首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The outbreaks of H5N2 avian influenza viruses have occasionally caused the death of thousands of birds in poultry farms. Surveillance during the 2018 winter season in South Korea revealed three H5N2 isolates in feces samples collected from wild birds (KNU18-28: A/Wild duck/South Korea/KNU18-28/2018, KNU18-86: A/Bean Goose/South Korea/KNU18-86/2018, and KNU18-93: A/Wild duck/South Korea/KNU18-93/2018). Phylogenetic tree analysis revealed that these viruses arose from reassortment events among various virus subtypes circulating in South Korea and other countries in the East Asia–Australasian Flyway. The NS gene of the KNU18-28 and KNU18-86 isolates was closely related to that of China’s H10N3 strain, whereas the KNU18-93 strain originated from the H12N2 strain in Japan, showing two different reassortment events and different from a low pathogenic H5N3 (KNU18-91) virus which was isolated at the same day and same place with KNU18-86 and KNU18-93. These H5N2 isolates were characterized as low pathogenic avian influenza viruses. However, many amino acid changes in eight gene segments were identified to enhance polymerase activity and increase adaptation and virulence in mice and mammals. Experiments reveal that viral replication in MDCK cells was quite high after 12 hpi, showing the ability to replicate in mouse lungs. The hematoxylin and eosin-stained (H&E) lung sections indicated different degrees of pathogenicity of the three H5N2 isolates in mice compared with that of the control H1N1 strain. The continuing circulation of these H5N2 viruses may represent a potential threat to mammals and humans. Our findings highlight the need for intensive surveillance of avian influenza virus circulation in South Korea to prevent the risks posed by these reassortment viruses to animal and public health.  相似文献   

2.
The subtype H6N6 has been identified worldwide following the increasing frequency of avian influenza viruses (AIVs). These AIVs also have the ability to bind to human-like receptors, thereby increasing the risk of animal-human transmission. In September 2019, an H6N6 avian influenza virus—KNU2019-48 (A/Mallard (Anas platyrhynchos)/South Korea/KNU 2019-48/2019(H6N6))—was isolated from Anas platyrhynchos in South Korea. Phylogenetic analysis results revealed that the hemagglutinin (HA) gene of this strain belongs to the Korean lineage, whereas the neuraminidase (NA) and polymerase basic protein 1 (PB1) genes belong to the Chinese lineage. Outstanding internal proteins such as PB2, polymerase acidic protein, nucleoprotein, matrix protein, and non-structural protein belong to the Vietnamese lineage. Additionally, a monobasic amino acid (PRIETR↓GLF) at the HA cleavage site; non-deletion of the stalk region (residue 59–69) in the NA gene; and E627 in the PB2 gene indicate that the KNU2019-48 isolate is a typical low-pathogenic avian influenza (LPAI) virus. The nucleotide sequence similarity analysis of HA revealed that the highest homology (97.18%) of this isolate is to that of A/duck/Jiangxi/01.14 NCJD125-P/2015(H6N6), and the amino acid sequence of NA (97.38%) is closely related to that of A/duck/Fujian/10.11_FZHX1045-C/2016 (H6N6). An in vitro analysis of the KNU2019-48 virus shows a virus titer of not more than 2.8 Log10 TCID 50/mL until 72 h post-infection, whereas in the lungs, the virus is detected at 3 dpi (days post-infection). The isolated KNU2019-48 (H6N6) strain is the first reported AIV in Korea, and the H6 subtype virus has co-circulated in China, Vietnam, and Korea for half a decade. Overall, our study demonstrates that Korean H6N6 strain PB1-S375N, PA-A404S, and S409N mutations are infectious in humans and might contribute to the enhanced pathogenicity of this strain. Therefore, we emphasize the importance of continuous and intensive surveillance of the H6N6 virus not only in Korea but also worldwide.  相似文献   

3.
Low-pathogenicity avian influenza viruses (LPAIV) introduced by migratory birds circulate in wild birds and can be transmitted to poultry. These viruses can mutate to become highly pathogenic avian influenza viruses causing severe disease and death in poultry. In March 2019, an H7N3 avian influenza virus—A/Spot-billed duck/South Korea/WKU2019-1/2019 (H7N3)—was isolated from spot-billed ducks in South Korea. This study aimed to evaluate the phylogenetic and mutational analysis of this isolate. Molecular analysis revealed that the genes for HA (hemagglutinin) and NA (neuraminidase) of this strain belonged to the Central Asian lineage, whereas genes for other internal proteins such as polymerase basic protein 1 (PB1), PB2, nucleoprotein, polymerase acidic protein, matrix protein, and non-structural protein belonged to that of the Korean lineage. In addition, a monobasic amino acid (PQIEPR/GLF) at the HA cleavage site, and the non-deletion of the stalk region in the NA gene indicated that this isolate was a typical LPAIV. Nucleotide sequence similarity analysis of HA revealed that the highest homology (99.51%) of this isolate is to that of A/common teal/Shanghai/CM1216/2017 (H7N7), and amino acid sequence of NA (99.48%) was closely related to that of A/teal/Egypt/MB-D-487OP/2016 (H7N3). An in vitro propagation of the A/Spot-billed duck/South Korea/WKU2019-1/2019 (H7N3) virus showed highest (7.38 Log10 TCID50/mL) virus titer at 60 h post-infection, and in experimental mouse lungs, the virus was detected at six days’ post-infection. Our study characterizes genetic mutations, as well as pathogenesis in both in vitro and in vivo model of a new Korea H7N3 viruses in 2019, carrying multiple potential mutations to become highly pathogenic and develop an ability to infect humans; thus, emphasizing the need for routine surveillance of avian influenza viruses in wild birds.  相似文献   

4.
Wild aquatic birds are the primary natural reservoir for influenza A viruses (IAVs). In this study, an A(H9N9) influenza A virus (A/duck/Bangladesh/44493/2020) was identified via routine surveillance in free-range domestic ducks in Bangladesh. Phylogenetic analysis of hemagglutinin showed that the H9N9 virus belonged to the Y439-like lineage. The HA gene had the highest nucleotide identity to A/Bean Goose (Anser fabalis)/South Korea/KNU 2019-16/2019 (H9N2). The other seven gene segments clustered within the Eurasian lineage.  相似文献   

5.
Background  Highly pathogenic avian influenza (HPAI) H5N1 viruses have recently displayed increased virulence for wild waterfowl. Objectives  To study the effect of host age on the shedding and tissue dissemination of a HPAI H5N1 virus in infected Pekin ducks. Methods  Pekin ducks in two age‐matched groups (n = 18), 8 and 12 weeks old (wo) were each infected with 106 EID50/0·1 ml of HPAI A/turkey/Turkey/1/05 (H5N1, clade 2·2). Each day for 5 days, birds were monitored clinically, and cloacal and oropharyngeal swabs collected, before three birds from each group were selected randomly for post‐mortem examination. Tissue samples were collected for examination by real‐time RT‐PCR, histopathology and immunohistochemistry (IHC). Results  Severe clinical signs, including incoordination and torticollis were observed in the 8 wo group resulting in 100% mortality by 4 dpi. Mild clinical signs were observed in the 12 wo group with no mortality. Real‐time RT‐PCR and IHC results demonstrated the systemic spread of H5N1 virus in birds of both age groups. Higher levels of virus shedding were detected in oropharyngeal swabs than in cloacal swabs, with similar levels of shedding detected in both age groups. Variations in level and temporal dissemination of virus within tissues of older ducks, and the presence of the virus in brain and heart were observed, which coincided with the appearance of clinical signs preceding death in younger birds. Conclusions  These results are consistent with reports of natural infections of wild waterfowl and poultry possibly indicating an age‐related association with dissemination and clinical outcome in ducks following infection with H5N1 HPAI virus.  相似文献   

6.
Please cite this paper as: Kash et al. (2010) Prior infection with classical swine H1N1 influenza viruses is associated with protective immunity to the 2009 pandemic H1N1 virus. Influenza and Other Respiratory Viruses 4(3), 121–127. Background  The 2009 H1N1 pandemic emerged even though seasonal H1N1 viruses have circulated for decades. Epidemio‐logical evidence suggested that the current seasonal vaccine did not offer significant protection from the novel pandemic, and that people over the age of 50 might were less susceptible to infection. Objectives  In a mouse challenge study with the 2009 pandemic H1N1 virus, we evaluated protective immune responses elicited by prior infection with human and swine influenza A viruses. Results  Mice infected with A/Mexico/4108/2009 (Mex09) showed significant weight loss and 40% mortality. Prior infection with a 1976 classical swine H1N1 virus resulted in complete protection from Mex09 challenge. Prior infection with either a 2009 or a 1940 seasonal H1N1 influenza virus provided partial protection and a >100‐fold reduction in viral lung titers at day 4 post‐infection. Conclusions  These findings indicate that in experimental animals recently induced immunity to 1918‐derived H1N1 seasonal influenza viruses, and to a 1976 swine influenza virus, afford a degree of protection against the 2009 pandemic virus. Implications of these findings are discussed in the context of accumulating data suggesting partial protection of older persons during the 2009 pandemic.  相似文献   

7.

Background

Human‐to‐swine transmission of the pandemic H1N1 2009 [A(H1N1)pdm09] virus in pig populations resulted in reassortment events with endemic swine influenza viruses worldwide.

Objective

We investigated whether A(H1N1)pdm09‐derived reassortant viruses are present in South Korea and sought to determine the pathogenic potential of the novel swine viruses.

Methods

Pig lung tissues were collected from commercially slaughtered pigs. Isolated swine influenza viruses were genetically analyzed and characterized in vitro and in vivo.

Results

We identified reassortant H3N2 (H3N2pM‐like) and H3N1 swine viruses containing A(H1N1)pdm09‐like segments in Korean pigs that are genetically closely related to strains recently detected in pigs and humans in North America. Although the H3N2pM‐like and novel H3N1 reassortants demonstrated efficient replication in mice and ferrets, all the H3N1 strains exhibited growth advantage over the representative H3N2pM‐like virus in human airway cells. Interestingly, A/swine/Korea/CY02‐07/2012(H3N1) and A/swine/Korea/CY03‐13/2012(H3N1) reassortants were more readily transmitted to respiratory‐droplet‐contact ferrets compared with the H3N2pM‐like (A/swine/Korea/CY02‐10/2012) isolate. Furthermore, serologic evaluation showed poor antigenicity to contemporary reference human seasonal H3N2 vaccine strains.

Conclusions

We report here for the first time the isolation of H3N2pM‐like viruses outside North America and of novel reassortant swine H3N1 viruses with A(H1N1)pdm09‐derived genes. Apart from further complicating the genetic diversity of influenza A viruses circulating in domestic pigs, our data also indicate that these strains could potentially pose threat to public health asserting the need for continuous virus monitoring in these ecologically important hosts.  相似文献   

8.
苗迎秋  向冬喜  于舒  郑丛龙 《山东医药》2010,50(8):18-19,117
目的探讨纳米银(NaAg)对流感病毒H3N2的抑制作用。方法采用血球凝集试验、MTT分析法、血球吸附试验和鸡胚培养法,探讨NaAg对流感病毒H3N2的抑制作用。结果NaAg/H3N2组和H3N2对照组血球凝集试验效价分别为〈1:4和1:1024(P〈0.001);NaAg溶液在MD-25细胞上最大无毒浓度为25μg/ml;H3N2在MD-25细胞上的细胞半数感染浓度(TCID50)为10^3.5/0.1ml。等体积的50μg/mlNaAg与40TCID50流感病毒H3N2溶液室温充分混和作用2h后感染MD-25细胞,细胞存活率为(96.77±2.07)%;20TCID。流感病毒H3N2感染MD-25细胞的细胞存活率为(33.09±1.48)%(P〈0.001)。结论NaAg对流感病毒H3N2具有明显的抑制作用。  相似文献   

9.
Pigs are important intermediate hosts for generating novel influenza viruses. The Eurasian avian-like H1N1 (EAH1N1) swine influenza viruses (SIVs) have circulated in pigs since 1979, and human cases associated with EAH1N1 SIVs have been reported in several countries. However, the biologic properties of EAH1N1 SIVs are largely unknown. Here, we performed extensive influenza surveillance in pigs in China and isolated 228 influenza viruses from 36,417 pigs. We found that 139 of the 228 strains from pigs in 10 provinces in China belong to the EAH1N1 lineage. These viruses formed five genotypes, with two distinct antigenic groups, represented by A/swine/Guangxi/18/2011 and A/swine/Guangdong/104/2013, both of which are antigenically and genetically distinct from the current human H1N1 viruses. Importantly, the EAH1N1 SIVs preferentially bound to human-type receptors, and 9 of the 10 tested viruses transmitted in ferrets by respiratory droplet. We found that 3.6% of children (≤10 y old), 0% of adults, and 13.4% of elderly adults (≥60 y old) had neutralization antibodies (titers ≥40 in children and ≥80 in adults) against the EAH1N1 A/swine/Guangxi/18/2011 virus, but none of them had such neutralization antibodies against the EAH1N1 A/swine/Guangdong/104/2013 virus. Our study shows the potential of EAH1N1 SIVs to transmit efficiently in humans and suggests that immediate action is needed to prevent the efficient transmission of EAH1N1 SIVs to humans.Pigs play a pivotal role in the ecology of influenza A viruses, being regarded as intermediate hosts for the generation of novel and potentially dangerous influenza viruses for humans. Cellular receptors containing α-2,3–linked sialic acids (Sias) (avian-like receptors) and α-2,6–linked Sias (human-like receptors) in the pig trachea favor the productive replication of viruses from both the avian and mammalian lineages (1). Influenza viruses of the subtypes H1N1, H1N2, and H3N2 are circulating in pigs globally (2). Two lineages of H1N1 swine influenza viruses (SIVs), classical H1N1 SIVs and Eurasian avian-like H1N1 (EAH1N1) SIVs, have been circulating in pigs since 1918 and 1979, respectively (3, 4). The classical H1N1 SIVs emerged in humans as a reassortant (2009/H1N1) and caused the 2009 H1N1 influenza pandemic (5). The EAH1N1 SIVs have been detected in pigs in many Eurasian countries (6) and have caused several human infections in European countries and also in China (711), where a fatal case was reported (11). EAH1N1 SIVs are reported to be most prevalent in pigs that have been brought into Hong Kong since 2005 (12). However, the evolution and biologic properties of the EAH1N1 SIVs are largely unknown.China is the largest pork-producing country in the world. Pigs in China are not vaccinated against influenza, and therefore, influenza viruses can spread freely once they are introduced into pig herds. In this study, we performed active surveillance in pigs and found that the EAH1N1 SIVs are predominant in the pig population in China; we further found that the EAH1N1 SIVs pose an imminent threat with regard to their ability to cause a human influenza pandemic.  相似文献   

10.
Please cite this paper as: Lohiniva et al. (2012) Poultry rearing and slaughtering practices in rural Egypt: an exploration of risk factors for H5N1 virus human transmission. Influenza and Other Respiratory Viruses DOI: 10.1111/irv.12023. Background  Highly pathogenic avian influenza (H5N1) virus continues to cause infections in Egypt. This study describes the practices associated with raising and slaughtering household poultry to identify risk factors for H5N1 infection and reasons for non‐compliance with preventive measures. Methods  An investigation was conducted of 56 households with household flocks (19 households with human H5N1 cases, 19 with poultry H5N1 cases, and 18 with no reported poultry or human H5N1 cases). Data were collected via structured observations and in‐depth interviews. Results  Half of the households kept at least some free‐range poultry and mixed at least some different species of poultry as it was considered beneficial for the poultry. Feeding and cleaning practices exposed children to contact with poultry; slaughtering contaminated homes; use of personal protective barriers was not a norm; waste management exposed the communities to slaughtering waste and dead chickens; and reporting of sick and dead poultry was not a practice. Only minor changes in poultry‐handling took place following H5N1 virus outbreaks. Discussion  H5N1 virus prevention in Egypt represents both an epidemiological and socio‐cultural challenge. Traditional poultry‐rearing practices that likely increase exposures to H5N1‐infected poultry are common throughout Egypt. Despite education campaigns following sporadic H5N1 outbreaks, no differences in these practices could be detected between households with previous H5N1 human or poultry cases and those households with any previous experience with H5N1. Development of H5N1 infection–related education campaign strategies should focus on perceptions underlying traditional practices in order to tailor public awareness messages that are meaningful for communities.  相似文献   

11.
In October 2020, a highly pathogenic avian influenza (HPAI) subtype H5N8 virus was identified from a fecal sample of a wild mandarin duck (Aix galericulata) in South Korea. We sequenced all eight genome segments of the virus, designated as A/Mandarin duck/Korea/K20-551-4/2020(H5N8), and conducted genetic characterization and comparative phylogenetic analysis to track its origin. Genome sequencing and phylogenetic analysis show that the hemagglutinin gene belongs to H5 clade 2.3.4.4 subgroup B. All genes share high levels of nucleotide identity with H5N8 HPAI viruses identified from Europe during early 2020. Enhanced active surveillance in wild and domestic birds is needed to monitor the introduction and spread of HPAI via wild birds and to inform the design of improved prevention and control strategies.  相似文献   

12.
目的 探求2009H1N1流感病毒对A549细胞和BEAS-2B细胞作用,为研究2009H1N1流感病毒的致病机理提供线索。方法 不同来源(死亡、重症、普通病例分离)的2009H1N1流感病毒和季节性H1N1流感病毒分别感染A549和BEAS-2B细胞12、24、48、72 h后用流式细胞术检测细胞凋亡和细胞周期。结果 感染A549细胞12和24 h,普通病例分离的2009H1N1流感病毒组的细胞凋亡率最高(P<0.05),重症组的细胞凋亡率最低(P<0.05);48 h和72 h,死亡组细胞凋亡率最高(P<0.05)。感染BEAS-2B细胞12 h,重症组细胞凋亡率最高(P<0.05);48 h,死亡组和重症组细胞凋亡率高(P<0.05);72 h,死亡组和普通组细胞凋亡率高(P<0.05)。4株病毒主要将A549细胞阻滞在S期,将BEAS-2B细胞阻滞在G0/G1期。结论 在细胞凋亡和细胞周期的细胞学观察水平上2009H1N1流感病毒和季节性H1N1流感病毒之间存在差异,不同来源的2009H1N1流感病毒之间也存在差异。  相似文献   

13.
Reassortant variant viruses generated between 2009 H1N1 pandemic influenza virus [A(H1N1)pdm09] and endemic swine influenza viruses posed a potential risk to humans. Surprisingly, genetic analysis showed that almost all of these variant viruses contained the M segment from A(H1N1)pdm09, which originated from Eurasian avian-like swine influenza viruses. Studies have shown that the A(H1N1)pdm09 M gene is critical for the transmissibility and pathogenicity of the variant viruses. However, the M gene encodes two proteins, M1 and M2, and which of those plays a more important role in virus pathogenicity remains unknown. In this study, the M1 and M2 genes of A(H1N1)pdm09 were replaced with those of endemic H3N2 swine influenza virus, respectively. The chimeric viruses were rescued and evaluated in vitro and in mice. Both M1 and M2 of H3N2 affected the virus replication in vitro. In mice, the introduction of H3N2 M1 attenuated the chimeric virus, where all the mice survived from the infection, compared with the wild type virus that caused 100 % mortality. However, the chimeric virus containing H3N2 M2 was still virulent to mice, and caused 16.6% mortality, as well as similar body weight loss to the wild type virus infected group. Compared with the wild type virus, the chimeric virus containing H3N2 M1 induced lower levels of inflammatory cytokines and higher levels of anti-inflammatory cytokines, whereas the chimeric virus containing H3N2 M2 induced substantial pro-inflammatory responses, but higher levels of anti-inflammatory cytokines. The study demonstrated that Eurasian avian-like M1 played a more important role than M2 in the pathogenicity of A(H1N1)pdm09 in mice.  相似文献   

14.
目的了解1例不明原因肺炎病例中甲型H1N1流感病毒的生物学特性和变异情况,为临床治疗与疫情防控提供依据。方法利用MDCK细胞分离不明原因肺炎病例中的甲型H1N1流感病毒,分离的毒株经全基因组测序后分析其抗原性、致病性和耐药性等特征。结果从该病例的咽拭子标本中分离得到1株甲型H1N1流感病毒并命名为A/FujianGulou/SWL64/2016(H1N1),其8个节段的核苷酸和氨基酸序列与A/California/07/2009(H1N1)疫苗株的相似性分别为96.9%~98.9%和96.7%~99.5%。氨基酸序列分析显示HA蛋白共有18个位点发生突变,其中K163Q、S185T、S203T和D222N变异涉及到3个不同的抗原位点,提示病毒发生抗原漂移;与受体结合位点相关的D222N突变还提示病毒感染下呼吸道的能力增强。耐药性分析显示该病毒对金刚烷胺耐药,对达菲仍然敏感。结论本次研究的甲型H1N1流感病毒具有抗原漂移现象,且具备引发重症肺炎的分子特征,应进一步加强监测,为疫情防控奠定基础。  相似文献   

15.
Background  The 2009 novel A(H1N1) virus appears to be of swine origin. This strain causing the current outbreaks is a new virus that has not been seen previously either in humans or animals. We have previously reported that viruses causing pandemics or large outbreaks were able to grow at a temperature above the normal physiological range (temperature resistance, non‐ts phenotype), were found to be inhibitor resistant and restricted in replication at suboptimal temperature (sensitivity to grow at low temperature, non‐ca phenotype). In this study, we performed phenotypic analysis of novel A(H1N1) virus to evaluate its pandemic potential and its suitability for use in developing a live attenuated influenza vaccine. Objectives  The goal of this study is to identify phenotypic properties of novel A(H1N1) influenza virus. Methods  A/California/07/2009 (H1N1) swine‐origin influenza virus was studied in comparison with some influenza A viruses isolated in different years with respect to their ability to grow at non‐permissive temperatures. We also analyzed its sensitivity to gamma‐inhibitors of animal sera and its ability to agglutinate chicken, human and guinea pig erythrocytes. Results  Swine‐origin A/California/07/2009 (H1N1) virus was found to be non‐ts and inhibitor resistant and was not able to grow at 25°C (non‐ca). We did not find any difference in the ability of the hemagglutinin of A/California/07/2009 (H1N1) virus to bind to erythrocytes of different origin. Conclusion  The novel swine‐origin A(H1N1) virus displays a phenotype typical of the past pandemic and epidemic viruses. This finding suggests that this virus might be a good wild type parental prototype for live vaccine for potential use for controlling pandemic influenza.  相似文献   

16.
The first wave of the 2009 influenza H1N1 pandemic (H1N1pdm) in Milwaukee, WI has been recognized as the largest reported regional outbreak in the United States. The epidemiologic and clinical characteristics of this large first wave outbreak from April 28th 2009–July 25th 2009, studied using both passive and targeted surveillance methodologies are presented. A total of 2791 individuals with H1N1pdm infection were identified; 60 % were 5–18 years old. The 5–18 year and 0–4 year age groups had high infection (1131 and 1101 per 100,000) and hospitalization (49 and 12 per 100,000) rates respectively. Non-Hispanic blacks and Hispanics had the highest hospitalization and infection rates. In targeted surveillance, infected patients had fever (78%), cough (80%), sore throat (38%), and vomiting or diarrhea (8%). The “influenza like illness” definition captured only 68 % of infected patients. Modeling estimates that 10.3 % of Milwaukee population was infected in the first wave and 59% were asymptomatic. The distinct epidemiologic profile of H1N1pdm infections observed in the study has direct implications for predicting the burden of infection and hospitalization in the next waves of H1N1pdm. Careful consideration of demographic predictors of infection and hospitalization with H1N1pdm will be important for effective preparedness for subsequent influenza seasons.  相似文献   

17.
BackgroundIn mainland China, seasonal influenza disease burden at community level is unknown. The incidence rate of influenza virus infections in the community is difficult to determine due to the lack of well‐defined catchment populations of influenza‐like illness surveillance sentinel hospitals.ObjectivesWe established a community‐based cohort to estimate incidence of seasonal influenza infections indicated by serology and protection conferred by antibody titers against influenza infections during 2018‐2019 influenza season in northern China.MethodsWe recruited participants in November 2018 and conducted follow‐up in May 2019 with collection of sera every survey. Seasonal influenza infections were indicated by a 4‐fold or greater increase of hemagglutination inhibition (HI) antibody between paired sera.ResultsTwo hundred and three children 5‐17 years of age and 413 adults 18‐59 years of age were followed up and provided paired sera. The overall incidence of seasonal influenza infection and incidence of A(H3N2) infection in children (31% and 17%, respectively) were significantly higher than those in adults (21% and 10%, respectively). The incidences of A(H1N1)pdm09 infection in children and adults were both about 10%, while the incidences of B/Victoria and/Yamagata infection in children and adults were from 2% to 4%. HI titers of 1:40 against A(H1N1)pdm09 and A(H3N2) viruses were associated with 63% and 75% protection against infections with the two subtypes, respectively.ConclusionsIn the community, we identified considerable incidence of seasonal influenza infections. A HI titer of 1:40 could be sufficient to provide 50% protection against influenza A virus infections indicated by serology.  相似文献   

18.
Background The population‐based impact of infection with swine origin influenza A (H1N1) virus infection was not clear in the early days of the epidemic towards the end of May 2009. Australia had seven confirmed cases by 22 May 2009. We aimed to compare available data on swine origin influenza A (H1N1) virus infection overseas with seasonal influenza A (H1N1) virus infection in Australia to assist with forward planning. Methods Data on infection with seasonal influenza A (H1N1) virus in patients recruited through sentinel general practices in Victoria and Western Australia in 2007 and 2008 were compared with early publications on infection with swine origin influenza A (H1N1) virus in the United States and Europe. Results Influenza A (H1N1) virus infection was predominantly a disease of younger people, regardless of whether the virus was of swine or human origin. The median age of infection with swine origin virus was 20 years in the United States and 22 years in Spain, while the median age of infection with human origin virus was 18 years in Western Australia and 23 years in Victoria. Conclusions The median age of infection with influenza A (H1N1) virus was around 20 ± 3 years, independent of the origin of the H1N1 virus but a higher proportion of swine origin influenza infections occurred in people aged 10–18 years. This is at least partially explained by biased sampling among surveillance patients, although it may also reflect a different infection pattern.  相似文献   

19.
Please cite this paper as: Reyes et al. (2010) Population‐based surveillance for 2009 pandemic influenza A (H1N1) virus in Guatemala, 2009. Influenza and Other Respiratory Viruses 4(3), 129–140. Background  In April 2009, 2009 pandemic influenza A H1N1 (2009 H1N1) was first identified in Mexico but did not cause widespread transmission in neighboring Guatemala until several weeks later. Methodology and principle findings  Using a population‐based surveillance system for hospitalized pneumonia and influenza‐like illness ongoing before the 2009 H1N1 pandemic began, we tracked the onset of 2009 H1N1 infection in Guatemala. We identified 239 individuals infected with influenza A (2009 H1N1) between May and December 2009, of whom 76 were hospitalized with pneumonia and 11 died (case fatality proportion: 4·6%, 95% confidence interval [CI] 2·3–8·1%). The median age of patients infected with 2009 H1N1 was 8·8 years, the median age of those hospitalized with pneumonia was 4·2 years, and five (45·5%) deaths occurred in children <5 years old. Crude rates of hospitalization between May and December 2009 were highest for children <5 years old. Twenty‐one (27·6%) of the patients hospitalized with 2009 H1N1 were admitted to the intensive care unit and eight (10·5%) required mechanical ventilation. Underlying chronic conditions were noted in 14 (18·4%) of patients with pneumonia hospitalized with 2009 H1N1 infection. Conclusions and significance  Chronic illnesses may be underdiagnosed in Guatemala, making it difficult to identify this risk group for vaccination. Children 6 months to 5 years old should be among priority groups for vaccination to prevent serious consequences because of 2009 H1N1 infection.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号