首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Agar diffusion testing was used with four different media to evaluate the antibacterial activity of six products (one conventional glass-ionomer cement (GIC), two light-activated glass-ionomers, two polyacid-modified resin composites and one resin composite) on Streptoccoccus mutans. Their respective antibacterial activities were also compared during and after setting. The relationship between product acidity and antibacterial activity was evaluated. All the GICs demonstrated antibacterial properties in contrast to the polyacid-modified resin composites and resin composite which did not shown any antibacterial effects. Vitrebond GIC exhibited higher antibacterial action, probably because of a cytotoxic photo-initiator diphenyliodoniumchloride. A direct relationship between material acidity and growth inhibition of S. mutans was observed.  相似文献   

2.
The purpose of this study was to compare the fluoride release and direct tensile strength at 24 h, 1 month, and 3 months of two conventional glass-ionomers, two visible light-cured resin-modified glass-ionomers, a polyacid resin composite and two resin composites. The results were statistically analysed using ANOVA and Fisher's PLSD at alpha=0.05. The data on fluoride release indicated that the immersion period (24 h, 1 month, and 3 months) significantly influenced the cumulative amount of fluoride released (P < 0.001). The direct tensile strengths after 1 month of storage were significantly higher than those after 24 h or 3 months of storage (P < 0.001). Thus, the cements and resins were not weakened by the loss of fluoride. Conventional glass-ionomer cement showed the lowest direct tensile strength. Resin-modified glass-ionomer behaved in between the resin composites and conventional glass-ionomers in terms of all three testing times, however, the polyacid resin composites most closely resembled the resin composites. The polyacid resin composites had greatly enhanced direct tensile strength, however, this material also reduced the fluoride availability.  相似文献   

3.
OBJECTIVES: An 18-month follow-up clinical trial of one conventional glass-ionomer (HIFI Master Palette), three resin-modified glass-ionomers (Fuji II LC, Vitremer, 3M Exp. 155) and one polyacid-modified resin composite (Dyract) was conducted to evaluate their clinical effectiveness in Class-V cervical lesions. In addition, the interface between dentin and two resin-modified glass-ionomers and one polyacid-modified resin composite was examined by scanning electron microscopy (SEM). METHODS: After evaluation of the restorations immediately following placement (baseline), all patients were subjected to a strict recall schedule with controls at 6, 12 and 18 months. The clinical effectiveness was recorded in terms of retention and marginal integrity, clinical microleakage, caries recurrence, and tooth vitality. A chi 2-test (p < 0.05) was used to test for significant differences between materials. In case of restoration loss or special defects, a replica was made to examine the surface texture and restoration margins by SEM. In vitro, the interface was examined by SEM after an argon-ion-beam etching technique was used to enhance surface relief and disclose interfacial substructures. RESULTS: Retention appeared to be good for all the materials tested. Marginal discrepancies were localized at the incisal enamel and/or the cervical dentin margin, except for the polyacid-modified resin composite that showed most of the defects at the incisal enamel margin. None of the systems could guarantee margins free of microleakage for a long time. In vitro, the type of dentin pre-treatment defines to a great extent the morphology of the resultant interface between dentin and the restorative material tested. SIGNIFICANCE: In this clinical study, the retention rate of the tested materials was good and even excellent for some products. Perfect marginal adaptation deteriorated too fast. The marginal adaptation of the polyacid-modified resin composite at the enamel site would probably have been better by the use of selective enamel or total acid etching. Marginal sealing remains a problem. Future research should concentrate on improving the marginal adaptation and sealing capacities before a broader clinical use can be advocated.  相似文献   

4.

Objective:

The aim of this study was to investigate the adaptation of different types of restorations towards deciduous and young permanent teeth.

Materials and Methods:

Class V cavities were prepared in deciduous and young permanent teeth and filled with different materials (a conventional glass-ionomer, a resin-modified glass-ionomer, a poly-acid-modified composite resin and a conventional composite resin). Specimens were aged in artificial saliva for 1, 6, 12 and 18 months, then examined by SEM.

Results:

The composite resin and the polyacid-modified composite had better marginal adaptation than the glass-ionomers, though microcracks developed in the enamel of the tooth. The glass-ionomers showed inferior marginal quality and durability, but no microcracking of the enamel. The margins of the resin-modified glass-ionomer were slightly superior to the conventional glass-ionomer. Conditioning improved the adaptation of the composite resin, but the type of tooth made little or no difference to the performance of the restorative material. All materials were associated with the formation of crystals in the gaps between the filling and the tooth; the quantity and shape of these crystals varied with the material.

Conclusions:

Resin-based materials are generally better at forming sound, durable margins in deciduous and young permanent teeth than cements, but are associated with microcracks in the enamel. All fluoride-releasing materials give rise to crystalline deposits.  相似文献   

5.
The aims of this study were firstly to investigate the fluoride-releasing characteristics of two composite resins (Tetric and Valux Plus), two polyacid-modified resin composites (Compoglass and Dyract), and conventional glass-ionomer cement (Ceramfil beta). The second aim was to assess the fluoride uptake and subsequent release from the same range of materials. Fifteen discs (6 mm diameter and 1.5 mm height) were prepared for each material. Each disc was immersed in 4 ML of deionized water within a plastic vial. The release of fluoride was measured daily at 1, 2, 3, 4, 5, 15, 30 and 60 days. After daily fluoride release was measured for 60 days, samples were refluoridated in 1000-ppm sodium fluoride (NaF) solutions (pH 6.6) for 10 min and fluoride release was measured daily for a total of 5 days. The release of fluoride from aesthetic restorative materials was measured by using specific fluoride electrode and an ionanalyser. Results were statistically analysed by two-way repeated measure ANOVA and Duncan's multiple range test. The results revealed that all fluoride-containing materials (Ceramfil beta, Compoglass, Dyract, Tetric) released fluoride initially and the release was greatest at the first day. At any time during the test period Ceramfil beta released the most and Valux Plus did not release any detectable fluoride (P < 0.01). Sample exposures to 1000 ppm NaF solution increased the 24-h fluoride release from all fluoride-containing materials. This difference lasted only 24-48 h after exposure. Ceramfil beta had a tendency to recharge not seen with the other materials (P < 0.05).  相似文献   

6.
This study evaluated the effect of cycling various pH demineralizing solutions on the surface hardness, fluoride release and surface properties of restorative materials (Ketac-Fil Plus, Vitremer, Fuji II LC, Freedom and Fluorofil). Thirty specimens of each material were made and the surface hardness measured. The specimens were randomized into five groups according to the pH (4.3; 4.6; 5.0; 5.5 and 6.2) of the demineralizing solution. The specimens were submitted to pH-cycling for 15 days. The specimens remained in the demineralizing solution for six hours and in the remineralizing solution for 18 hours. Then, the surface hardness (SH) was remeasured and the surface properties were assessed. Fluoride release was determined daily. Data from SH and the percentage of alteration in surface hardness were analyzed by analysis of variance (p < 0.05); the Kruskal-Wallis test was performed for the fluoride release results. When hardness was compared, the variation in pH led to a positive correlation for glass ionomer cements and a negative correlation for fluoride release. For polyacid-modified resin composites, a negative correlation was found with regards to fluoride release; no significant correlation was observed for hardness. Surface properties were influenced: an acidic pH led to a greater alteration, except for polyacid-modified resin composites. The pH of the demineralizing solution influenced fluoride release from the tested materials. The pH variation altered hardness and surface properties of glass ionomer cements but did not influence polyacid-modified resin composites.  相似文献   

7.
OBJECTIVE: In this investigation, the in vitro sustained fluoride release, weight loss and erosive wear of three conventional glass ionomer cements (Fuji IX, ChemFil Superior, Ketac-Silver), three resin-modified glass ionomer cements (Fuji II LC, Vitremer, Photac-Fil), a polyacid-modified resin composite (Dyract), and a resin composite control material (Z100) were compared. METHODS: The amounts of fluoride released and weight changes were measured for 12 weeks using a fluoride electrode with TISAB III buffer. After 12 weeks, the specimens were recharged with fluoride using 2 mL of 1.23% APF gel. The recharged specimens were assessed for the amounts of fluoride released and weight changes over another 12 weeks. At the end of the experiment, the specimens were examined with SEM and surface profilometry. RESULTS: All materials, with the exception of Z100, showed the highest initial fluoride release rates during the first 2 days, dropping quickly over 2 weeks and becoming largely stabilised after 5 weeks, in an exponential mode. The recharging of the specimens with APF gel caused a large increase in the amounts of fluoride released during the first 2 days only. Analyses for all cements showed strong correlations between mean weight loss and cumulative fluoride release over a 5-week period following the application of the APF gel. SEM and surface profilometry found that roughness increased from the polyacid-modified resin composite to the conventional glass ionomer cements. CONCLUSIONS: APF gel caused erosive wear of the glass ionomer cements especially, and the wear correlated well with the weight losses. To minimise surface erosion, APF gel should not be used on these cements, especially as the recharging effects are transitory.  相似文献   

8.
A new 2-paste resin-reinforced glass ionomer cement, Fuji Ortho Band Paste Pak (GC Corporation, Tokyo, Japan), for the placement of orthodontic bands, has been developed for easier handling. The aim of this study was to compare the fluoride release and uptake characteristics of this cement with that of 3 others commonly used to cement orthodontic bands: a conventional resin-reinforced glass ionomer cement, a polyacid-modified composite resin, and a conventional glass ionomer cement. Fluoride release was measured during a 28-day period. After the measurement on day 28, experimental samples were exposed to 1000 ppm sodium fluoride solution for 5 minutes, and fluoride release was then measured for 7 days. Initially, the new 2-paste resin-reinforced glass ionomer cement released the greatest amount of fluoride; the polyacid-modified composite resin released the least initially, and it continued to show the lowest values throughout the study. The fluoride uptake and release values of the new 2-paste resin-reinforced glass ionomer cement were statistically significantly higher than those of the conventional resin-reinforced glass ionomer cement or the conventional glass ionomer cement. The new 2-paste resin-reinforced glass ionomer cement might be a good alternative to conventional products for cementing orthodontic bands.  相似文献   

9.
Little has been reported of the relationship of fluoride release and weight loss, and the effects of use of different fluoride agents on restorations, for the new generation of glass ionomer cements. The objectives of this study were to compare fluoride release of fresh and aged specimens of a polyacid-modified resin composite (Dyract), and of three resin-modified glass ionomer cements (Fuji II LC, Photac-Fil, Vitremer); and to correlate fluoride release and weight loss of aged specimens after recharging with three different fluoride agents. All materials showed high initial fluoride release immediately after uptake when using the agents. However, the levels of fluoride release dropped rapidly soon afterwards. Although initial fluoride release was significantly different between Dyract and the three resin-modified glass ionomers, when different fluoride agents were used on aged specimens after recharging, no significant differences were found after the first few hours. Linear regression analyses also showed no correlation between cumulative fluoride release and weight loss. Possible beneficial oral health effects may only be expected by frequent exposure of these materials to fluoride agents.  相似文献   

10.
Resin-modified glass ionomer cements (RMGIC) and polyacid-modified resin composites (PMC, compomers) are two recently introduced material groups supposed to replace traditional cements in operative dentistry. The new restoratives release initially fluoride in different relatively high concentrations, which decrease gradually during the first weeks in vivo. Earlier studies showed a stronger subclinical inflammatory reaction around different conventional tooth colored restorative materials than around intact enamel. The aim of this study was to compare intra-individually the initiation of gingival inflammation around, aged RMGIC, PMC and resin composite restorations. Subgingivally located Class III restorations were placed in 17 patients. Each patient received one of each of the experimental materials. All patients were placed on an oral hygiene regime 1-year after finishing of the restorations. Gingivitis was induced during a one-week period without oral hygiene. The gingival condition was assessed by sampling of gingival crevicular fluid (GCF), registration of the amount of bacterial plaque and by registration of bleeding after gentle probing of the entrance of the gingival sulcus (SBI) on the experimental filling- and control-enamel surfaces at days 0 and 7. No differences were seen in plaque and gingival index scores between the materials at both days. The GCF increased significantly for all surfaces during the experimental gingivitis period. At day 7 significantly lower GCF was sampled around the enamel surfaces. In conclusion, the differences between the materials did not result in measurable differences concerning clinical or subclinical signs of gingivitis. Received: 19 September 1998 / Accepted: 26 November 1998  相似文献   

11.
OBJECTIVES: The purpose of this article was to review the fluoride release and recharge capabilities, and antibacterial properties, of fluoride-releasing dental restoratives, and discuss the current status concerning the prevention or inhibition of caries development and progression. METHODS: Information from original scientific full papers or reviews listed in PubMed (search term: fluoride release AND (restorative OR glass-ionomer OR compomer OR polyacid-modified composite resin OR composite OR amalgam)), published from 1980 to 2004, was included in the review. Papers dealing with endodontic or orthodontic topics were not taken into consideration. Clinical studies concerning secondary caries development were only included when performed in split-mouth design with an observation period of at least three years. RESULTS: Fluoride-containing dental materials show clear differences in the fluoride release and uptake characteristics. Short- and long-term fluoride releases from restoratives are related to their matrices, setting mechanisms and fluoride content and depend on several environmental conditions. Fluoride-releasing materials may act as a fluoride reservoir and may increase the fluoride level in saliva, plaque and dental hard tissues. However, clinical studies exhibited conflicting data as to whether or not these materials significantly prevent or inhibit secondary caries and affect the growth of caries-associated bacteria compared to non-fluoridated restoratives. SIGNIFICANCE: Fluoride release and uptake characteristics depend on the matrices, fillers and fluoride content as well as on the setting mechanisms and environmental conditions of the restoratives. Fluoride-releasing materials, predominantly glass-ionomers and compomers, did show cariostatic properties and may affect bacterial metabolism under simulated cariogenic conditions in vitro. However, it is not proven by prospective clinical studies whether the incidence of secondary caries can be significantly reduced by the fluoride release of restorative materials.  相似文献   

12.
The aim of this study was to compare a new restorative cement intended for posterior restorations, Doxadent, with other types of tooth-colored materials as regards flexural strength and flexural modulus. The new restorative material consists mainly of calcium aluminate. Four hybrid resin composites, one polyacid-modified resin composite, one resin-modified glass ionomer cement, one conventional glass ionomer cement, one zinc phosphate cement, and an experimental version as well as the marketed version of Doxadent were investigated. Flexural strength and flexural modulus were tested according to ISO standard 4049 and determined after 1 d, 1 week, and 2 weeks. Together with the zinc phosphate cement, Doxadent had the lowest flexural strengths (13-22 MPa). The strongest materials were the resin composites and the polyacid-modified resin composite (83-136 MPa). The highest flexural modulus was found for Doxadent (17-19 GPa). The flexural strength of Doxadent decreased significantly from 1 week to 2 weeks, while flexural modulus remained unchanged. The other materials reacted in different ways to prolonged water storage. It can be concluded that the restorative cement Doxadent had significantly lower flexural strength and significantly higher flexural modulus than today's materials used for direct posterior restorations.  相似文献   

13.
In this in vitro study, the fluoride ion release from three more-viscous conventional glass ionomer cements (GICs)--ChemFlex, Fuji IX GP, Ionofil Molar--four polyacid-modified resin composites (compomers)--Dyract AP, Compoglass F, Freedom, F2000--and a hybrid resin composite--Ariston pHc--were compared. The amounts of fluoride release from 3 x 2.7 mm specimens were measured over six weeks using a fluoride ion-selective electrode. After six weeks, the specimens were recharged with 2 ml of 1.23 per cent acidulated phosphate fluoride (APF) gel for four minutes. The recharged specimens were then assessed for the amounts of fluoride release over another six weeks. Statistical analyses were performed using one-way and repeated measures ANOVA. The GICs and Compoglass F showed significantly higher initial fluoride release rates during the first two days (p < 0.05). After the first two days, fluoride release rates from all materials dropped quickly and became essentially stabilized within three-five weeks, in an exponential mode. The recharging of the specimens with APF gel caused a brief, but significant, increase in fluoride release for all materials (p < 0.05), before decreasing to previous comparable rates. Compoglass F released relatively more fluoride, and Ariston pHc relatively less, after APF gel application than before. The lowest total amounts over the study were released by Dyract AP and Freedom. The newer compomers, as well as the newer more-viscous GICs, appear to act as fluoride reservoirs to varying extents.  相似文献   

14.
This study aimed to investigate the effect of topical fluoride application on the acid susceptibility of restorative materials. Four restorative materials were investigated in this study: 2 composite resins (Tetric EvoCeram and Filtek Silorane), a polyacid-modified resin composite (Dyract Extra), and a conventional glass-ionomer cement (Ketac Fil Plus). The samples were treated once with 1 of 8 different fluoride solutions (TiF4, NaF, AmF, and SnF2, each at native pH or pH 4) for 3 min or remained untreated (control). The samples were then eroded by citric acid (pH 2.6) for 5 days (6×1 min daily). Erosive substance loss, surface topographic and compositional changes were investigated using surface profilometry, scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS), respectively, after fluoride pretreatment and after erosion. The results indicate high-concentrated AmF solution at native pH was effective in inhibiting erosion in the conventional glass-ionomer cement and polyacid-modified resin composite.  相似文献   

15.
This study compared the amount and pattern of fluoride release from a new glass-ionomer-based material (nano-ionomer) with other restorative materials and correlated the surface area to volume of nano-sized filler with its capacity to release fluoride in the powder, more quickly increasing the fluoride. The materials evaluated were a nano-ionomer (Ketac N 100), a conventional glass-ionomer cement (GC Fuji II), a resin-modified glass ionomer cement (GC Fuji II LC), a compomer (Dyract F) and a fluoride-releasing resin composite (Tetric N Flow). A resin composite (Synergy Flow) served as the control. Ten specimens were fabricated from each of these materials using a customized metal mold. The fluoride release was measured every 24 hours for the first seven days, and on days 14, 21 and 28, a combination fluoride ion—selective electrode connected to an ion analyzer. The data was analyzed by one-way ANOVA and Tukey HSD test (p=0.05). An initial fluoride “burst effect” was seen with all of the materials, except for the control and compomer. The conventional glass-ionomer cement showed the highest fluoride release on the first three days. The nano-ionomer showed the maximum release of fluoride for the remaining days. A low constant level of fluoride release was seen from the compomer and fluoride-releasing resin composite throughout the study period.  相似文献   

16.
Many fluoride-releasing dental materials are being sold on the basis of their cariostatic properties. However, the amount fluoride release of these materials is still uncertain. This study investigated the fluoride release and uptake characteristics of four flowable resin composites (Heliomolar Flow, Tetric Flow, Wave, Perma Flo), one flowable compomer (Dyract flow), one conventional glass ionomer cement mixed with two different powder/liquid ratios (ChemFlex Syringeable and ChemFlex Condensable), one packable resin composite (SureFil), one ion-releasing composite (Ariston pHc) and one resin-modified glass ionomer cement (Vitremer). Seven discs (6-mm diameter and 1.5-mm height) were prepared for each material. Each disc was immersed in 3.5 ml of deionized water within a plastic vial and stored at 37 degrees C. The deionized water was changed every 24 hours and the release of fluoride was measured for 30 days. At the end of this period, the samples were recharged with 2 ml of 1.23% acidulated phosphate fluoride (APF) gel for four minutes. Then, all samples were reassessed for an additional 10 days. The fluoride release of all samples was measured with a specific fluoride electrode and an ionanalyzer. Statistical analyses were conducted using two-way repeated measure ANOVA and Duncan's multiple range tests. For all tested materials, the greatest fluoride release was observed after the first day of the study (p<0.01) but gradually diminished with time. During the test period, Tetric Flow released the lowest amount of fluoride; however, no statistically significant difference was found from Wave and Heliomolar Flow (p>0.05). Ariston pHc released the highest amount of fluoride, followed by ChemFlex Syringeable, Vitremer and ChemFlex Condensable. There were statistically significant differences among these materials (p<0.05). Fluoride release of all materials were significantly increased after the first day following refluoridation and Ariston pHc released the greatest among all materials (p<0.01). At the end of two days of refluoridation, the fluoride release rate for each material dropped quickly and stabilized within three days.  相似文献   

17.
The properties of polymerizable luting cements   总被引:2,自引:0,他引:2  
The properties of a polyacid-modified composite resin and two resin-modified luting cements have been studied. The polyacid-modified composite resin had the slowest setting reaction and, in this respect, it did not conform to the current international standard for luting cements. The compressive strength of all of the materials was studied after varying periods of storage from 24 h to 1 year. The polyacid-modified composite resin showed a distinct dip in strength at 1 month in all of the storage media, but otherwise it showed no significant variation with either age or storage medium. The resin-modified glass-ionomers showed variation at 24 h with storage medium (deionized water, 0.9% NaCl or 20 mmol dm(-3) lactic acid), but thereafter they showed little variation, until 1 year, when Vitremer luting showed a significant decline in strength in pure water. However, at 24 h and when stored in water, all of the materials had strengths that easily exceeded the minimum requirement of the current standard (70 MPa). They all took up water on storage, with diffusion coefficients ranging from 1.32 to 17. 19x10(-7) cm2 s(-1). These values were found to depend on whether the specimens were stored in pure water or in physiological saline. However, equilibrium water contents varied only slightly between water and saline. The polyacid-modified composite resin, Dyract-Cem, took up the least water, as well as showing the smallest variation in strength with age. By contrast, it was more difficult to mix than the other materials and the high viscosity of the paste led to the formation of voids and other imperfections in the specimens.  相似文献   

18.
The aim of the study was to evaluate the fluoride release of polyacid-modified composite resins (Dyract, Compoglass) submitted to brushing abrasion. Twenty samples were taken from each material and stored in a buffer solution (pH 4.0) for 12 days. Each day, the samples were transferred to a fresh solution. Ten samples of each material were brushed in an automatic tooth-brushing machine (250 strokes, 260-g load) every fourth day. The remaining samples were not subjected to brushing. Fluoride content of the solutions was measured with a fluoride sensitive electrode after the addition of TISAB. Statistical analysis demonstrated significant differences between the two materials with regard to cumulative fluoride release within the 12 days of the experiment. However, no difference was observed between the fluoride release of the brushed samples compared to the unbrushed specimens. This was true for both, the cumulative fluoride release and its release on the day following brushing. It is assumed that regular brushing of the tested materials did not influence their release of fluoride and that brushing of polyacid-modified composite resins does not lead to maintaining their initially high level of fluoride release. Received: 6 May 1999 / Accepted: 21 July 1999  相似文献   

19.
This study assessed the effect of an acidulated phosphate fluoride (APF) gel on the surfaces of eight modern esthetic restorative materials. Five specimens each of three high powder: liquid ratio conventional glass ionomer cements (ChemFlex, Fuji IX GP, Ionofil Molar), four polyacid-modified resin composites (compomers) (Compoglass F, Dyract AP, Freedom, F2000) and an alkaline glass filled resin composite (Ariston pHc) were prepared and immersed at 37 degrees C in 2 mL of artificial saliva for six weeks. The aged specimens were then coated with 1.23% APF gel for four minutes, rinsed and again immersed in artificial saliva for another six weeks. The immersed, fresh specimens for each material were then examined with SEM and surface profilometry. After APF gel application, mean surface roughness (Ra) measurements and SEMs showed that roughness increased significantly, generally from the resin composite and compomers to the conventional glass ionomer cements (p < 0.05).  相似文献   

20.
The purpose of this paper was to evaluate in situ the microhardness of a composite resin, two resin-modified glass-ionomers and two polyacid-modified composite resins at different post-irradiation times. The materials analysed were: Z 100/3M (Z1); Fuji II LC/GC Corporation (Fu); Vitremer/3M (Vi); Freedom/SDI (Fr); and Dyract/Dentsply (Dy). Palatal intra-oral acrylic resin appliances were made for each of the 24 volunteers in the experiment. In each appliance, a specimen of each material was fixed. Microhardness tests were performed at 30 min, 1, 2, 4, 8, 24 and 48 h, 7, 10, 14, 17 and 21 days after initial light-curing. The analysis of variance followed by the Tukey test showed significant differences of microhardness among all materials (Fu < Vi < Fr < Dy < Z1) up to 48 h. From the seventh to the fourteenth day, statistical differences were not found between Freedom and Dyract (Fu < Vi < Fr=Dy < Z1). On the seventeenth and twenty-first days, Vitremer, Freedom and Dyract did not present statistical differences, but differed from Fuji II LC and Z 100 (Fu < Vi=Fr=Dy < Z1). The polynomial regression showed an increase of microhardness over time for the glass-ionomers/composite resin hybrid materials, although there were differences of microhardness among these materials. There was no significant changes in microhardness levels for the composite resin over time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号