-temperature aging (600 °C and 650 °C) on the microstructure and functional properties of copper CuNi2Si alloy. The paper also presents the results of elastomeric tests performed by means of the Gleeble 3800 heat and plastic treatment simulator, as well as DTA (Differential Thermal Analysis) analysis carried out for the investigated alloy aged for 1, 2, 4 and 7 h. Corrosion resistance tests were performed by means of the potentiodynamic method with Atlas Sollich Atlas 0531 potentiostat/galvanostat in a 3% sodium chloride solution. Based on the tribological tests, it was confirmed that the CuNi2Si alloy was solution heat treated from the temperature of 1000 °C and gradually aged at the temperature of 600 °C and 650 °C for 1–7 h, characterized by a stable wear resistance. The alloy aged at the temperature of 600 °C was characterized by a lower mass loss compared to the one aged at 650 °C. Based on the DTA analysis, it was found that for the alloy aged for 2, 4 and 7 h, at the temperatures of 401 °C, 411 °C and 412 °C, respectively, the decomposition of a supersaturated solid solution took place by spinodal transformation accompanied by a sequence of phase transitions DO22 [(Cu, Ni)3Si],→ δ-Ni2Si → (Cu, Ni)3Si. The results of these investigations have proved that the CuNi2Si alloy can be widely used for electric traction. The use of alloys that replace elements made entirely of copper and, in this way influencing its lower demand, is in line with the global policy of economical management of natural resources.  相似文献   

18.
This paper describes the structure and properties of cast Fe3Al-based alloy doped with 15 at. % of silicon and 2 at. % of molybdenum. The higher content of silicon is useful for the enhancement of high-temperature mechanical properties or corrosion resistance of iron aluminides but deteriorates their workability due to increased brittleness. It was found that the presence of both alloying elements leads to an increase of values of the high-temperature yield stress in compression. The heat treatment (annealing at 800 °C for 100 h) used for the achievement of phase stability causes the grain coarsening, so the values of the high-temperature yield stress in compression are lower at 600 °C and 700 °C in comparison to values measured for the as-cast state. This stabilization annealing significantly improves the workability/machinability of alloy. Furthermore, the higher silicon content positively affects the values of the thermal expansion coefficient that was found to be lower in the temperature range up to 600 °C compared to alloys with lower content of silicon.  相似文献   

19.
Nickel-Titanium (NiTi) springs have been increasingly used in orthodontics; however, no optimum condition of heat treatment has been reported. Therefore, this research was conducted to determine the optimum heat-treatment temperature and duration for the fabrication of NiTi-closed coil springs by investigating their effects on thermo-mechanical properties. As-drawn straight NiTi wires of 0.2 mm diameter were used to fabricate closed coil springs of 0.9 mm lumen diameter. The springs were heat-treated at three different temperatures (400, 450, and 500 °C) with three different durations (20, 40, and 60 min). Electron Probe Micro-Analysis (EPMA) and Differential Scanning Calorimetry (DSC) were used to investigate element composition and thermo-mechanical properties, respectively. Custom-made NiTi closed coil springs composed of 49.41%-Ti and 50.57%-Ni by atomic weight, where their DSC curves of 500 °C presented the obvious endothermic and exothermic peaks, and the austenite finish temperature (Af) were approximately 25 °C. With increasing temperature, deactivation curves presented decreased plateau slopes generating higher superelastic ratios (SE ratios). At 500 °C, closed coil springs showed superelastic tendency with lower stress hysteresis. The thermo-mechanical properties were significantly influenced by heat-treatment temperature rather than duration. The optimum parameter appeared to be 500 °C for 40 min to produce appropriate force delivery levels, relatively low plateau slope, and lower hysteresis for orthodontic use.  相似文献   

20.
The effects of 0.1 wt.% Sc and 0.1 wt.% Zr addition in AA5182 on microstructure and mechanical properties were investigated. Results show that Al3(ScxZr1−x) dispersoids formed in AA5182. Observation of ingots microstructures showed that the grain size of 5182-Sc-Zr alloy was 56% lower than that of based AA5182. Isothermal annealing between 230 °C and 500 °C for 2 h was performed to study the recrystallization, tensile properties and dispersoid coarsening. The recrystallization was inhibited by the dispersoids, and the alloy microstructure remained deformed after annealing. Al3(ScxZr1−x) in AA5182 was stable when annealing below 400 °C, while parts of dispersoids coarsened significantly when heating at 500 °C. The addition of Sc and Zr allowed YS of 5182 alloy to achieve 247.8 MPa, which is 100 MPa higher than the corresponding AA5182. The contributions of Orowan strengthening and grain boundary strengthening were obtained by calculation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号