首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A literature review points out a large discrepancy in the results of the mechanical tests on dentin that can be explained by stress and strain assessment during the tests. Errors in these assessments during mechanical tests can lead to inaccurate estimation of the mechanical properties of the tested material. On top of that, using the beam theory to analyze the bending test for thick specimens will increase these experimental errors. After summarizing the results of mechanical tests on dentin in the literature, we focus on bending tests and compare the stress assessment obtained by finite element analysis (FEA) and by beam theory application. We show that the difference between the two methods can be quite large in some cases, leading us to prefer the use of FEA to assess stresses. We then propose a new method based on coupling finite element analysis and digital image correlation (DIC) to more accurately evaluate stress distributions, strain distributions and elastic modulus in the case of a three-point bending test. To illustrate and prove the feasibility of the method, it is applied on a dentinal sample so that mean elastic modulus and maximum tensile stress are obtained (11.9 GPa and 143.9 MPa). Note that the main purpose of this study is to focus on the method itself, and not to provide new mechanical values for dentin. When used in standard mechanical testing of dentin, this kind of method should help to narrow the range of obtained mechanical properties values.  相似文献   

2.
Arcan shear tests with digital image correlation were used to evaluate the shear modulus and shear stress–strain diagrams in the plane defined by two principal axes of the material orthotropy. Two different orientation of the grain direction as compared to the direction of the shear force in specimens were considered: perpendicular and parallel shear. Two different ways were used to obtain the elastic properties based on the digital image correlation (DIC) results from the full-field measurement and from the virtual strain gauges with the linear strains: perpendicular to each other and directed at the angle of π/4 to the shearing load. In addition, the own continuum structural model for the failure analysis in the experimental tests was used. Constitutive relationships of the model were established in the framework of the mathematical multi-surface elastoplasticity for the plane stress state. The numerical simulations done by the finite element program after implementation of the model demonstrated the failure mechanisms from the experimental tests.  相似文献   

3.
The formability of aluminum alloy 5754-O tailor-welded blanks prepared by friction stir welding was studied experimentally. The strain evolution and deformation during limiting dome height experiments were studied using digital image correlation and the ARAMIS software. The influence of the sheet thickness of the base materials on the punch loading, fracture strain and formability were investigated experimentally. It was found that the punch loading, fracture strain and limiting dome height values increase with the increasing sheet thickness of the base materials. A linear relationship between the limiting dome height value and the sheet thickness was demonstrated. An increase of 16.8% in the fracture strain of aluminum tailor-welded blanks was observed for an increase of 36% in sheet thickness. This paper provides a methodology for experimentally determining the forming limits of aluminum alloy tailor-welded blanks accurately.  相似文献   

4.
This study reports fabrication, mechanical characterization, and finite element modeling of a novel lattice structure based bimetallic composite comprising 316L stainless steel and a functional dissolvable aluminum alloy. A net-shaped 316L stainless steel lattice structure composed of diamond unit cells was fabricated by selective laser melting (SLM). The cavities in the lattice structure were then filled through vacuum-assisted melt infiltration to form the bimetallic composite. The bulk aluminum sample was also cast using the same casting parameters for comparison. The compressive and tensile behavior of 316L stainless steel lattice, bulk dissolvable aluminum, and 316L stainless steel/dissolvable aluminum bimetallic composite is studied. Comparison between experimental, finite element analysis (FEA), and digital image correlation (DIC) results are also investigated in this study. There is no notable difference in the tensile behavior of the lattice and bimetallic composite because of the weak bonding in the interface between the two constituents of the bimetallic composite, limiting load transfer from the 316L stainless steel lattice to the dissolvable aluminum matrix. However, the aluminum matrix is vital in the compressive behavior of the bimetallic composite. The dissolvable aluminum showed higher Young’s modulus, yield stress, and ultimate stress than the lattice and composite in both tension and compression tests, but much less elongation. Moreover, FEA and DIC have been demonstrated to be effective and efficient methods to simulate, analyze, and verify the experimental results through juxtaposing curves on the plots and comparing strains of critical points by checking contour plots.  相似文献   

5.
Using experimental measurements and numerical computations, this paper focuses on studying the evolution of the plastic zone and how the residual stresses change in a notched T-6061 aluminum sample. Before the crack initiation, digital image measurements were taken to visualize the evolution of the plastic zone. After the sample was fractured, the material microstructure and the residual stresses around the cracked zone were characterized through optical microscopy and X-ray diffractometry. This article describes in detail how the plastic zone evolved around the notch before the crack initiation and shows the close agreement between experimental and numerical data during the load increment. The surface residual stress values around the tip of the notched sample were also measured and computed to give a better understanding of the affected region during the fracture process.  相似文献   

6.
Digital image correlation methods allow the determination of the displacement (and thus the strain) field of a target by picture comparisons, without the application of strain gauges or other invasive devices. Homologous sites are mapped from the undeformed to the deformed configuration, and displacements retrieved at a cloud of points in a scattered fashion. Radial basis functions (RBF) offer a rapid and reliable tool to post-process on-the-fly data from image correlation, in order to compute deformations directly without the need for generating a numerical grid over the measurement points. Displacements and associated strains can be computed only where desired, tracking automatically only the most reliable features for each image. In this work, a post-processing strain evaluation method for large displacement problems, based on RBF and the Green–Lagrange tensor, is presented and demonstrated for several test cases. At first, the proposed method is adopted on a set of artificially generated pictures, demonstrating a faster convergence with respect to FEM even when few points are used. Finally, the approach is applied to cases for which experimental results are available in the literature, exhibiting a good agreement.  相似文献   

7.
Consistent and reproducible data are key for material characterization. This work presents digital image correlation (DIC) strain acquisition guidelines for compression-loaded carbon fiber composites. Additionally, a novel bending criterion is formulated which builds up on the DIC strain data so that it is able to completely replace state-of-the-art tactile strain devices. These guidelines are derived from a custom test setup that simultaneously investigates the front and side view of the specimen. They reflect both an observation and post-processing standpoint. It is found that the DIC-based strain progress matches closely with state-of-the-art strain gauges up to failure initiation. The new bending evaluation criterion allows the bending state—and therefore, the validity of the compression test—to be monitored analogously to the methodology defined in the standards. Furthermore, the new bending criterion eliminates a specific bending mode, caused by an offset of clamps, which cannot be detected by the traditional strain gauge-based monitoring approach.  相似文献   

8.
A coaxial dual-camera digital image correlation system using a hypercentric lens was proposed to determine the defect position in the inner wall of a pipeline under loads. Compared with the traditional dual-camera system, this system ensures that both cameras can capture a 360-degree panoramic image in the same position. Herein, the imaging principle of the system was introduced in detail. In addition, the effectiveness and accuracy of the proposed method were verified through verification and application experiments.  相似文献   

9.
The increasing demand for parts with a large specific surface area such as fuel panels has put forward higher requirements for the plasticity of foils. However, the deformation characteristics of foils is hard to be illustrated in-depth due to their very short deformation process. In this paper, the digital image correlation method was applied to investigate the influence of size effect on the elongation of Ti-2.5Al-1.5Mn foils. The results showed that the elongation of Ti-2.5Al-1.5Mn foils increased with the decrease in the ratio of thickness-to-grain diameter (t/d value). Then, the macro deformation distribution of foils was analyzed, combined with their microstructure characteristics, and it was found that the increasing influence of individual grain heterogeneity leads to the earlier formation of a concentrated deformation zone, which changes the deformation mode of foils. The concentrated deformation increases with the decrease in t/d value, thus dominating the trend of the foil elongation. Furthermore, the homogeneous deformation and concentrated deformation can be divided into two different zones by a certain critical t/d value. These results provide a basis for understanding and further exploration of the deformation behavior of titanium foils.  相似文献   

10.
The effect of the microstructure heterogeneity on the tensile plastic deformation characteristic of friction-stir-welded (FSW) dual-phase (DP) steel was investigated for the potential applications on the lightweight design of vehicles. Friction-stir-welded specimens with a butt joint configuration were prepared, and quasi-static tensile tests were conducted, to evaluate the tensile properties of DP980 dual-phase steels. The friction-stir welding led to the formation of martensite and a significant hardness rise in the stir zone (SZ), but the presence of a soft zone in the heat-affected zone (HAZ) was caused by tempering of the pre-existing martensite. Owing to the appearance of severe soft zone, DP980 FSW joint showed almost 93% joint efficiency with the view-point of ultimate tensile strength and relatively low ductility than the base metal (BM). The local tensile deformation characteristic of the FSW joints was also examined using the digital image correlation (DIC) methodology by mapping the global and local strain distribution, and was subsequently analyzed by mechanics calculation. It is found that the tensile deformation of the FSW joints is highly heterogeneous, leading to a significant decrease in global ductility. The HAZ of the joints is the weakest region where the strain localizes early, and this localization extends until fracture with a strain near 30%, while the strain in the SZ and BM is only 1% and 4%, respectively. Local constitutive properties in different heterogeneous regions through the friction-stir-welded joint was also briefly evaluated by assuming iso-stress conditions. The local stress-strain curves of individual weld zones provide a clear indication of the heterogeneity of the local mechanical properties.  相似文献   

11.
It is now more popular to use basalt fibers in the engineering programs to reinforce the crack resistance of asphalt mixtures. However, research concerning the impact of the basalt fiber diameter on the macro performance of AC-13 mixtures is very limited. Therefore, in this paper, basalt fibers with three diameters, including 7, 13 and 25 μm, were selected to research the influences of fiber diameter on the crack resistance of asphalt mixtures. Different types of crack tests, such as the low temperature trabecular bending test (LTTB), the indirect tensile asphalt cracking test (IDEAL-CT), and the semi-circular bend test (SCB), were conducted to reveal the crack resistance of AC-13 mixtures. The entire cracking process was recorded through the digital image correlation (DIC) technique, and the displacement cloud pictures, strain, average crack propagation rate (V) and fracture toughness (FT) indicators were used to evaluate the crack inhibition action of the fiber diameter on the mixture. The results showed that the incorporation of basalt fiber substantially improved the crack resistance, slowed down the increase of the displacement, and delayed the fracture time. Basalt fiber with a diameter of 7 μm presented the best enhancement capability on the crack resistance of the AC-13 mixture. The flexibility index (FI) of the SCB test showed a good correlation with V and FT values of DIC test results, respectively. These findings provide theoretical advice for the popularization and engineering application of basalt fibers in asphalt pavement.  相似文献   

12.
The dynamic fracture process of rock materials is of importance for several industrial applications, such as drilling for geothermal installation. Numerical simulation can aid in increasing the understanding about rock fracture; however, it requires precise knowledge about the dynamical mechanical properties alongside information about the initiation and propagation of cracks in the material. This work covers the detailed dynamic mechanical characterisation of two rock materials—Kuru grey granite and Kuru black diorite—using a Split-Hopkinson Pressure Bar complemented with high-speed imaging. The rock materials were characterised using the Brazilian disc and uniaxial compression tests. From the high-speed images, the instant of fracture initiation was estimated for both tests, and a Digital Image Correlation analysis was conducted for the Brazilian disc test. The nearly constant tensile strain in the centre was obtained by selecting a rectangular sensing region, sufficiently large to avoid complicated local strain distributions appearing between grains and at voids. With a significantly high camera frame rate of 671,000 fps, the indirect tensile strain and strain rates on the surface of the disc could be evaluated. Furthermore, the overloading effect in the Brazilian disc test is evaluated using a novel methodology consisting of high-speed images and Digital Image Correlation analysis. From this, the overloading effects were found to be 30 and 23%. The high-speed images of the compression tests indicated fracture initiation at 93 to 95% of the peak dynamic strength for granite and diorite, respectively. However, fracture initiation most likely occurred before this in a non-observed part of the sample. It is concluded that the indirect tensile strain obtained by selecting a proper size of the sensing region combined with the high temporal resolution result in a reliable estimate of crack formation and subsequent propagation.  相似文献   

13.
The work presents the results of numerical fatigue analysis of a turbine engine compressor blade, taking into account the values of initial stresses resulting from surface treatment-shot-peening. The values of the residual stresses were estimated experimentally using X-ray diffraction. The paper specifies the values of the residual stresses on both sides of the blade and their reduction due to cutting through the blade-relaxation. The obtained values of the residual stresses were used as initial stresses in the numerical fatigue analysis of the damaged compressor blade, which was subjected to resonant vibrations of known amplitude. Numerical fatigue ε-N life analysis was based on several fatigue material models: Manson’s, Mitchell’s, Baumel-Seeger’s, Muralidharan-Manson’s, Ong’s, Roessle-Fatemi’s, and Median’s, and also on the three models of cyclic hardening: Manson’s, Xianxin’s, and Fatemi’s. Because of this approach, it was possible to determine the relationship between the selection of the fatigue material ε-N model and the cyclic hardening model on the results of the numerical fatigue analysis. Additionally, the calculated results were compared with the results of experimental research, which allowed for a substantive evaluation of the obtained results. These results are of great scientific and practical importance. The problem of determining the fatigue life of blades with defects operating under resonance vibrations is one of the original tasks in the field of fracture mechanics and experimental mechanics. The results obtained are of great importance in the aviation industry and can be used during engine maintenance and inspections to assess the suitability of blades with defects in terms of the needs of further work. This aspect of engineering maintenance is of great importance from the aircraft safety point of view.  相似文献   

14.
15.
Transport containers for radioactive materials should withstand drop tests according to the regulations. In order to prevent a loss or dispersal of the internal radioactive materials in the drop tests, a tightening of the lid of the transport container should be maintained. The opening of the lid, due to the drop impact, might cause the dispersion of internal contents or a loss of shielding performance. Thus, it is crucial to predict damage to the fastening bolt and its fracture. In this study, the damage parameters of the fastening bolt were acquired, and its fracture was predicted using the generalized incremental stress state-dependent damage model (GISSMO), a phenomenological damage model. Since the dedicated transport container is large and heavy, various jigs that can simulate the fall of the container were designed, and the accuracy of fracture prediction was verified. Digital image correlation (DIC) was introduced for the accurate measurement of the displacement, and load–displacement data for tensile, shear, and combined loads were successfully acquired. Finally, the load–displacement curve of the finite element analysis (FEA) with GISSMO until the point of the bolt fracture was compared with the curve obtained from the experiment, where a good agreement was observed.  相似文献   

16.
In this study, we propose to revisit the mechanical anisotropy inferred to printed ABS polymers using fused deposition modelling by combining digital image correlation (DIC), mechanical testing and finite element computation. Tensile specimens are printed using different design orientations and raster angles. Monitoring of deformed samples is performed, and strain fields are derived for each configuration. Finite element modelling of the 3D-printed material behaviour is considered to shed more light on deformation mechanisms. Experimental results show that a heterogeneous strain field develops, leading to more significant strain localisation for samples printed with the main dimension aligned with the building direction. The optimal printing angle allowing the filament to be crossed at −45°/+45° shows the best behaviour with even larger elongation at break compared to the raw material. However, digital image correlation based on optical imaging shows that a limiting scale exists for revealing the effect of filament orientation on strain localisation. Finite element results reveal the nature of the strain localisation as related presence of porosity close to the frame and the development of asymmetrical filling within the printed structure.  相似文献   

17.
Round-notched samples are commonly used for testing the susceptibility to hydrogen embrittlement (HE) of metallic materials. Hydrogen diffusion is influenced by the stress and strain states generated during testing. This state causes hydrogen-assisted micro-damage leading to failure that is due to HE. In this study, it is assumed that hydrogen diffusion can be controlled by modifying such residual stress and strain fields. Thus, the selection of the notch geometry to be used in the experiments becomes a key task. In this paper, different HE behaviors are analyzed in terms of the stress and strain fields obtained under diverse loading conditions (un-preloaded and preloaded causing residual stress and strains) in different notch geometries (shallow notches and deep notches). To achieve this goal, two uncoupled finite element (FE) simulations were carried out: (i) a simulation by FE of the loading sequences applied in the notched geometries for revealing the stress and strain states and (ii) a simulation of hydrogen diffusion assisted by stress and strain, for estimating the hydrogen distributions. According to results, hydrogen accumulation in shallow notches is heavily localized close to the wire surface, whereas for deep notches, hydrogen is more uniformly distributed. The residual stress and plastic strains generated by the applied preload localize maximum hydrogen concentration at deeper points than un-preloaded cases. As results, four different scenarios are established for estimating “a la carte” the HE susceptibility of pearlitic steels just combining two notch depths and the residual stress and strain caused by a preload.  相似文献   

18.
To address the limitations of conventional stereo-digital image correlation (DIC) on measuring complex objects, a continuous-view multi-camera DIC (MC-DIC) system and its two forms of camera arrangement are introduced. Multiple cameras with certain overlapping field of view are calibrated simultaneously to form an overall system for measuring the continuous full-surface deformation. The bending experiment of coral aggregate concrete beam and the axial compression experiment of timber column are conducted to verify the capability of continuous-view MC-DIC in deformation measurement of civil components with large slenderness ratio and large curvature, respectively. The obtained deformation data maintain good consistency with the displacement transducer and strain gauge. Results indicate that the continuous-view MC-DIC is a reliable 3D full-field measurement approach in civil measurements.  相似文献   

19.
In this paper, the mesoscale damage properties of concrete and mortar were studied experimentally under Brazilian disc splitting tensile tests combining X-ray computed tomography (CT) and digital image correlation (DIC) technology. Considering the factors of water/cement ratios and loading rates, the influence of meso components on the macro tensile properties and failure modes of concrete were studied. The experimental results and analysis indicate that the following: (1) the existence of coarse aggregate makes the tensile strength of concrete lower than that of mortar and reduces the sensitivity of tensile strength to the loading rates; (2) the failure modes of mortar and concrete Brazilian discs differ in the crack initiation positions and localization phenomena. Under high loading rates, the local failure plays a critical role in the strength improvement of concrete; (3) for concrete, interface failure and mortar failure are the main failure modes under low loading rates, whereas aggregate failure gradually becomes the main failure mode with increasing loading rates. The decrease in water/cement ratios improves the strength of the mortar matrix and interfacial bonding performance, leading to more serious aggregate damage and higher strength.  相似文献   

20.
The paper is devoted to highlighting the potential application of the quantitative imaging technique through results associated with work hardening, strain rate and heat generated during elastic and plastic deformation. The aim of the research presented in this article is to determine the relationship between deformation in the uniaxial tensile test of samples made of 1-mm-thick nickel-based superalloys and their change in temperature during deformation. The relationship between yield stress and the Taylor–Quinney coefficient and their change with the strain rate were determined. The research material was 1-mm-thick sheets of three grades of Inconel alloys: 625 HX and 718. The Aramis (GOM GmbH, a company of the ZEISS Group) measurement system and high-sensitivity infrared thermal imaging camera were used for the tests. The uniaxial tensile tests were carried out at three different strain rates. A clear tendency to increase the sample temperature with an increase in the strain rate was observed. This conclusion applies to all materials and directions of sample cutting investigated with respect to the sheet-rolling direction. An almost linear correlation was found between the percent strain and the value of the maximum surface temperature of the specimens. The method used is helpful in assessing the extent of homogeneity of the strain and the material effort during its deformation based on the measurement of the surface temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号