首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mental retardation is a feature of X-linked Duchenne muscular dystrophy (DMD) which likely results from the loss of the brain full-length (Dp427) and short C-terminal products of the dystrophin gene, such as Dp71. The loss of Dp427 or Dp71 is known to alter hippocampal glutamate-dependent synaptic transmission and plasticity in mice. Although dystrophins have a selective postsynaptic expression in brain, a putative role in retrograde regulation of transmitter release was suggested by studies in Drosophila. Here we used electron microscopy to analyze the distribution of synaptic vesicles in CA1 hippocampal axospinous non perforated-excitatory synapses of mice lacking Dp427 or Dp71 compared to control littermates. We found that the density of morphologically-docked vesicles is increased and the vesicle size is reduced in mice lacking Dp427, while in Dp71-null mice there is a decrease in the density of vesicles located in the vicinity of the active zone and an increase in the vesicle size and in the width of synaptic clefts. This is the first indication that the loss of mammalian brain dystrophins impacts on the presynaptic ultrastructural organization of central glutamatergic synapses, which may explain some of the alterations of synapse function and plasticity that contribute to intellectual disability in DMD.  相似文献   

2.
Duchenne muscular dystrophy is caused by mutations in the dystrophin gene, a complex gene that generates a family of distinct isoforms. In immature muscle cells, two dystrophin isoforms are expressed, Dp427 and Dp71. To characterize the function of Dp71 in myogenesis, we have examined the expression of Dp71 in myogenic cells. The localization of Dp71 in these cells is distinct from the localization of Dp427. Whereas Dp427 localizes to focal adhesions and surface membrane during myogenesis, Dp71 localizes to stress fiberlike structures in myogenic cells. Biochemical fractionation of myogenic cells demonstrates that Dp71 cosediments with the actin bundles thus confirming this interaction. Furthermore, transfection of C2C12 myoblasts with constructs encoding Dp71 fused to green fluorescent protein targeted the protein to the actin microfilament bundles. These results demonstrate involvement of Dp71 with the actin cytoskeleton during myogenesis and suggest a role for Dp71 that is distinct from Dp427. © 1999 John Wiley & Sons, Inc. Muscle Nerve 22: 16–27, 1999  相似文献   

3.
To investigate the function of the major non-muscle dystrophin isoform, Dp71, we substituted a beta-galactosidase (betagal) reporter gene for Dp71 by homologous recombination in embryonic stem cells. Staining for betagal activity in chimeric mice revealed Dp71 promoter activity in glial cells in the CNS, in neurons of the inner nuclear and inner plexiform layers of the retina, and in the kidney tubules and collecting ducts. Our observations demonstrate that Dp71 is widely expressed in the adult CNS (retina, cerebellum, cerebral cortex, ependyma, and choroid) as well as the adult kidney epithelium and suggest a broad function for Dp71 in differentiated tissues.  相似文献   

4.
Patients with Duchenne muscular dystrophy (DMD) and mdx mice, devoid of dystrophin proteins, show altered ionic homeostasis. To clarify dystrophin's involvement in the central control of osmotic stimuli, we investigated the effect of the disruption of Dp71, the major form of dystrophin in the brain, on the hypothalamoneurohypophysis system (HNHS) osmoregulatory response. Dp71 and Dp140 are the principal DMD gene products in the supraoptic nucleus (SON) and neurohypophysis (NH). They are present in astrocyte and pituicyte end‐feet, suggesting involvement in both intrinsic osmosensitivity of the SON and vasopressin (AVP) release from the NH. In Dp71‐null mice, the cellular distribution of Dp140 was modified, this protein being detected on the membrane of magnocellular soma. The plasma osmolality of Dp71‐null mice was lower than that of wild‐type mice under normal conditions, and this difference was maintained after salt loading, indicating a change in the set point for osmoregulation in the absence of Dp71. The increase in AVP levels detected in the SON and NH of the wild‐type was not observed in Dp71‐null mice following salt loading, and the increase in AVP mRNA levels in the SON was smaller in Dp71‐null than in wild‐type mice. This suggests that Dp71 may be involved in the functional activity of the HNHS. Its astrocyte end‐feet localization emphasizes the importance of neuronal–vascular–glial interactions for the central detection of osmolality. In the SON, Dp71 may be involved in osmosensitivity and definition of the “osmostat,” whereas, in the neurohypopohysis, it may be involved in fine‐tuning AVP release. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
6.
Previously, we reported that PC12 cells with decreased Dp71 expression (antisense-Dp71 cells) display deficient nerve-growth-factor-induced neurite outgrowth. In this study, we show that disturbed neurite outgrowth of antisense-Dp71 cells is accompanied by decreased adhesion activity on laminin, collagen and fibronectin. In wild-type cells, the immunostaining of Dp71 and beta1-integrin overlaps in the basal area contacting the substrate, but staining of both proteins decrease in the antisense-Dp71 cells. Morphology of antisense-Dp71 cells at the electron microscopic level is characterized by the lack of filopodia, cellular projections involved in adhesion. Our findings suggest that Dp71 is required for the efficient PC12 cell attachment to beta1-integrin-dependent substrata and that decreased adhesion activity of the antisense-Dp71 cells could determine their deficiency to extend neurites.  相似文献   

7.
Function of dystrophin Dp71 isoforms is unknown but seems related to neurite outgrowth and synapse formation. To evaluate Dp71 role in myoneural synapses, we established a coculture model using PC12 cells and L6 myotubes and analyzed expression and localization of Dp71 and related proteins, utrophin and beta-dystroglycan, in PC12 cells. Confocal microscopy showed Dp71d isoform in PC12 nuclei, golgi-complex-like and endoplasmic reticulum-like structures, whereas Dp71ab concentrates at neurite tips and cytoplasm, colocalizing with beta-dystroglycan, utrophin, synaptophysin and acetylcholine receptors. Evidences suggest that Dp71ab isoform, unlike Dp71d, may take part in neurite-related processes. This is the first work on Dp and members of Dp-associated protein complex roles in a cell-line based coculturing system, which may be useful in determining Dp71 isoforms associations.  相似文献   

8.
Understanding retinal vascular development is crucial because many retinal vascular diseases such as diabetic retinopathy (in adults) or retinopathy of prematurity (in children) are among the leading causes of blindness. Given the localization of the protein Dp71 around the retinal vessels in adult mice and its role in maintaining retinal homeostasis, the aim of this study was to determine if Dp71 was involved in astrocyte and vascular development regulation. An experimental study in mouse retinas was conducted. Using a dual immunolabeling with antibodies to Dp71 and anti‐GFAP for astrocytes on retinal sections and isolated astrocytes, it was found that Dp71 was expressed in wild‐type (WT) mouse astrocytes from early developmental stages to adult stage. In Dp71‐null mice, a reduction in GFAP‐immunopositive astrocytes was observed as early as postnatal day 6 (P6) compared with WT mice. Using real‐time PCR, it was showed that Dp71 mRNA was stable between P1 and P6, in parallel with post‐natal vascular development. Regarding morphology in Dp71‐null and WT mice, a significant decrease in overall astrocyte process number in Dp71‐null retinas at P6 to adult age was found. Using fluorescence‐conjugated isolectin Griffonia simplicifolia on whole mount retinas, subsequent delay of developing vascular network at the same age in Dp71‐null mice was found. An evidence that the Dystrophin Dp71, a membrane‐associated cytoskeletal protein and one of the smaller Duchenne muscular dystrophy gene products, regulates astrocyte morphology and density and is associated with subsequent normal blood vessel development was provided. GLIA 2016;64:716–729  相似文献   

9.
Dystrophin, the protein which is absent or non-functional in Duchenne muscular dystrophy, consists of four main domains: an N-terminal actin binding domain, a rod shaped domain of spectrin-like repeats, a cysteine-rich domain and a unique C-terminal domain. In muscle, dystrophin forms a linkage between the cytoskeletal actin and a group of membrane proteins (dystrophin associated proteins). The N-terminal domain binds to the cytoskeletal actin and the association with the dystrophin associated proteins is mediated mainly by the cysteine-rich and C-terminal domains of dystrophin. The dystrophin gene also encodes two isoforms of non-muscle dystrophins and a number of smaller products consisting of the two C-terminal domains with different extensions into the spectrin-like repeat domain. Dp71, which consist of the C-terminal and the cysteine-rich domains of dystrophin, is the major product of the gene in all non-muscle tissues tested so far, but it is absent in differentiated skeletal muscle. In an attempt to understand the functions of Dp71, we produced transgenic mice over-expressing this protein in several tissues. The highest levels of exogeneous Dp71 were detected in skeletal muscle, in association with the sarcolemma. This resulted in muscle damage similar to that found in mice which lack dystrophin. The data indicates that Dp71 competes with dystrophin for the binding to the dystrophin associated proteins. Since Dp71 lacks the actin binding domain, it cannot form the essential linkage between the dystrophin associated proteins complex and the cytoskeleton.  相似文献   

10.
Formation and maintenance of the blood–retinal barrier (BRB) is required for proper vision and breaching of this barrier contributes to the pathology in a wide variety of retinal conditions such as retinal detachment and diabetic retinopathy. Dystrophin Dp71 being a key membrane cytoskeletal protein, expressed mainly in Müller cells, its absence has been related to BRB permeability through delocalization and down‐regulation of the AQP4 and Kir4.1 channels. Dp71‐null mouse is thus an excellent model to approach the study of retinal pathologies showing blood–retinal barrier permeability. We aimed to investigate the participation of Müller cells in the BRB and in the inner limiting membrane of Dp71‐null mice compared with wild‐type mice in order to understand how these barriers work in this model of permeable BRB. To this aim, we used an Adeno‐associated virus (AAV) variant, ShH10‐GFP, engineered to target Müller cells specifically. ShH10 coding GFP was introduced by intravitreal injection and Müller cell transduction was studied in Dp71‐null mice in comparison to wild‐type animals. We show that Müller cell transduction follows a significantly different pattern in Dp71‐null mice indicating changes in viral cell‐surface receptors as well as differences in the permeability of the inner limiting membrane in this mouse line. However, the compromised BRB of the Dp71‐null mice does not lead to virus leakage into the bloodstream when the virus is injected intravitreally – an important consideration for AAV‐mediated retinal gene therapy. GLIA 2014;62:468–476  相似文献   

11.
Dystrophin is an important protein within the central nervous system. The absence of dystrophin, characterizing Duchenne muscular dystrophy (DMD), is associated with brain related comorbidities such as neurodevelopmental (e.g., cognitive and behavioural) deficits and epilepsy. Especially mutations in the downstream part of the DMD gene affecting the dystrophin isoforms Dp140 and Dp71 are found to be associated with cognitive deficits. However, the function of Dp140 is currently not well understood and its expression pattern has previously been implicated to be developmentally regulated. Therefore, we evaluated Dp140 and Dp71 expression in human hippocampi in relation to cognitive functioning in patients with drug‐resistant temporal lobe epilepsy (TLE) and post‐mortem controls. Hippocampal samples obtained as part of epilepsy surgery were quantitatively analyzed by Western blot and correlations with neuropsychological test results (i.e., memory and intelligence) were examined. First, we demonstrated that the expression of Dp140 does not appear to differ across different ages throughout adulthood. Second, we identified an inverse correlation between memory loss (i.e., verbal and visual memory), but not intelligence (i.e., neither verbal nor performance), and hippocampal Dp140 expression. Finally, patients with TLE appeared to have similar Dp140 expression levels compared to post‐mortem controls without neurological disease. Dp140 may thus have a function in normal cognitive (i.e., episodic memory) processes.  相似文献   

12.
Platelets are dynamic cell fragments that modify their shape during activation. Utrophin and dystrophins are minor actin-binding proteins present in muscle and non-muscle cytoskeleton. In the present study, we characterised the pattern of Dp71 isoforms and utrophin gene products by immunoblot in human platelets. Two new dystrophin isoforms were found, Dp71f and Dp71 d, as well as the Up71 isoform and the dystrophin-associated proteins, alpha and beta -dystrobrevins. Distribution of Dp71d/Dp71delta110m, Up400/Up71 and dystrophin-associated proteins in relation to the actin cytoskeleton was evaluated by confocal microscopy in both resting and platelets adhered on glass. Formation of two dystrophin-associated protein complexes (Dp71d/Dp71delta110m approximately DAPC and Up400/Up71 approximately DAPC) was demonstrated by co-immunoprecipitation and their distribution in relation to the actin cytoskeleton was characterised during platelet adhesion. The Dp71d/Dp71delta100m approximately DAPC is maintained mainly at the granulomere and is associated with dynamic structures during activation by adhesion to thrombin-coated surfaces. Participation of both Dp71d/Dp71delta110m approximately DAPC and Up400/Up71 approximately DAPC in the biological roles of the platelets is discussed.  相似文献   

13.
The Duchenne muscular dystrophy (DMD) gene encodes dystrophin, which is a protein defective in DMD patients, as well as a number of shorter isoforms, which have been shown to be expressed in various non-muscle, primarily neural, tissues. As of yet, the physiological function of the various dystrophin isoforms is not fully understood. In the present study, we investigated the neurological phenotype that arises in the DMD-null mice, where expression of all dystrophin isoforms had been disrupted. We demonstrate that vomeronasal axons in the DMD-null mice are defasciculated, and some of the defasciculated vomeronasal axons aberrantly entered into the main olfactory bulb, which indicates that the product(s) of the DMD gene plays an important role in vomeronasal nerve organization. Through western blot and immunofluorescence analyses, we determined that the dystrophin isoform Dp71 was exclusively expressed in the mouse olfactory system: mainly in the olfactory ensheathing cells (OECs), an olfactory system-specific glia cell that ensheaths fascicles of the olfactory nerve. In the OECs, Dp71 was co-localized with β-dystroglycan, utrophin, laminin, and perlecan. Since β-dystroglycan and perlecan expression was decreased in the OECs of DMD-null mice, we hypothesize that Dp71 expressed in the OECs participates in fasciculation of the vomeronasal nerve, most likely through interactions with extracellular matrix.  相似文献   

14.
The dystrophin-associated proteins (DAPs) complex consisting of dystroglycan, syntrophin, dystrobrevin, and sarcoglycans in muscle cells is associated either with dystrophin or its homolog utrophin. In rat retina, a similar complex was found associated with dystrophin-Dp71 that serves as an anchor for the inwardly rectifying potassium channel Kir4.1 and the aqueous pore, aquaporin-4 (AQP4). Here, using immunofluorescence imaging of isolated retinal Müller glial cells and co-immunoprecipitation experiments performed on an enriched Müller glial cells end-feet fraction, we investigated the effect of Dp71 deletion on the composition, anchoring, and membrane localization of the DAPs-Kir4.1 and/or -AQP4 complex. Two distinct complexes were identified in the end-feet fraction associated either with Dp71 or with utrophin. Upon Dp71 deletion, the corresponding DAPs complex was disrupted and a compensating utrophin upregulation was observed, accompanied by diffuse overall staining of Kir4.1 along the Müller glial cells and redistribution of the K(+) conductance. Dp71 deficiency was also associated with a marked reduction of AQP4 and beta-dystroglycan expression. Furthermore, it was observed that the Dp71-DAPs dependent complex could be, at least partially, associated with a specific membrane fraction. These results demonstrate that Dp71 has a central role in the molecular scaffold responsible for anchoring AQP4 and Kir4.1 in Müller cell end-feet membranes. They also show that despite its close relationship to the dystrophin proteins and its correlated upregulation, utrophin is only partially compensating for the absence of Dp71 in Müller glial cells.  相似文献   

15.
Duchenne muscular dystrophy is a multifactorial disease including a cognitive phenotype. It is caused by mutations in the X-chromosomal DMD gene from which dystrophin is synthesized. Multiple isoforms of dystrophin have been identified. The full length dystrophin isoform Dp427m is expressed predominantly in muscle. Other isoforms include: Dp427c, Dp427p, Dp260, Dp140, Dp116, Dp71 and Dp40. The majority of these isoforms are expressed in brain and several hypotheses exist on their role in subtypes of neurons and astrocytes. However, their function in relation to cognition remains unclear. Unlike progressive muscle wasting, cognitive involvement is not seen in all DMD patients and the severity varies greatly. To achieve a better understanding of brain involvement in DMD, a multidisciplinary approach is required. Here, we review the latest findings on dystrophin isoform expression in the brain; specific DMD-associated learning and behavioural difficulties; and imaging and spectroscopy findings relating to brain structure, networks, perfusion and metabolism. The main challenge lies in determining links between these different findings. If we can determine which factors play a role in the differentiation between severe and minor cognitive problems in DMD in the near future, we can both provide better advise for the patients and also develop targeted therapeutic interventions.  相似文献   

16.
Enterovirus 71 has been associated with several outbreaks, as well as sporadic cases, of central nervous system infection and has a worldwide distribution. Seven children with encephalitis and five with aseptic meningitis caused by Enterovirus 71 were seen at Otsu Municipal Hospital during the summer of 1997. The infections were confirmed serologically, although detection of the viral genome in cerebrospinal fluid was unsuccessful. Seven children were diagnosed as having hand-foot-and-mouth syndrome, two were diagnosed as having herpangina, and three patients younger than 12 months old developed no eruptions. The skin or mucosal manifestations of this outbreak demonstrated considerable variation. The Enterovirus 71 strain that caused the outbreak had a strong neurovirulent tendency. Among the patients with encephalitis, symptoms originating from the impairment of diencephalon were seen in four patients, and those originating from cerebellar impairment were seen in two patients. Brain magnetic resonance imaging in one patient revealed an abnormality in the pons. The neurologic manifestations associated with Enterovirus 71 infection may be characterized by involvement of the cerebellum, brainstem, and diencephalon. Enterovirus 71 is one of the pathogenic viruses that cause hand-foot-and-mouth syndrome, as well as a variety of other clinical manifestations. The most important of these is neurologic disease, especially in infants and young children.  相似文献   

17.
The loss of full-length dystrophin from skeletal muscle leads to the clinical features of Duchenne muscular dystrophy. Both Dp71, a C-terminal dystrophin isoform, and the dystrophin-related protein, utrophin, are present at high levels in many nonmuscle tissues. To investigate the roles of these proteins in nonmuscle tissues, mice were generated null for utrophin, and deficient in all dystrophin isoforms. These mice reach adulthood and do not appear to have any devastating pathology in nonmuscle tissues.  相似文献   

18.
Mechanisms related to the neuropathogenesis of enterovirus 71 infection remain unclear. This investigation conducts a comprehensive study of the apoptotic pathways in neural and non-neural cells following enterovirus 71 infection. Infections with enterovirus 71 not only induce classical cytopathic effects in SF268 (human glioblastoma), SK-N-MC (human neuroblastoma), RD, and Vero cells, but also induce classic signs of apoptosis in all cells, including DNA fragmentation and phosphatidylserine translocation. Apoptosis has also been caused by the efflux of cytochrome c from mitochondria, and subsequently by cleavage of caspase 9 in all cells. Activation of caspase 8 followed by cleavage of the proapoptotic protein Bid only occurs in non-neural cells. Results of this study demonstrate that a mitochondrial pathway of apoptosis mediated by activation and cleavage of caspase 9 is a main pathway in enterovirus 71-induced apoptosis, especially for enterovirus 71-infected neural cells.  相似文献   

19.
Protein O-linked mannose beta1, 2-N-acetylglucosaminyltransferase 1 (POMGnT1) is an enzyme that catalyzes the transfer of N-acetylglucosamine to O-mannose of glycoproteins. Alpha-dystroglycan, a substrate of POMGnT1, is concentrated around the blood vessels, in the outer plexiform layer (OPL), and in the inner limiting membrane (ILM) of the retina. Mutations of the POMGnT1 gene in humans cause muscle-eye-brain (MEB) disease. Several ocular abnormalities including retinal dysplasia, ERG abnormalities, and retinal detachments have been reported in patients with MEB. We have analyzed the eyes of POMGnT1-deficient mice, generated by standard gene targeting technique, to study the retinal abnormalities. Clinical examination of adult mutant mice revealed a high incidence (81% by 12-months-of-age) of retinal detachments. Sheathing of the retinal vessels and the presence of ectopic fibrous tissues around the optic nerve head were also found. Histological examinations showed focal retinal detachment associated with GFAP immunopositivity. The ILM of the mutant mice was disrupted with ectopic cells near the disruptions. The expression of Dp71, a shorter isoform of dystrophin, was severely reduced in the ILM and around retinal blood vessels of POMGnT1-deficient mice. The expression of Dp427, Dp260, Dp140 were also reduced in the OPL of the mutant mice. Electroretinographic (ERG) analyses showed reduced a- and b-wave amplitudes. Examinations of flat mounts revealed abnormal vascular network associated with highly irregular astrocytic processes. In addition, ER-TR7-positive fibrous tissue was found closely associated with reactive astrocytes especially around the optic nerve head. Our results suggest that altered glycosylation of alpha-DG may be responsible for the reactive gliosis and reticular fibrosis in the retina, and the subsequent developments of retinal dysplasia, abnormal ERGs, and retinal detachment in the mutant mice.  相似文献   

20.
Duchenne muscular dystrophy is an X-Linked neuromuscular disorder, and the most common muscular dystrophy. Neuropsychiatric phenotype associated to DMD gene mutations include now low IQ scores, epilepsy, autism, and attention deficit disorder. These have been observed with higher frequency in mutations that disrupt the short isoforms Dp71 and Dp140. West syndrome has been previously reported in two unrelated patients with Duchenne muscular dystrophy. Here, we report the third patient with West syndrome who had a novel hemizygous nonsense pathogenic variant in the exon 8 of the DMD gene c.811C>T, p.(Gln271*), suggesting West syndrome as part of the neuropsychiatric spectrum in Duchenne muscular dystrophy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号