首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Baicalein, a major bioactive flavone constituent isolated from Scutellaria baicalensis Georgi, has neuroprotective properties in several neurological disorders. Many studies suggest that oxidative stress plays a central role in the pathogenesis of Parkinson’s disease (PD). Baicalein has also been shown to have antioxidant effects. Therefore, the current study was designed to investigate whether baicalein could protect against MPP+/MPTP-induced neurotoxicity via suppressing oxidative stress in vitro and in vivo. In vitro, our results showed that baicalein increased cell viability in MPP+-treated SH-SY5Y cells. Treatment with baicalein could reversed the increased MDA and ROS levels, and the decreased GSH levels in MPP+-treated SH-SY5Y cells. In MPTP-treated mice, baicalein ameliorated MPTP-induced motor impairment and suppressed the MPTP-induced accumulation of iron and lipid peroxides. Besides, baicalein improved the neurotoxicity induced by MPTP as seen by a significant raise of tyrosine hydroxylase (TH) and simultaneous decrease of monoamine-oxidase-B (MAO-B). The inhibitory effect of baicalein on oxidative stress probably was partially governed by inhibition of ERK activation. In conclusion, our results suggest that baicalein could prevent MPP+/MPTP-induced neurotoxicity via suppressing oxidative stress.  相似文献   

2.
The alpha7-nicotinic acetylcholine receptor (alpha7) is an important ionotropic receptor in the central nervous system, which becomes permeable to cations upon binding of its natural agonist acetylcholine (ACh). alpha7 kinetics are characterized by rapid activation, followed by fast desensitization of the current. As the wild-type (WT) alpha7 is difficult to express heterologously in mammalian cellular systems, frequently a more easily expressible chimera consisting of the extracellular domain of the alpha7 and the transmembrane domain of the 5HT3A receptor is used to study alpha7 pharmacology (chick alpha7/mouse 5HT3A [Eiselé et al., 1993]; human alpha7/mouse 5HT3A [Graig et al., 2004]). Desensitization characteristics of these chimera receptors have been described as intermediate compared with the fast desensitizing alpha7 and the more slowly desensitizing 5HT3A receptors. Here, we describe a fully human chimera receptor (h-alpha7/5HT3A), which is characterized by desensitization, and recovery kinetics that deviate from the human WT alpha7.  相似文献   

3.
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that affects many older people around the world. Numerous studies are underway to evaluate the protective effects of natural products in AD. Alpha-linoleic acid (ALA) is an essential unsaturated fatty acid that exhibits neuroprotective outcomes in rat models of ischemic stroke and Parkinson's disease. This research aimed to investigate the effect of ALA on oxidative stress, neuroinflammation, neuronal death, and memory deficit induced by amyloid-beta (Aβ) peptide. After intrahippocampal injection of Aβ1−42, rats received ALA (150 μg/kg, subcutaneously) for 14 consecutive days. ALA decreased the levels of malondialdehyde and nitric oxide, enhanced glutathione content, and increased the activity of catalase in the hippocampus of the rat model of AD. It also reduced the expression of tumor necrosis factor-α, interleukin-1β, interleukin-6, nuclear factor-kappa B, and N-methyl-d-aspartate receptor subunits NR2A and NR2B mRNAs in the hippocampus, prevented the neuronal loss in the CA1 region, and enhanced the expression of α7 nicotinic acetylcholine receptor. In addition, ALA allowed Aβ1−42-injected rats to spend less time and distance to reach the hidden platform in the Morris water maze test and to swim longer in the target quadrant. We concluded that ALA reduces the biochemical, molecular, histological, and behavioral changes caused by Aβ1−42 and it may be an effective option for treating AD.  相似文献   

4.
Atorvastatin is a cholesterol-lowering statin that has been shown to exert several pleiotropic effects in the nervous system as a neuroprotective and antidepressant-like agent. Antidepressant-like effect of atorvastatin in mice is mediated by glutamatergic and serotoninergic receptors, although the precise intracellular signaling pathways involved are unknown. PI3K/Akt/GSK-3β/mTOR signaling pathway has been associated to neurobiology of depression and seems to be modulated by some pharmacological antidepressant strategies. The present study investigated the participation of the PI3K/Akt/GSK-3β/mTOR signaling pathway in the antidepressant-like effect of an acute atorvastatin treatment in mice. Atorvastatin sub-effective (0.01 mg/kg) or effective (0.1 mg/kg) doses in the tail suspension test (TST) was administered orally alone or in combination with PI3K, GSK-3β or mTOR inhibitors. The administration of PI3K inhibitor, LY294002 (10 nmol/site, i.c.v) completely prevented the antidepressant-like effect of atorvastatin (0.1 mg/kg, p.o.). The participation of GSK-3β in the antidepressant-like effect of atorvastatin was demonstrated by co-administration of a sub-effective dose of atorvastatin (0.01 mg/kg, p.o.) with AR-A014418 (0.01 μg/site, i.c.v., a selective GSK-3β inhibitor) or with lithium chloride (10 mg/kg, p.o., a non-selective GSK-3β inhibitor). The mTOR inhibitor, rapamycin (0.2 nmol/site, i.c.v.) was also able to prevent atorvastatin (0.1 mg/kg, p.o.) antidepressant-like effect. These behavioral findings were supported by neurochemical observations, as atorvastatin treatment increased the immunocontent of the phosphorylated isoforms of Akt, GSK-3β and mTOR in the hippocampus of mice. Taken together, our results suggest an involvement of the PI3K/Akt/GSK-3β/mTOR signaling pathway in the antidepressant-like effect of atorvastatin in mice.  相似文献   

5.
6.
7.
8.
Aging is a key risk factor for cognitive decline and age-related neurodegenerative disorders. Also, an age-related decrease in sex steroid hormones may have a negative impact on the formation of neurofibrillary tangles(NFTs); these hormones can regulate Tau phosphorylation and the principal kinase GSK3β involved in this process. Hormone replacement therapy decreases NFTs, but it increases the risk of some types of cancer. However, other synthetic hormones such as tibolone(TIB) have been used for hormone replacement therapy. The aim of this work was to evaluate the long-term effects of TIB(0.01 mg/kg and 1 mg/kg, intragastrically for 12 weeks) on the content of total and hyperphosphorylated Tau(PHF-1) proteins and the regulation of GSK3β/Akt/PI3 K pathway and CDK5/p35/p25 complexes in the hippocampus of aged male mice. We observed that the content of PHF-1 decreased with TIB administration. In contrast, no changes were observed in the active form of GSK3β or PI3 K. TIB decreased the expression of the total and phosphorylated form of Akt while increased that of p110 and p85. The content of CDK5 was differentially modified with TIB: it was increased at low doses and decreased at high doses. When we analyzed the content of CDK5 activators, an increase was found on p35; however, the content of p25 decreased with administration of low dose of TIB. Our results suggest a possible mechanism of action of TIB in the hippocampus of aged male mice. Through the regulation of Tau and GSK3β/Akt/PI3 K pathway, and CDK5/p35/p25 complexes, TIB may modulate neuronal plasticity and regulate learning and memory processes.  相似文献   

9.

Aims

DL-3-n-butylphthalide (NBP) exerts beneficial effects on global cognitive functions, but the underlying molecular mechanisms are still poorly understood. The present study aimed to investigate whether NBP mediates synaptic plasticity and blood–brain barrier (BBB) function, which play a pivotal role in the pathogenesis of vascular dementia (VaD), in a mouse model of bilateral common carotid artery stenosis (BCAS).

Methods

NBP was administered to model mice at a dose of 80 mg/kg by gavage for 28 days after surgery. Cognitive function was evaluated by behavioral tests, and hippocampal synaptic plasticity was evaluated by in vivo electrophysiological recording. Cerebral blood flow (CBF), hippocampal volume, and white matter integrity were measured with laser speckle imaging (LSI) and MRI. In addition, BBB leakage and the expression of proteins related to the Akt/ERK and HIF-1α/MMP signaling pathways were assessed by biochemical assays.

Results

NBP treatment alleviated cognitive impairment, hippocampal atrophy, and synaptic plasticity impairment induced by BCAS. In addition, NBP treatment increased CBF, promoted white matter integrity, and decreased BBB leakage. Regarding the molecular mechanisms, in mice  with BCAS, NBP may activate the Akt/ERK signaling pathway, which upregulates the expression of synapse-associated proteins, and it may also inhibit the HIF-1α/MMP signaling pathway, thereby increasing the expression of tight junction (TJ) proteins.

Conclusion

In conclusion, our results demonstrated the therapeutic effects of NBP in improving cognitive function via a wide range of targets in mice subjected to BCAS.  相似文献   

10.
Background: The inflammation induced by interleukin-1β (IL-1β) is a critical factor in the pathogenesis of mesial temporal lobe epilepsy (MTLE). Synaptophysin (SYN) and other changes, including neuron electrophysiology, participate in the pathophysiological processes of MTLE. Phosphatidylinositol 3-kinase (PI3K)/Akt/ mammalian target of rapamycin (mTOR) signaling pathway may play a critical role in regulating SYN expression and electrophysiology of hippocampal neurons.

Methods: We used lithium-pilocarpine-treated rats as model of human MTLE, detecting epileptic seizures with digital video-EEG, and evaluating the proteins related to the PI3K/Akt/mTOR signaling pathway by western blot (WB). Then, we cultured primary neuron and established a neuronal epilepsy model using Mg2+-free media. Immunocytochemistry and WB were used to investigate SYN expression, and whole-cell current clamp recording techniques were used to detect the electrophysiological properties of cultured neurons.

Results: We have demonstrated that IL-1β can activate the PI3K/Akt/mTOR signaling pathway in primary hippocampal neurons, and we speculate that IL-1β may affect SYN expression and neuron electrophysiology through PI3K/Akt/mTOR signaling pathway.

Conclusion: We confirmed that IL-1β stimulated SYN expression and epileptiform discharges, and that blocking the PI3K/Akt/mTOR pathway alleviated these phenomena. Therefore, activation of the PI3K/Akt/mTOR signaling pathway by IL-1β contributes to the pathogenesis of MTLE, and modulating this pathway is a promising strategy of study for therapies to prevent or reverse the cellular and molecular mechanisms of epileptogenesis in MTLE.  相似文献   


11.
Renin-Angiotensin System (RAS) is an important peptide cascade involved in physiological processes. RAS homeostasis disruption produces several cardiovascular and metabolic disorders, such as arterial hypertension, atherosclerosis, acute myocardial infarct, obesity, diabetes, metabolic syndrome and increases gastrointestinal tract (GIT) cell proliferation. Angiotensin (Ang)-(1–7) peptide is the main RAS counter-regulatory axis effector. It is formed from ACE2 enzyme and acts mainly through Mas receptor (MasR). In this context, the aim of the present study was to evaluate alterations in small intestine morphology and intestinal microbiota composition in MasR knockout C57BL/6 mice. We analyzed glucose tolerance; insulin sensitivity and blood collected for biochemical parameters as well as small intestine tissues samples for immunohistochemistry. mRNA and bacteria gDNA expression evaluation. mRNA expression was evaluated by qRT-PCR for TLR4, PI3K and AKT. The main results showed that Mas-R-knockout mice presented lower body weight. MasR-knockout mice also presented increased fasted blood glucose and total cholesterol with reduced HDL, lower glucose tolerance and impaired insulin sensitivity. Increased intestinal mucosa length, increased intestinal villi, reduced Lieberkühn crypt depth. The increased expression of cell proliferation markers Ki-67 and Cyclin D1 and increased TLR4, PI3K and AKT expressions were observed with augmented Bacteroidetes and decreased amount of Firmicutes. That results suggests that MasR deletion generated changes in intestinal microbiota, possibly due to a lower neutral amino acids absorption followed by a compensatory increase in intestinal villi length associated with disbiosis and LPS overproduction that ultimately lead to proliferation and cell inflammation.  相似文献   

12.
Accumulation of alpha-synuclein (α-Syn) is significantly correlated with the presence of progressive motor deficits, which is the main symptom of Parkinson’s disease (PD). Although physical exercise reduces α-Syn levels, the molecular mechanisms by which physical exercise decreases α-Syn remain unclear. We hypothesized that treadmill exercise (TE) decreases α-Syn levels by improving mitochondrial function and promoting autophagy via the sirtuin-1 (SIRT1) signaling pathway in the chronic 1-methyl-1,2,3,6-tetrahydropyridine with probenecid (MPTP/P)-induced mouse model of PD. We found that TE reduces α-Syn levels, which subsequently ameliorates dopaminergic (DAergic) neuron loss and α-Syn-mediated apoptotic cell death. Most importantly, TE increases SIRT1 expression, which results in increased mitochondrial biogenesis and decreased oxidative stress by activating peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α). SIRT1 activation by TE also promotes autophagic clearance of α-Syn by inducing the activation of microtubule-associated protein 1 light chain 3 (LC3). Collectively, our results demonstrate that TE may reduce α-Syn levels by improving mitochondrial function and increasing autophagic flux, thereby ameliorating chronic MPTP/P-induced motor deficits in PD mice.  相似文献   

13.
The major neural stem cell population in the developing cerebral cortex is the radial glia cells, which generate neurons and glial cells. The mechanisms that modulate the maintenance of the radial glia stem cell phenotype, or its differentiation, are not completely elucidated. We previously demonstrated that transforming growth factor-β(1) (TGF-β(1)) promotes radial glia differentiation into astrocytes in vitro [Glia 2007;55:1023-1033]. Here we investigated the intracellular signaling pathways involved in the TGF-β(1)-induced radial glia fate commitment. We demonstrate that the mechanisms underlying the TGF-β(1) effect on radial glia cell differentiation or progenitor potential maintenance diverge. Whereas radial glia differentiation into astrocytes is mediated by the activation of the MAPK signaling pathway, neurogenesis is modulated by different levels of PI3K and SMAD2/3 activity. Our work demonstrates that radial glia cells are a heterogeneous population and a potential target of TGF-β(1), and suggests that its effect on radial glia fate commitment is mediated by the recruitment of a complex multipathway mechanism that controls astrocyte and neuronal generation in the developing cerebral cortex.  相似文献   

14.
In this study, the effect of ovariectomy and amyloid P1-42 (Aβ1-42)on eight-armed radial maze performance, acetylcholine (ACh) release, α7nACh receptor (α7nAChR), glyceraldehyde 3-phosphate dehydrogenase (GAPDH) expression, and apoptosis of CA1 neurons in the dorsal hippocampus were investigated in rat. The results showed that the dorsal hippocampus of sham rats contains 136.7 ± 16.7 to 160.4 ± 21.1 fmol/μl ACh, and respective 201 ± 22.9 and 416.6 ± 66.3 expression of mRNA for α7nAChR and GAPDH. Ovariectomy alone, after 4 weeks, did not impair memory, and neither induced apoptosis nor changed the basal ACh release. On the other hand, Aβ1-42 (600 pmol/10 μl/body/day i.c.v. for 7 days) impaired memory, an effect characterized by increased error choices and reduced (50–59%) ACh release, but only with slight apoptosis. Moreover, ovariectomy combined with Aβ1-42 induced memory impairment characterized by decreased numbers of correct choices and increased numbers of errors. This effect was accompanied by a decrease of the basal ACh level (67%), α7nAChR mRNA expression (52%) and α7nAChR/GAPDH ratio (44%) without induction of apoptosis in the dorsal hippocampus. The high K+-evoked ACh release was not altered in ovariectomized rats, but was decreased by Aβ1-42 (43%) and ovariectomy + Aβ1-42 (80%). These results suggest that ovariectomy-induced hormonal deprivation after 4 weeks, when accompanied by Aβ1-42 accumulation in the dorsal hippocampus, could impair memory by decreasing ACh release and α7nAChR expression without inducing apoptosis in the CA1 field of the dorsal hippocampus.  相似文献   

15.
The role of neuroinflammatory mediators has been well established in the pathogenesis of temporal lobe epilepsy (TLE) and associated neurobehavioral comorbidities. Mycophenolate mofetil (MMF) is commonly used as an immunosuppressant in organ transplantations. Its neuroprotective effect is well explored in different preclinical and clinical studies. The present study was designed to investigate the effect of MMF in rat model of lithium pilocarpine (LiPc)-induced spontaneous recurrent seizures and its associated neurobehavioral comorbidities. MMF treatment showed a dose-dependent decrease in seizure severity and reduced aggression in epileptic rats. There was marked improvement in spatial and recognition memory functions, along with substantial decrease in depression-like behavior in MMF treated epileptic rats. There was considerable decrease in mossy fiber sprouting in the dentate gyrus and the cornu ammonis 3 regions of the hippocampus, along with reduction in neuronal death in the treated groups. Furthermore, the hippocampal mRNA level of IL-1β, IL-2, PI3K, AKT, HIF-1α, RAPTOR, mTOR, Rps6kb1 and Rps6 was found to be decreased in MMF treated animals. mTOR, S6, pS6 and GFAP protein expression was decreased, whereas NeuN was increased in the rat hippocampus of the treated animals. The results concluded that MMF suppress recurrent seizures, and improves its associated behavioral impairments and cognitive deficit in rat model of TLE. The observed effects of MMF be correlated with the inhibition of IL-2 and IL-1β linked PI3K/AKT/mTOR signaling pathway hyperactivation.  相似文献   

16.
Propofol can cause developing neuronal apoptosis in both in vivo and in vitro studies, and the mechanism is unclear till now. Our previous study has demonstrated that propofol can increase the TNF-α expression in the prefrontal cortex in rat developing brain, the TNF-α antagonist, etanercept, can inhibit propofol-induced neuronal apoptosis, but little is known about how TNF-α mediates that process. This study reveals that propofol at clinically relevant concentrations increases the TNF-α synthesis and release in neurons, and induces neuronal apoptosis; etanercept significantly reduces neuronal apoptosis, the elevation of cleaved caspase-8 and cleaved caspase-9, or the Akt phosphorylation induced by propofol, while the selective PI3K antagonist blocks the neuroprotection of etanercept. Propofol does not change the expression of P2X7 receptor in neurons, and the P2X7 receptor antagonist cannot affect the TNF-α synthesis or release after propofol treatment. These results suggest that propofol can increase the synthesis and release of TNF-α in the primary cultured prefrontal cortical neurons, TNF-α contributes to the intrinsic and extrinsic pathway in propofol-induced neuronal apoptosis via PI3K/Akt signaling pathway, and P2X7R is not involved in the synthesis and release of TNF-α induced by propofol.  相似文献   

17.
The main pathological feature of Alzheimer’s disease (AD) is the formation of abundant amyloid-β (Aβ) plaques in the human brain. Studies have reported that Aβ from the AD brain is resistant to proteolytic digestion, which may explain why Aβ cannot be readily eliminated from this organ. However, there are only a few studies that address this important question. We used the AD transgenic mouse (APP/PS1) model to show that Aβ derived from the brain of the old mouse is resistant to proteolytic digestion. This was in contrast to the proteinase K-sensitive human Aβ peptide, whose amino acid sequence was identical to that of AD mouse-derived Aβ but whose conformation was different (i.e., the native protein, but not the peptide, folded into a three-dimensional conformation). To address this question, we denatured AD mouse-derived Aβ with urea and found that Aβ became proteinase K-sensitive. This phenomenon was concentration-dependent, and these results were confirmed by another protein denaturant, guanidinium hydrochloride. We recovered the conformation of the denatured AD mouse-derived Aβ by eliminating urea and adding the human Aβ peptide, and we found that human Aβ was converted to the proteinase K-resistant form in the presence of partially undenatured AD mouse-derived Aβ. However, upon the addition of the rat Aβ peptide, there were no Aβ proteinase K-resistant fragments. Our results show that the resistance of AD mouse-derived Aβ to proteolytic digestion is dependent on the three-dimensional conformation of Aβ. In summary, this study provides new insights on why Aβ plaques fail to be degraded in the human brain.  相似文献   

18.

Background/Aim

Recent studies have highlighted the tumor-suppressive effect of Marsdenia tenacissima extract (MTE) on human cancers. This research unveils the potential impact of MTE on glioma and ascertains the relevant molecular mechanisms.

Methods

Glioma cells were treated with MTE, with normal human astrocytes (NHAs) as controls. A battery of function experiments, including the CCK-8 viability test, colony formation assay, scratch migration assay, and Transwell invasion assay, was executed to address the responses of glioma cells to MTE treatment and gain or loss of function of lncMEG3, miR-542-3p, and SFRP1. FISH, RIP, and dual-luciferase reporter assays were adopted for assessing gene interactions. U251-GFP-Luc cells were delivered into nude mice through intracranial injection to develop an orthotopic glioma model for in vivo validation.

Results

200 mg/mL MTE could suppress the proliferating, migrating, and invading properties of glioma cells but not affect those of NHAs. MTE treatment enhanced the expression of lncMEG3, which competes with SFRP1 for binding miR-542-3p. SFRP1 could inactivate the Wnt/β-catenin pathway. Animal experimentation substantiated the antitumor activity and mechanism of MTE in nude mice.

Conclusions

MTE suppresses glioma via the lncMEG3/miR-542-3p/SFRP1/Wnt/β-catenin axis. These findings contribute to a theoretical basis for the use of MTE for glioma patients.  相似文献   

19.
20.
ObjectiveWe attempt to investigate the role of TNFRSF1A and its underlying mechanism in oxygen-glucose deprivation/reoxygenation (OGD/R)-induced injury in rat pheochromocytoma PC12 cells.MethodsPublic datasets GSE61616 and GSE106680 were downloaded from GEO database. PC12 cells were used to construct OGD/R models. QRT-PCR and western blot were implemented to test the relative mRNA and protein levels, respectively. The miRNA online prediction website TargetScan was used to predict TNFRSF1A upstream regulated miRNAs, which were then confirmed by luciferase reporter assay. The changes in cell viability and apoptosis were evaluated using cell counting kit 8 (CCK-8), lactose dehydrogenase (LDH), and flow cytometry assays.ResultsBioinformatics analysis demonstrated that the expression of TNFRSF1A was upregulated in CI/RI and middle cerebral artery occlusion models compared with control, respectively. And a significant upregulation was also observed in OGD/R-damaged PC12 cells. Depletion of TNFRSF1A can notably enhance the cells proliferation after OGD/R treatment, while enlargement of TNFRSF1A presented the opposite outcomes. Moreover, miR-29a-3p was shown to be the upstream regulatory miRNA of TNFRSF1A. The levels of TNFRSF1A were inversely mediated by miR-29a-3p. Overexpression of miR-29a-3p can raise the cell viability, decrease the LDH activity, and reduce the apoptotic ratio in OGD/R-treated cells. Besides, TNFRSF1A can attenuate the protective effect of miR-29a-3p on OGD/R-treated cells. Furthermore, miR-29a-3p mimic inhibited, while overexpression of TNFRSF1A promoted the activation of NF-κB signaling pathway, and TNFRSF1A can attenuate the suppressive effect of miR-29a-3p on the NF-κB pathway.ConclusionOur research illustrated that the potential regulatory role of miR-29a-3p/TNFRSF1A axis in neurons cells suffered from OGD/R, and their effects on NF-κB signaling pathway, providing a possible bio-target for protecting cells from OGD/R damage .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号