首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Vascularized composite allotransplantation of bone is a possible alternative treatment for large osseous defects but requires life-long immunosuppression. Surgical induction of autogenous neo-angiogenic circulation maintains transplant viability without this requirement, providing encouraging results in small animal models [1–3]. A preliminary feasibility study in a swine tibia model demonstrated similar findings [4, 5]. This study in swine tibial allotransplantation tests its applicability in a pre-clinical large animal model. Previously, we have demonstrated bone vascularized composite allotransplantation (VCA) survival was not the result of induction of tolerance nor an incompetent immune system [1]. Fourteen tibia vascularized bone allotransplants were microsurgically transplanted orthotopically to reconstruct size-matched tibial defects in Yucatan miniature swine. Two weeks of immunosuppression was used to maintain allotransplant pedicle patency during angiogenesis from a simultaneously implanted autogenous arteriovenous bundle. The implanted arteriovenous bundle was patent in group 1 and ligated in group 2 (a neo-angiogenesis control). At twenty weeks, we quantified the neo-angiogenesis and correlated it with transplant viability, bone remodeling, and gene expression. All patent arteriovenous bundles maintained patency throughout the survival period. Micro-angiographic, osteocyte cell count and bone remodeling parameters were significantly higher than controls due to the formation of a neo-angiogenic autogenous circulation. Analysis of gene expression found maintained osteoblastic and osteoclastic activity as well as a significant increase in expression of endothelial growth factor-like 6 (EGFL-6) in the patent arteriovenous bundle group. Vascularized composite allotransplants of swine tibia maintained viability and actively remodeled over 20 weeks when short-term immunosuppression is combined with simultaneous autogenous neo-angiogenesis. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:288-296, 2020  相似文献   

2.
We have demonstrated survival of living allogeneic bone without long‐term immunosuppression using short‐term immunosuppression and simultaneous creation of an autogenous neoagiogenic circulation. In this study, bone morphogenic protein‐2 (rhBMP‐2), and/or vascular endothelial growth factor (VEGF), were used to augment this process. Femoral diaphyseal bone was transplanted heterotopically from 46 Dark Agouti to 46 Lewis rats. Microvascular repair of the allotransplant nutrient pedicle was combined with intra‐medullary implantation of an autogenous saphenous arteriovenous (AV) bundle and biodegradable microspheres containing buffer (control), rhBMP‐2 or rhBMP‐2 + VEGF. FK‐506 given daily for 14 days maintained nutrient pedicle flow during angiogenesis. After an 18 weeks survival period, we measured angiogenesis (capillary density) from the AV bundle and cortical bone blood flow. Both measures were greater in the combined (rhBMP‐2 + VEGF) group than rhBMP‐2 and control groups (p < 0.05). Osteoblast counts were also higher in the rhBMP‐2 + VEGF group (p < 0.05). A trend towards greater bone formation was seen in both rhBMP2 + VGF and rhBMP2 groups as compared to controls (p = 0.059). Local administration of VEGF and rhBMP‐2 augments angiogenesis, osteoblastic activity and bone blood flow from implanted blood vessels of donor origin in vascularized bone allografts. © 2012 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 31: 561–566, 2013  相似文献   

3.
Purpose: We have previously described a means to maintain bone allotransplant viability, without long‐term immune modulation, replacing allogenic bone vasculature with autogenous vessels. A rabbit model for whole knee joint transplantation was developed and tested using the same methodology, initially as an autotransplant. Materials/Methods: Knee joints of eight New Zealand White rabbits were elevated on a popliteal vessel pedicle to evaluate limb viability in a nonsurvival study. Ten additional joints were elevated and replaced orthotopically in a fashion identical to allotransplantation, obviating only microsurgical repairs and immunosuppression. A superficial inferior epigastric facial (SIEF) flap and a saphenous arteriovenous (AV) bundle were introduced into the femur and tibia respectively, generating a neoangiogenic bone circulation. In allogenic transplantation, this step maintains viability after cessation of immunosuppression. Sixteen weeks later, X‐rays, microangiography, histology, histomorphometry, and biomechanical analysis were performed. Results: Limb viability was preserved in the initial eight animals. Both soft tissue and bone healing occurred in 10 orthotopic transplants. Surgical angiogenesis from the SIEF flap and AV bundle was always present. Bone and joint viability was maintained, with demonstrable new bone formation. Bone strength was less than the opposite side. Arthrosis and joint contractures were frequent. Conclusion: We have developed a rabbit knee joint model and evaluation methods suitable for subsequent studies of whole joint allotransplantation. © 2011 Wiley Periodicals, Inc. Microsurgery, 2012.  相似文献   

4.
A novel method of living bone allotransplantation combining microvascular repair of the nutrient circulation, implantation of host-derived arteriovenous (AV) bundles, and short-term immunosuppression is described. We hypothesized that neoangiogenesis from the implanted vessels would maintain graft viability and circulation after withdrawal of FK506 (Tacrolimus) immunosuppression. Vascularized femoral transplantation was performed between DA and PVG rats. In addition to microsurgical pedicle anastomoses, a saphenous AV bundle from the recipient animal was implanted in the medullary space. Ninety-seven rats were randomly allocated to groups differing in immunosuppression and AV bundle patency. Implanted vessels significantly improved capillary density and bone blood flow in nonimmunosuppressed and immmunosuppressed groups, respectively. A lower incidence of spontaneous AV bundle thrombosis was found with Tacrolimus treatment. More viable osteocytes were seen at 4 weeks when the AV bundle was patent. Further investigations may confirm host-derived neoangiogenesis as an alternative to tolerance induction or immunosuppression in bone allotransplantation.  相似文献   

5.
Cryopreserved bone allografts (CBA) used to reconstruct segmental bone defects provide immediate structural stability, but are vulnerable to infection, non‐union and late stress fracture as the majority of the allograft remains largely avascular. We sought to improve the bone vascularity and bone formation of CBAs by surgical angiogenesis with an implanted arteriovenous (AV) bundle, using a porcine tibial defect model. Cryopreserved tibial bone allografts were transplanted in swine leukocyte antigen (SLA) mismatched Yucatan minipigs to reconstruct a 3.5 cm segmental tibial defect. A cranial tibial AV‐bundle was placed within its intramedullary canal to induce angiogenesis. The AV bundle was patent in eight pigs and ligated in a control group of eight pigs. At 20 weeks neo‐angiogenesis was evaluated by micro‐angiography. Bone formation was measured by quantitative histomorphometry and micro‐computed tomography. Seven of eight AV‐bundles in the revascularized group were patent. One had thrombosed due to allograft displacement. Total vascular volume was higher in the revascularized allografts compared to the ligated group (p = 0.015). Revascularized allografts had increased levels of bone formation on the allograft endosteal surface compared to the ligated control group (p = 0.05). Surgical angiogenesis of porcine tibial CBAs by intramedullary implantation of an AV‐bundle creates an enhanced autogenous neoangiogenic circulation and accelerates active bone formation on allograft endosteal surfaces. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1698–1708, 2019  相似文献   

6.
BackgroundTransplantation of living allogeneic bone segments may permit reconstruction of large defects, particularly if viability is maintained without immunosuppression. Development of a new autogenous osseous blood supply accomplishes this goal in rodent experimental models. This study evaluates potential systemic and local inflammatory responses to this angiogenesis in a large-animal model.MethodsVascularized allogeneic tibia segments were transplanted orthotopically into matched tibial defects in Yucatan minipigs. Microvascular anastomoses of bone nutrient artery and vein were supplemented by intramedullary placement of an autogenous arteriovenous (AV) bundle in group 1. Group 2 served as a no-angiogenesis control. A 3-drug immunosuppression regimen was withdrawn after 2 weeks. During the 20-week survival period, periodic leukocyte counts and inflammatory cytokine levels were measured. Thereafter, osteocyte survival was quantified and transplant rejection graded by histologic examination and quantitative real-time polymerase chain reaction of immunologic markers.ResultsBoth groups developed an initial systemic response, which resolved after 4 to 6 weeks. No differences were seen in blood cytokine levels. Interleukin 2 expression was diminished in group 1 tibiae. As expected, nutrient pedicles had thrombosed without sustained immunosuppression, occluded by intimal hyperplasia. In group 1, angiogenesis from the autogenous AV bundle resulted in significantly less osteonecrosis (P = .04) and fibrosis (P = .02) than group 2 allotransplants.ConclusionsSystemic immune responses to large-bone allotransplants were not increased by generation of an autogenous osseous blood supply within porcine tibial bone allotransplants. Implanted AV bundles diminished inflammation and fibrosis and improved bone viability when compared to no-angiogenesis controls.  相似文献   

7.
Mechanisms underlying successful composite tissue transplantation must include an analysis of transplant chimerism, which is little studied, particularly in calcified tissue. We have developed a new method enabling determination of lineage of selected cells in our model of vascularized bone allotransplantation. Vascularized femoral allotransplantation was performed from female Dark Agouti (DA) donor rats to male Piebald Virol Glaxo (PVG) recipients, representing a major histocompatibility mismatch. Four groups differed in use of immunosuppression (±2 weeks Tacrolimus) and surgical revascularization, by implantation of either a patent or a ligated saphenous arteriovenous (AV) bundle. Results were assessed at 18 weeks. Bone blood flow was measured by the hydrogen washout technique and transverse specimens were prepared for histology. Real‐time PCR was performed on DNA from laser capture microdissected cortical bone regions to determine the extent of chimerism. To do so, we analyzed the relative expression ratio of the sex‐determining region Y (Sry) gene, specific only for recipient male rat DNA, to the cyclophilin housekeeper gene. Substantial transplant chimerism was seen in cortical bone of all groups (range 77–97%). Rats without immunosuppression and with a patent AV bundle revealed significantly higher chimerism than those with immunosuppression and a ligated AV bundle, which maintained transplant cell viability. We describe a new method to study the extent of chimerism in rat vascularized bone allotransplants, including a sex‐mismatched transplantation model, laser capture microdissection of selected bone regions, and calculation of the relative expression ratio. © 2009 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 27:1514–1520, 2009  相似文献   

8.
We have previously shown experimental transplantation of living allogeneic bone to be feasible without long‐term immunosuppression by development of a recipient‐derived neoangiogenic circulation within bone. In this study, we examine the role of angiogenic cytokine delivery with biodegradable microspheres to enhance this process. Microsurgical femoral allotransplantation was performed from Dark Agouti to Piebald Virol Glaxo rats. Poly(D,L‐lactide‐co‐glycolide) microspheres loaded with buffer, basic fibroblast growth factor (FGF), vascular endothelial growth factor (VEGF), or both, were inserted intramedullarly along with a recipient‐derived arteriovenous (a/v) bundle. FK‐506 was administered daily for 14 days, then discontinued. At 28 days, bone blood flow was measured using hydrogen washout. Microangiography, histologic, and histomorphometric analyses were performed. Capillary density was greater in the FGF+VEGF group (35.1%) than control (13.9%) (p < 0.05), and a linear trend was found from control, FGF, VEGF, to FGF+VEGF (p < 0.005). Bone formation rates were greater with VEGF (p < 0.01) and FGF+VEGF (p < 0.05). VEGF or FGF alone increased blood flow more than when combined. Histology rejection grading was low in all grafts. Local administration of vascular and fibroblast growth factors augments angiogenesis, bone formation, and bone blood flow from implanted blood vessels of donor origin in vascularized bone allografts after removal of immunosuppression. © 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 28:1015–1021, 2010  相似文献   

9.
Currently available methods to reconstruct large skeletal defects have limitations. These include nonunion and stress fractures in structural allografts, and inability to match the size, shape, and/or strength of most recipient sites using vascularized fibular autografts. Prosthetic diaphyseal replacements may loosen or produce periprosthetic fractures. Transplantation of living allogenic bone would enable matching donor bone to the recipient site, combined with the desirable healing and remodeling properties of living bone. We propose a novel method by which the transplantation of such tissue might be done without the risks of life-long immunosuppression, using surgical neoangiogenesis to develop a new host-derived osseous blood supply. We performed vascularized femoral allografts from 86 female Dark Agouti donor rats to male Piebald Virol Glaxo recipients across a major histocompatibility (MHC) barrier. In addition to microvascular reconstruction of the nutrient vessel, we surgically implanted a host arteriovenous (AV) bundle into the medullary canal to promote host vessel neoangiogenesis. Independent variables included patency of the implanted AV bundle, and use of 2 weeks' FK-506 immunosuppression. After 18 weeks, bone blood flow was measured, and neoangiogenic capillary density quantified. Bone blood flow and capillary density were significantly greater in transiently immunosuppressed recipients with a patent AV pedicle. We conclude that neoangiogenesis from implanted host-derived AV-bundles, combined with short-term immunosuppression maintains blood flow in vascularized bone allografts, and offers potential for clinical application.  相似文献   

10.
Chung Y‐G, Bishop AT, Giessler GA, Suzuki O, Platt JL, Pelzer M, Friedrich PF, Kremer T. Surgical angiogenesis: a new approach to maintain osseous viability in xenotransplantation. Xenotransplantation 2010; 17: 38–47. © 2010 John Wiley & Sons A/S. Abstract: Background: Large segmental osseous defects are challenging clinical problems. Current reconstructive methods, using non‐viable allografts, vascularized autografts or prostheses have significant rates of serious complications and failure. These include infection, stress fracture and non‐union (frozen structural allogenic bone); loosening and implant failure (prosthetic replacement); limited availability, poor match of size and shape and donor site morbidity (vascularized autograft bone). In the future, microvascular transplantation of living allogenic or xenogenic bone could solve some of these issues, combining the advantages of living bone autografts (capability of primary osseous healing, remodeling, and fracture resistance) with the ability to match size and shape, provide immediate stability and avoid donor site morbidity. Xenotransplants would be particularly attractive, as they could be readily available, if long‐term bone survival could be achieved without unacceptable morbidity. Here, we present a preliminary study to evaluate a new and unique method to maintain xenogenic bone circulation without need for long‐term immune modulation that depends upon generation of a neo‐angiogenic circulation within the transplanted bone from recipient‐derived vessels. Thus, only short‐term immunosuppression would be required to achieve bone survival. Methods: One hundred and forty‐one hamster femora were microsurgically transplanted to rats, restoring nutrient vessel circulation with standard microvascular anastomoses. At the same time, a host‐derived arteriovenous bundle (AVB) was placed within the medullary canal. Two independent variables were evaluated: use of tacrolimus/cyclophosmamid immunosuppression (IS) and patency of the implanted AVB. Rats were therefore randomized to four groups; group 1—no IS + patent AVB; group 2—no IS + ligated AVB; group 3—IS + patent AVB; group 4—IS + ligated AVB. Rats were sacrificed after 1 or 2 weeks. We evaluated bone blood flow (microsphere entrapment), neoangiogenesis (microangiography and quantification of capillary density), bone necrosis rate (osteocyte counts) and nutrient pedicle rejection (microsurgical anastomotic patency). Statistical Analysis was performed with two‐way ANOVA with Bonferroni adjustment. Differences were considered significant when P < 0.05. Results: Capillary density was significantly increased with a patent intramedullary AVB (groups 1/3) compared to groups with ligated AVBs (groups 3/4). Capillary sprouting was predominantly restricted to the endosteal layer. Most nutrient pedicles (78.7%) stayed patent in groups with IS (groups 3 and 4). Consequently, bone blood flow was significanty higher in groups 3 and 4 compared to groups 1 and 2. Similary, a patent AV bundle improved flow in group 1 when compared to group 2. The bone necrosis rate was not influenced by the presence of patent AVBs but was significantly reduced in groups 3 and 4. Conclusions: Surgical angiogenesis occurs when patent arteriovenous bundles are placed in the medullary canal of xenogenic bone and leads to increased bone blood flow. Bone viability was not significantly influenced by neoangiogenesis. Although capillary sprouting was restricted to the endosteal layer in this short term study, more complete cortical revascularization might be observed in a long‐term study. Such a study should further evaluate whether these new vessels supply sufficient blood flow to maintain long‐term bone viability and allow remodeling.  相似文献   

11.
Frozen bone allografts are susceptible to nonunion and fracture due to limited revascularization and incomplete bone remodeling. We aim to revascularize bone allografts by combining angiogenesis from implanted arteriovenous (AV) bundles with delivery of fibroblast growth factor (FGF‐2) and/or vascular endothelial growth factor (VEGF) via biodegradable microspheres. Rat femoral diaphyseal allografts were frozen at ?80°C, and heterotopically transplanted over a major histocompatibility mismatch. A saphenous AV bundle was inserted into the intramedullary canal. Growth factor was encapsulated into microspheres and inserted into the graft, providing localized and sustained drug release. Forty rats were included in four groups: (I) phosphate‐buffered saline, (II) FGF‐2, (III) VEGF, and (IV) FGF‐2 + VEGF. At 4 weeks, angiogenesis was measured by the hydrogen washout method and microangiography. Bone remodeling was evaluated by quantitative histomorphometry and histology. Bone blood flow was significantly higher in groups III and IV compared to control (p < 0.05). Similarly, bone remodeling was higher in VEGF groups. FGF‐2 had little effect on allograft revascularization. No synergistic effect was observed with use of both cytokines. Delivered in microspheres, VEGF proved to be a potent angiogenic cytokine, increasing cortical bone blood flow and new bone formation in frozen allografts revascularized with an implanted AV bundle. © 2011 Orthopaedic Research Society Published by Wiley Periodicals, Inc. J Orthop Res 29: 1431–1436, 2011  相似文献   

12.
Large conventional bone allografts are susceptible to fracture and nonunion due to incomplete revascularization and insufficient bone remodeling. We aim to improve bone blood flow and bone remodeling using surgical angiogenesis combined with delivery of fibroblast growth factor (FGF‐2) and vascular endothelial growth factor (VEGF). Frozen femoral allografts were heterotopically transplanted in a rat model. The saphenous arteriovenous bundle was implanted within the graft medullary canal. Simultaneously, biodegradable microspheres containing phosphate buffered saline (control), FGF‐2, VEGF, or FGF‐2 + VEGF were placed within the graft. Rats were sacrificed at 4 and 18 weeks. Angiogenesis was determined by quantifying bone capillary density and measuring cortical bone blood flow. Bone remodeling was assessed by histology, histomorphometry, and alkaline phosphatase activity. VEGF significantly increased angiogenesis and bone remodeling at 4 and 18 weeks. FGF‐2 did not elicit a strong angiogenic or osteogenic response. No synergistic effect of FGF‐2 + VEGF was observed. VEGF delivered in microspheres had superior long‐term effect on angiogenesis and osteogenesis in surgically revascularized frozen bone structural allografts as compared to FGF‐2 or FGF‐2 + VEGF. Continuous and localized delivery of VEGF by microencapsulation has promising clinical potential by inducing a durable angiogenic and osteogenic response in frozen allografts. © 2012 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 30:1556–1562, 2012  相似文献   

13.
The first vascularized tracheal allotransplantation was performed in 2008. Immunosuppression was stopped after forearm implantation and grafting of the recipient mucosa to the internal site of the transplant. Nine months after forearm implantation, the allograft was transplanted to the tracheal defect on the radial blood vessels. Since then, four additional patients have undergone tracheal allotransplantation, three (patients 2–4) for long‐segment stenosis and one (patient 5) for a low‐grade chondrosarcoma. Our goal was to reduce the time between forearm implantation and orthotopic transplantation and to determine a protocol for safe withdrawal of immunosuppressive therapy. Following forearm implantation, all transplants became fully revascularized over 2 months. Withdrawal of immunosuppression began 4 months after graft implantation and was completed within 6 weeks in cases 2–4. Repopulation of the mucosal lining by recipient cells, to compensate for the necrosis of the donor mucosa, was not complete. This resulted in partial loss of the allotransplant in patients 2–4. In patient 5, additional measures promoting recipient cell repopulation were made. The trachea may be used as a composite tissue allotransplant after heterotopic revascularization in the forearm. Measures to maximize recipient cell repopulation may be important in maintaining the viability of the transplant after cessation of immunosuppression.  相似文献   

14.
Vascularized bone marrow transplantation (VBMT) appears to promote tolerance for vascularized composite allotransplantation (VCA). However, it is unclear whether VBMT is critical for tolerance induction and, if so, whether there is a finite amount of VCA that VBMT can support. We investigated this with a novel VCA combined flap model incorporating full‐thickness hemiabdominal wall and hindlimb osteomyocutaneous (HAW/HLOMC) flaps. Effects of allograft mass (AM) and VBMT on VCA outcome were studied by comparing HAW/HLOMC VCAs with fully MHC‐mismatched BN donors and Lewis recipients. Control groups did not receive treatments following transplantation. Treatment groups received a short course of cyclosporine A (CsA), antilymphocyte serum, and three doses of adipocyte‐derived stem cells (POD 1, 8, and 15). The results showed that all flaps in control allogeneic groups rejected soon after VCAs. Treatment significantly prolonged allograft survival. Three of eight recipients in HLOMC treatment group had allografts survive long‐term and developed donor‐specific tolerance. Significantly higher peripheral chimerism was observed in HLOMC than other groups. It is concluded that the relative amount of AM to VBMT is a critical factor influencing long‐term allograft survival. Accordingly, VBMT content compared with VCA mass may be an important consideration for VCA in humans.  相似文献   

15.
Vascularized composite allograft (VCA) transplantation (also referred to as composite tissue allotransplantation) has demonstrated clinical success in cases of hand, arm and face transplantation despite prior belief that skin provides an insurmountable barrier to allograft rejection. These overall good outcomes are facilitated by substantial immunosuppressive requirements in otherwise healthy patients, yet still demonstrate frequent rejection episodes. We developed a nonhuman primate model of facial segment allotransplantation to elucidate the unique pathophysiology and immunosuppressive requirements of VCA with addition of concomitant vascularized bone marrow (VBM). Heterotopically transplanted facial segment VCA with VBM treated only with tacrolimus and mycophenolate mofetil (MMF) demonstrated prolonged rejection‐free survival, compared to VCA without VBM that demonstrated early rejection episodes and graft loss. While VCA with VBM demonstrated sporadic macrochimerism, acute and chronic rejection and graft loss occurred after discontinuation of immunosuppression. These data support an immunomodulatory role of VBM in VCA that reduces immunosuppressive requirements while providing improved outcomes.  相似文献   

16.
Previous papers have shown surgical neoangiogenesis to allow long‐term bone allotransplant survival without immunosuppression. Whole joint composite tissue allotransplants (CTA) might be treated similarly. A novel rat knee CTA model is described for further study of the roles of neoangiogensis in joint allotransplant survival and adjustment of immunosuppression. Microvascular knee CTA was performed in nine rats across a major histocompatibility barrier with both pedicle repair and implantation of host‐derived arteriovenous (“a/v”) bundles. In the control group (N = 3), the pedicle was ligated. Immunosuppression was given daily. Joint mobility, weight‐bearing, pedicle patency, bone blood flow, and sprouting from a/v bundles were assessed at 3 weeks. All but the nonrevascularized control knees had full passive motion and full weight bearing. One nutrient pedicle thrombosed prematurely. Blood flow was measurable in transplants with patent nutrient pedicles. Implanted a/v bundles produced new vascular networks on angiography. This new rat microsurgical model permits further study of joint allotransplantation. Patency of both pedicles and implanted a/v bundles was maintained, laying a foundation for future studies. © 2010 Wiley‐Liss, Inc. Microsurgery, 2010.  相似文献   

17.
Current pharmacologic regimens in transplantation prevent allograft rejection through systemic recipient immunosuppression but are associated with severe morbidity and mortality. The ultimate goal of transplantation is the prevention of allograft rejection while maintaining recipient immunocompetence. We hypothesized that allografts could be engineered ex vivo (after allotransplant procurement but before transplantation) by using mesenchymal stem cell–based therapy to generate localized immunomodulation without affecting systemic recipient immunocompetence. To this end, we evaluated the therapeutic efficacy of bone marrow–derived mesenchymal stem cells in vitro and activated them toward an immunomodulatory fate by priming in inflammatory or hypoxic microenvironments. Using an established rat hindlimb model for allotransplantation, we were able to significantly prolong rejection‐free allograft survival with a single perioperative ex vivo infusion of bone marrow–derived mesenchymal stem cells through the allograft vasculature, in the absence of long‐term pharmacologic immunosuppression. Critically, transplanted rats rejected a second, nonengineered skin graft from the same donor species to the contralateral limb at a later date, demonstrating that recipient systemic immunocompetence remained intact. This study represents a novel approach in transplant immunology and highlights the significant therapeutic opportunity of the ex vivo period in transplant engineering.  相似文献   

18.
VEGF-promoted surgical angiogenesis in necrotic bone   总被引:3,自引:0,他引:3  
The ability of vascular endothelial growth factor (VEGF) to accelerate neoangiogenesis from implanted arterovenous (AV) bundles in necrotic bone was evaluated. A saphenous AV bundle was placed in a necrotic segment of rabbit ilium. In group II, VEGF (100 ng/h x 3 days) was administered by continuous infusion. Bone blood flow was measured with radioactive-labeled microspheres, and capillary density was determined by microangiography combined with Sp?lteholtz bone clearing at 1, 2, and 4 weeks. Neovascularization was observed along the implanted vascular bundle in both groups. One week after surgery, bone blood flow and vessel area were significantly higher in VEGF-treated animals (P < 0.05). No significant difference was observed at later times. Direct VEGF administration increased surgical angiogenesis and improved blood flow and neovascularization in necrotic bone 1 week after AV bundle implantation. Thereafter, a robust angiogenic response from the AV bundle was seen in both groups.  相似文献   

19.
Fracture healing requires coordinated coupling between osteogenesis and angiogenesis in which vascular endothelial growth factor (VEGF) plays a key role. We hypothesized that targeted over‐expression of angiogenic and osteogenic factors within the fracture would promote bone healing by inducing development of new blood vessels and stimulating/affecting proliferation, survival, and activity of skeletal cells. Using a cell‐based method of gene transfer, without viral vector, 5.0 × 106 fibroblasts transfected with VEGF were delivered to a 10‐mm bone defect in rabbit tibiae (Group 1) (n = 9); control groups were treated with fibroblasts (Group 2) (n = 7), or saline (Group 3) (n = 7) only. After 12 weeks, eight tibial fractures healed in Group 1, compared to four each in Groups 2 and 3. In Group 1, ossification was seen across the entire defect; in Groups 2 and 3, the defects were fibrous and sparsely ossified. Group 1 had more positively stained (CD31) vessels than Groups 2 and 3. MicroCT 3‐D showed complete bridging of the new bone for Group 1, but incomplete healing for Groups 2 and 3. MicroCT bone structural parameters showed significant differences between VEGF treatment and control groups (p < 0.05). These results indicate that the cell‐based VEGF gene therapy has significant angiogenic and osteogenic effects to enhance healing of a segmental defect in the long bone of rabbits. © 2008 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 27:8–14, 2009  相似文献   

20.
Vascularized composite tissue allotransplantation is a viable treatment option for injuries and defects that involve multiple layers of functional tissue. In the past 15 yr, more than 150 vascularized composite allotransplantation (VCA) surgeries have been reported for various anatomic locations including – but not limited to – trachea, larynx, abdominal wall, face, and upper and lower extremities. VCA can achieve a level of esthetic and functional restoration that is currently unattainable using conventional reconstructive techniques. Although the risks of lifelong immunosuppression continue to be an important factor when evaluating the benefits of VCA, reported short‐ and long‐term outcomes have been excellent, thus far. Acute rejections are common in the early post‐operative period, and immunosuppression‐related side effects have been manageable. A multidisciplinary approach to the management of VCA has proven successful. Reports of long‐term graft losses have been rare, while several factors may play a role in the pathophysiology of chronic graft deterioration in VCA. Alternative approaches to immunosuppression such as cellular therapies and immunomodulation hold promise, although their role is so far not defined. Experimental protocols for VCA are currently being explored. Moving forward, it will be exciting to see whether VCA‐specific aspects of allorecognition and immune responses will be able to help facilitate tolerance induction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号