首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Yoon JY  Chung BN  Choi SK 《Virus genes》2011,42(2):261-267
The variability in the nucleotide (nt) and amino acid (aa) sequences of the coat protein (CP) of Odontoglossum ringspot virus (ORSV), which naturally infects orchids worldwide, was investigated. The CP genes of 48 ORSV isolates originating from different locations in Korea were amplified using RT-PCR and sequenced. The encoded CP consists of 158 aa. The CP sequences of the Korean isolates were compared at the nt and aa levels with those of the previously published ORSV isolates originating from different countries. The Korean isolates share 94.8–100% and 92.4–100% CP identity to ORSV isolates from other countries at the nt and aa levels, respectively. No particular region of variability could be found in either sequence of the viruses. In the deduced aa sequence, the N-terminal region was more conserved than the C-terminal region in ORSV. The phylogenetic tree analysis and recombination analysis revealed that there was no distinct grouping between geographic locations and sequence identity, and nor distinct intra-specific recombination events among ORSV isolates.  相似文献   

2.
Rao CD  Gowda K  Reddy BS 《Virology》2000,276(1):104-113
During a limited epidemiological study, the serotype specificities of several isolates of bovine rotavirus, exhibiting identical electropherotypes, from a single cattle farm near Bangalore, India, could not be determined using a panel of serotyping monoclonal antibodies (MAbs) specific for G serotypes 1-6 and 10. To determine the genotypes of these isolates, the nucleotide sequences of the genes encoding the outer capsid proteins VP4 and VP7 of two representative isolates, Hg18 and Hg23, were determined. The corresponding gene sequences from the two isolates were identical, indicating that these isolates represented a single strain of bovine rotavirus. Comparison of the VP4 nucleotide (nt) and the deduced amino acid (aa) sequences with those of several human and animal rotavirus strains representing all of the currently recognized 20 different VP4 (P) genotypes revealed low nt and aa sequence identities of 61.0 to 74.2% and 57.9 to 78.2% for VP4. The percentages of amino acid homology for the VP8* and VP5* regions of VP4 were 37.7 to 67.9 and 68.1 to 84.2%, respectively. The nt and aa sequences of the VP7 gene were also distinct from those of human and animal strains belonging to the previously established 14 VP7(G) serotypes (65.9 to 75.5% nt and 59.5 to 77.6% aa identities). These findings suggest the classification of the VP4 and VP7 genes of the bovine isolates represented by Hg18 as new P and G genotypes and provide further evidence for the vast genetic/antigenic diversity of group A rotaviruses.  相似文献   

3.
Rotaviruses are the major etiological agents of diarrhea in children less than 5 years of age. Two unusual rotavirus strains not previously reported in India, G11P[25] (CRI 10795) and G3P[3] (CRI 33594) were isolated from faecal samples of asymptomatic children in India. The strains were characterized by sequence analysis of the genes encoding the VP7, VP4, VP6, and NSP4. The G11P[25] strain was closely related to the human G11P[25] strains from Bangladesh (with 98% identity at the nucleotide [nt] level and the amino acid [aa] level for the VP7 gene and 96% identity at the nt and 98% at the aa level for the VP4 gene). The G3P[3] strain was found to be related to a G3P[3] strain isolated in Thailand (CMH222; 88% identity at the nt level and 97% at aa level for the VP7 gene and 84% identity at the nt level and 90% at the aa level for the VP4 gene). Phylogenetic analysis of the VP6 and the NSP4 genes revealed that the Vellore G11P[25] strain was of VP6 subgroup II and NSP4 genotype B. The G3P[3] strain was identified as NSP4 genotype C and the VP6 gene showed 97% identity at the deduced amino acid level with strain CMH222 (Thailand) strain but did not cluster with sequences of SGI, SGII, SGI+II or SG-nonI/nonII. Both strains had gene segments of animal rotavirus origin suggesting inter-species transmission of rotavirus, and in the case of G11P[25] possibly underwent reassortment subsequently with human strains resulting in an animal-human hybrid strain.  相似文献   

4.
The Urabe AM9 mumps vaccine is composed of a mixture of variants distinguishable by a difference at nucleotide (nt) 1081 of the hemagglutinin-neuraminidase (HN) gene (Brown, E.G., Dimock, K., Wright, K.E., 1996. The Urabe AM9 mumps vaccine is a mixture of viruses differing at amino acid (aa) 335 of the hemagglutinin-neuraminidase gene with one form associated with disease. J. Infect. Dis. 174, 619-622.). Further genetic and biological variation was detected in plaque purified viruses from the Urabe AM9 vaccine by examining the HN gene sequence, plaque morphology, cytopathic effects and growth in Vero cells, and temperature sensitivity (ts). Infection of Vero cells with plaque purified viruses with a G at nt 1081 of the HN gene produced large, clear plaques, caused significant CPE early after infection but yielded lower titres of virus than other purified viruses. None of these viruses were ts. In contrast, half of the plaque purified viruses with an A at nt 1081 were sensitive to a temperature of 39.5 degrees C. These viruses produced small plaques, caused significant CPE and grew to low titres. Two ts viruses possessed a unique aa substitution at aa 468 of HN. The remaining A(1081) viruses were not ts, produced large plaques but little CPE, and grew to titres 10-fold higher than the G(1081) viruses. Isolates of Urabe AM9 associated with post-vaccination illness were similar to these non-ts A(1081) viruses, but could be further sub-divided into two groups on the basis of a difference at aa 464 of HN. The post-vaccination isolates may represent insufficiently attenuated components of the vaccine, while the G(1081) and ts subset of A(1081) viruses may be more fully attenuated.  相似文献   

5.
Yoon JY  Chung BN  Choi GS  Choi SK 《Virus genes》2012,44(2):323-328
The variability in the nucleotide (nt) and amino acid (aa) sequences of the coat protein (CP) of Cymbidium mosaic virus (CymMV), which naturally infects orchids worldwide, was investigated. The CP genes of 55 CymMV isolates originating from different locations in Korea were amplified using RT-PCR and sequenced. The encoded CP consists of 223 aa. The CP sequences of the Korean isolates were compared with those of previously published CymMV isolates originating from different countries at both nt and aa levels. The Korean isolates shared 74.9–98.3 and 52.7–100% CP homology with CymMV isolates from other countries at the nt and aa levels, respectively. No particular region of variability could be found in either grouping of viruses. In the deduced CymMV CP aa sequence, the C-terminal region was more divergent than the N-terminal. The phylogenetic tree analysis based on nt sequence diversity of CP genes of CymMV isolates supported the hypothesis that CymMV isolates were divided into two subgroups. However, these subgroups were not formed by phylogenetic tree analysis of CP aa sequences. There was no distinct correlation between geographical locations and specific sequence identity, while recombination analysis revealed that there were no intra-specific recombination events among CymMV isolates.  相似文献   

6.
Sugarcane streak mosaic virus (SCSMV), a member of the family Potyviridae, is an important viral pathogen affecting sugarcane production in India. The variability in the nucleotide (nt) and amino acid (aa) sequences of helper component proteinase (HC-Pro) of SCSMV isolates from India was investigated and compared with those of previously published virus isolates from different Asian countries. Comparison of all of the sequenced virus isolates revealed a high level of diversity in the HC-Pro gene (72-97% nt sequence identity; 83-99% aa sequence identity), and the Indian isolates were found to be the most divergent (up to 12% variation at the amino acid level). Phylogenetic analysis revealed clustering of 16 SCSMV isolates into two groups. Group I included isolates from India and Pakistan, and group II consisted of isolates from Japan and Indonesia. Recombination analysis revealed nine potentially significant recombination events, and putative recombination sites were identified throughout the HC-Pro gene. Analysis of selection pressure indicated that the HC-Pro gene of SCSMV is under strong negative selection. It is likely that recombination, along with strong negative selection, enhances the speed of elimination of deleterious mutations in the HC-Pro gene.  相似文献   

7.
We previously reported the detection of genotype P[19] rotavirus strains from children hospitalized with acute dehydrating diarrhea during a 5-year surveillance period in Taiwan. The characterization of five P[19] strains (0.4% of all typed), including three G3P[19], a novel G5P[19], and a unique G9P[19] genotype is described in this study. Phylogenetic analysis of the VP4, VP7, VP6, and NSP4 genes was performed, which demonstrated novel lineages for respective genotypes of the VP4 and the VP7 genes. The sequence similarities of the P[19] VP4 gene among Taiwanese human strains was higher (nt, 91.5-96.2%; aa, 93.7-97.6%) than to other P[19] strains (nt, 83.5-86.6%; aa, 89.4-94.1%) from different regions of the world. The VP7 gene of the three G3P[19] Taiwanese strains shared up to 93.4% nt and 97.5% aa identity to each other but had lower similarity to reference strain sequences available in GenBank (nt, <90.1%; aa, <95.6%). Similarly, the VP7 gene of the novel G5P[19] strain was only moderately related to the VP7 gene of reference G5 strains (nt, 82.2-87.3%; aa, 87.0-93.1%), while the VP7 gene of the single G9P[19] strain was genetically distinct from other known human and animal G9 rotavirus strains (nt, ≤ 92.0%; aa, ≤ 95.7%). Together, these findings suggest that the Taiwanese P[19] strains originated by independent interspecies transmission events. Synchronized surveillance of human and animal rotaviruses in Taiwan should identify possible hosts of these uncommon human rotavirus strains.  相似文献   

8.
To better understand the molecular epidemiology of infectious bronchitis virus (IBV) in the United States following the introduction of commercial IBV vaccines, we sequenced the S1 and N structural protein genes of thirteen IBV field isolates collected in the 1960s. Analysis of the S1 sequence showed that seven isolates were of the Massachusetts (Mass) genotype, five were SE17, and one was of the Connecticut (Conn) genotype, suggesting that these three IBVs were circulating in commercial poultry raised in different regions in the United States during the 1960s. The S1 genes of Mass-type isolates had high levels of sequence variation, representing 81.3-81.9 % nucleotide (nt) and 77.3-78.7 % amino acid (aa) identity when compared to those of the SE17-type isolates. In contrast, the N genes from the same isolates were less variable (>92 % nt and >93 % aa identity) when compared to those of the SE17-type isolates. Phylogenetic analysis based on the S1 gene indicated that one isolate (L748) was more closely related to the Mass type. In contrast, phylogenetic analysis based on the N gene showed that L748 was more closely related to the SE17 type, indicating that there had been exchange of S1 genetic materials between Mass- and SE17-like viruses. In addition, the Mass-type isolates had high levels of sequence identity in the S1 gene compared with widely used modified live vaccines (Mass41, Ma5 and H120) and modern field strains from the USA and other countries, suggesting a common ancestor.  相似文献   

9.
10.
Summary. The complete nucleotide sequence of a tospovirus isolated from Lycopersicum esculentum in Thailand was determined. The L RNA comprises of 8912 nt and codes for the RNA-dependent RNA-polymerase (RdRp) (2877 aa). Two ORFs are located on the M RNA (4823 nt) encoding the non-structural (NSm) protein (308 aa) and the viral glycoprotein precursors (Gn/Gc) (1121 aa) separated by an intergenic region of 433 nt. ORFs coding for the non-structural (NSs) and nucleocapsid (N) protein, 439 aa and 275 aa, respectively, were identified on the S RNA (3477 nt) separated by an intergenic region of 1202 nt. The N protein of the Thailand isolate was most closely related to that of capsicum chlorosis virus (CaCV), sharing an amino acid sequence identity of 92.7%. Additionally, multiple sequence analyses revealed significant similarities to tospoviruses of the species Watermelon silver mottle virus and to several putative tospovirus entries in GenBank. Based on these alignments it is proposed to refer to all these different viruses as isolates of CaCV.  相似文献   

11.
The length of the published glycoprotein (G) gene sequences of avian metapneumovirus subtype-C (aMPV-C) isolated from domestic turkeys and wild birds in the United States (1996-2003) remains controversial. To explore the G gene size variation in aMPV-C by the year of isolation and cell culture passage levels, we examined 21 turkey isolates of aMPV-C at different cell culture passages. The early domestic turkey isolates of aMPV-C (aMPV/CO/1996, aMPV/MN/1a-b, and 2a-b/97) had a G gene of 1,798 nucleotides (nt) that coded for a predicted protein of 585 amino acids (aa) and showed >97% nt similarity with that of aMPV-C isolated from Canada geese. This large G gene got truncated upon serial passages in Vero cell cultures by deletion of 1,015 nt near the end of the open reading frame. The recent domestic turkey isolates of aMPV-C lacked the large G gene but instead had a small G gene of 783 nt, irrespective of cell culture passage levels. In some cultures, both large and small genes were detected, indicating the existence of a mixed population of the virus. Apparently, serial passage of aMPV-C in cell cultures and natural passage in turkeys in the field led to truncation of the G gene, which may be a mechanism of virus evolution for survival in a new host or environment.  相似文献   

12.
Summary.  We report the first detection of P[14], G8 rotaviruses isolated in Egypt from the stool of children participating in a 3 year study of rotavirus epidemiology. Two strains, EGY1850 and EGY2295, were characterized by a serotyping enzyme immunoassay (EIA), virus neutralization, and sequence analysis of the genes encoding VP7 and the VP8* portion of the VP4 gene. These two strains shared a high level of homology of their VP7s (87.8% nucleotide [nt], 97.2% amino acid [aa]) and VP4s (89.6% nt, 97.1% aa) and had the highest VP7 identity to serotype G8 (>82% nt, >92% aa) and VP4 identity to genotype P[14] (≥81% nt, >91% aa) strains. Serological results with a VP7 G8-specific and VP4 P[14]-specific neutralizing monoclonal antibodies supported the genetic classification of EGY1850 and EGY2295 as P[14], G8. Genogroup analysis supports earlier findings that human G8 rotaviruses may be genetically related to bovine rotaviruses. These findings demonstrate that our understanding of the geographic distribution of rotavirus strains is incomplete, emphasize the need to monitor rota- virus serotypes, and extend the known distribution of serotype G8 and genotype P[14] strains in Africa. Received Nvember 3, 1998 Accepted February 14, 1999  相似文献   

13.
14.
Fowl adenoviruses (FAdVs) are common in broiler operations, and the most frequently isolated FAdVs belong to serotypes 1, 8, and 11. Serotype 1 viruses are considered nonpathogenic. While some serotype 8 and 11 viruses cause inclusion body hepatitis (IBH), these virus serotypes can also be isolated from non-IBH cases. The fiber protein is one of the major constituents of the adenoviral capsid, involved in virus entry, and it has been implicated in the variation of virulence of FAdVs. The fiber gene sequences of four FAdV-8 and four FAdV-11 isolates from both IBH and non-IBH cases were determined and analyzed for a possible association of the fiber gene sequence in virulence. The fiber protein can be divided into tail, shaft, and head domains comprising some specific features. The conserved “RKRP” sequence motif (aa 17–aa 20) fit the consensus sequence predicted for the nuclear localization signal, while the “VYPF” motif (aa 53–aa 56), involved in the penton base interaction, was also found. Similar to mammalian adenoviruses, 17 pseudo-repeats with an average length of 16 aa were detected in the FAdV-8 fiber shaft region, while 20 pseudo-repeats with an average length of 18 aa were found in FAdV-11 fibers. There was a 144–147 nt difference between the fiber genes of the two FAdV serotypes. In the shaft region, the TLWT motif that marks the beginning of the fiber head domain of the mastadenovirus was not evident among examined FAdVs. The FAdV-11 isolates had 99.1 % aa sequence identity and 99.3 % similarity to each other, and there was no conserved aa substitution within the fibers. The FAdV-8 fiber proteins showed an overall lower, 89 % aa sequence identity and 93.4 % similarity, to each other and 22 nonsynonymous mutations were detected. Virulence markers were not detected in the analyzed fiber gene sequences of the different pathotypes of the two FAdV serotypes.  相似文献   

15.
Iranian johnsongrass mosaic virus (IJMV) is one of the most prevalent viruses causing maize mosaic disease in Iran. An IJMV isolate, Maz-Bah, was obtained from the maize showing mosaic symptoms in Mazandaran, north of Iran. The complete genomic sequence of Maz-Bah is 9544 nucleotides, excluding the poly(A) tail. It contains one single open reading frame of 9165 nucleotides and encodes a large polyprotein of 3054 amino acids, flanked by a 5′-untranslated region (UTR) of 143 nucleotides and a 3′-UTR of 236 nucleotides. The entire genomic sequence of Maz-Bah isolate shares identities of 84.9 and 94.2 % with the IJMV (Shz) isolate, the lone complete genome sequence available in the GenBank at the nucleotide (nt) and deduced amino acid (aa) levels, respectively. The whole genome sequences share identities of 51.5–69.8 and 44.9–74.3 % with those of other Sugarcane mosaic virus (SCMV) subgroup potyviruses at nt and aa levels, respectively. In phylogenetic trees based on the multiple alignments of the entire nt and aa sequences, IJMV isolates formed a separate sublineage of the tree with potyviruses infecting monocotyledons of cereals, indicating that IJMV is a member of SCMV subgroup of potyviruses. IJMV is most closely related to Sorghum mosaic virus and Maize dwarf mosaic virus and less closely related to the Johnsongrass mosaic virus and Cocksfoot streak virus. To further investigate the genetic relationship of IJMV, 9 other isolates from different hosts were cloned and sequenced. The identity of IJMV CP nt and aa sequences of 11 Iranian isolates ranged from 86.4 to 99.8 % and 90.5 to 99.7 %, respectively, indicating a high nt variability in CP gene. Furthermore, in the CP-based phylogenetic tree, IJMV isolates were clustered together with a maize potyvirus described as Zea mosaic virus from Israel (with 86–89 % nt identity), indicating that both isolates probably are the strains of the same virus.  相似文献   

16.
Hou SS  Chi YC  Liu YY  Li XD  Yu SL  Li XD 《Acta virologica》2011,55(2):123-129
Peanut stripe virus (PStV) is one of the most common viruses infecting peanut that causes great economic losses every year. The 3?-terminal 1082 bp of 74 PStV isolates collected from 12 districts of Shandong province, China were sequenced. Their coat protein (CP) genes were 864 bp in length and shared identities of 98.0%~100% and 98.3% ~100% at nt and aa levels. The identities between the CP genes of these isolates and other 36 isolates from the GenBank were 93.5%~100% and 92.0%~100% at nt and aa levels, respectively. PStV isolates can be clustered into two phylogenetic groups. The isolates from United States, mainland China, and Indonesia formed group I and those from Viet Nam, Thailand, and Taiwan formed group II. The PStV isolates in group I can be further classified to two subgroups. The gene flow of PStV populations within a country was frequent, but that between countries was infrequent.  相似文献   

17.
18.
Yi J  Liu C 《Archives of virology》2011,156(11):2045-2052
A new rotavirus strain, sh0902, was detected in diarrheic piglets on a farm in Shanghai, China, and its genotype was characterized as G1P[7]. Analysis of the VP4, VP7 and NSP4 genes demonstrated VP4 homology to bovine and swine rotavirus strains; the nucleotide (nt) and amino acid (aa) identities were 99.7% and 99.5%, respectively. The VP7 gene was highly homologous to that of a giant panda rotavirus strain, with 98.5% similarity at the nt level and 99% similarity at the aa level. The nucleotide sequence of the NSP4 gene displayed high homology to human rotavirus strain R479, with 99.7% identity at the nt level and 99.3% identity at the aa level. This is the first report of an unusual porcine rotavirus strain with VP4, VP7 and NSP4 genes that are highly homologous to bovine, swine, giant panda and human strains isolated at geographically distant sites (South Korea, China and India). Our data indicate that rotaviruses have circulated among humans and animals and undergone genome reassortment.  相似文献   

19.
The gene encoding the matrix protein of peste des petits ruminants virus (PPRV) has been cloned and its nucleotide sequence determined. This gene is 1466 nucleotides long and contains an open reading frame (ORF) capable of encoding a basic protein of 335 amino acid residues with a predicted molecular weight of 38,057 Da. This ORF starts at position 33-35 and ends with the codon TAA at position 1038-1040 thus leaving a long untranslated region (426 nucleotides) at the 3' end of the messenger RNA. This fragment is very G/C rich (68.5%) and in contrast to the ORF region appears to be least conserved in the M gene sequence of the morbilliviruses. A comparison of the PPRV M protein with those of other viruses in the group confirms the previously noted high degree of conservation for this protein sequence. The percent of identity within the group ranges from 76.7 to 86.9%, the highest being with the dolphin morbillivirus matrix protein.  相似文献   

20.
Between 1992 and 1998, serotype G9 human rotavirus (RV) strains have been detected in 10 countries, including Thailand, India, Brazil, Bangladesh, Malawi, Italy, France, the United States, the United Kingdom, and Australia, suggesting the possible emergence of the fifth common serotype worldwide. Unlike the previously characterized reference G9 strains (i.e., WI61 and F45), the recent G9 isolates had a variety of gene combinations, raising questions concerning their origin and evolution. To identify the progenitor strain and examine the on-going evolution of the recent G9 strains, we characterized by genetic and antigenic analyses 16 isolates obtained from children with diarrhea in India, Bangladesh, the United States, and Malawi. Specifically, we sequenced their VP7 and NSP4 genes and compared the nucleotide (nt) and deduced amino acid sequences with the reference G9 strains. To identify reassortment, we examined the products of five gene segments; VP4, VP7, and NSP4 genotypes (genes 4, 9, and 10); subgroups (gene 6); electropherotypes (gene 11); and the genogroup profiles of all of the recent G9 isolates. Sequence analysis of the VP7 gene indicated that the recent U.S. P[6],G9 strains were closely related to the Malawian G9 strains (>99% nt identity) but distinct from G9 strains of India ( approximately 97% nt identity), Bangladesh ( approximately 98% nt identity), and the reference strains ( approximately 97% nt identity). Phylogenetic analysis identified a single cluster for the U.S. P[6],G9 strains that may have common progenitors with Malawian P[6],G9 strains whereas separate lineages were defined for the Indian, Bangladeshi, and reference G9 strains. Northern hybridization results indicated that all 11 gene segments of the Malawian P[6],G9 strains hybridized with a probe derived from a U.S. strain of the same genotype and may have the same progenitor, different from the Indian G9 strains, whereas the Bangladesh strains may have evolved from the U.S. G9 progenitors. Overall, our findings suggest that much greater diversity among the newly identified G9 strains has been generated by reassortment between gene segments than through the accumulation of mutations in a single gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号