首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Nanoparticles (NPs) have recently emerged as an inhalable pollutant, owing to their applications, aluminum‐based NPs (Al‐NPs) have been prioritized for toxicity testing. In the current study, we compared the pulmonary biopersistence and subsequent toxicity of four different types of Al‐NPs (two rod‐type aluminum oxide NPs [AlONPs] with different aspect ratios [short (S)‐ and long (L)‐AlONPs], spherical aluminum cerium oxide NPs [AlCeO3, AlCeONPs] and spherical γ‐aluminum oxide hydroxide nanoparticles [AlOOHNPs]) 13weeks after a single intratracheal instillation, considering the importance of their properties in their toxicity. We found that the pulmonary biopersistence of Al‐NPs was strengthened by a high aspect ratio in the rod‐type AlONPs and by the presence of hydroxyl groups in the spherical‐type Al‐NPs. The highest toxicity was observed in the mice treated with AlOOHNPs, which showed low biostability. More importantly, we identified that the commercially available AlCeONPs were Al2O3‐coated CeO2 NPs, but not AlCeO3 NPs, although they have been sold under the trade name of AlCeONPs. In conclusion, the aspect ratio and biostability may be important factors in the determination of the biopersistence of NPs and the subsequent biological response. In addition, the physicochemical properties of NPs should be examined in detail before their release into the market to prevent unexpected adverse health effects.  相似文献   

2.
With the rapid development of the nano‐industry, concerns about their potential adverse health effects have been raised. Thus, ranking accurately their toxicity and prioritizing for in vivo testing through in vitro toxicity test is needed. In this study, we used three types of synthesized aluminum oxide nanoparticles (AlONPs): γ‐aluminum oxide hydroxide nanoparticles (γ‐AlOHNPs), γ‐ and α‐AlONPs. All three AlONPs were spherical, and the surface area was the greatest for γ‐AlONPs, followed by the α‐AlONPs and γ‐AlOHNPs. In mice, γ‐AlOHNPs accumulated the most 24 h after a single oral dose. Additionally, the decreased number of white blood cells (WBC), the increased ratio of neutrophils and the enhanced secretion of interleukin (IL)‐8 were observed in the blood of mice dosed with γ‐AlOHNPs (10 mg kg?1). We also compared their toxicity using four different in vitro test methods using six cell lines, which were derived from their potential target organs, BEAS‐2B (lung), Chang (liver), HACAT (skin), H9C2 (heart), T98G (brain) and HEK‐293 (kidney). The results showed γ‐AlOHNPs induced the greatest toxicity. Moreover, separation of particles was observed in a transmission electron microscope (TEM) image of cells treated with γ‐AlOHNPs, but not γ‐AlONPs or α‐AlONPs. In conclusion, our results suggest that the accumulation and toxicity of AlONPs are stronger in γ‐AlOHNPs compared with γ‐AlONPs and α‐AlONPs owing their low stability within biological system, and the presence of hydroxyl group may be an important factor in determining the distribution and toxicity of spherical AlONPs. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Aluminium oxide nanoparticles (Al2O3 NPs) are increasingly used in diverse applications that has raised concern about their safety. Recent studies suggested that Al2O3 NPs induced oxidative stress may be the cause of toxicity in algae, Ceriodaphnia dubia, Caenorhabditis elegans and Danio rerio. However, there is paucity on the toxicity of Al2O3 NPs on fish cell lines. The current study was aimed to investigate Al2O3 NPs induced cytotoxicity, oxidative stress and morphological abnormality of Chinnok salmon cells (CHSE‐214). A dose‐dependent decline in cell viability was observed in CHSE‐214 cells exposed to Al2O3 NPs. Oxidative stress induced by Al2O3 NPs in CHSE‐214 cells has resulted in the significant reduction of superoxide dismutase, catalase and glutathione in a dose‐dependent manner. However, a significant increase in glutathione sulfo‐transferase and lipid peroxidation was observed in CHSE‐214 cells exposed to Al2O3 NPs in a dose‐dependent manner. Significant morphological changes in CHSE‐214 cells were observed when exposed to Al2O3 NPs at 6, 12 and 24 h. The cells started to detach and appear spherical at 6 h followed by loss of cellular contents resulting in the shrinking of the cells. At 24 h, the cells started to disintegrate and resulted in cell death. Our data demonstrate that Al2O3 NPs induce cytotoxicity and oxidative stress in a dose‐dependent manner in CHSE‐214 cells. Thus, our current work may serve as a base‐line study for future evaluation of toxicity studies using CHSE‐214 cells. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
In this study, Artemia salina (crustacean filter feeders) larvae were used as a test model to investigate the toxicity of aluminum oxide nanoparticles (Al2O3 NPs) on marine microorganisms. The uptake, toxicity, and elimination of α‐Al2O3 (50 nm and 3.5 μm) and γ‐Al2O3 (5 nm and 0.4 μm) NPs were studied. Twenty‐four and ninety‐six hour exposures of different concentrations of Al2O3 NPs to Artemia larvae were conducted in a seawater medium. When suspended in water, Al2O3 NPs aggregated substantially with the sizes ranging from 6.3 nm to >0.3 µm for spherical NPs and from 250 to 756 nm for rod‐shaped NPs. The phase contrast microscope images showed that NPs deposited inside the guts as aggregates. Inductively coupled plasma mass spectrometry analysis showed that large particles (3.5 μm α‐Al2O3) were not taken up by Artemia, whereas fine NPs (0.4 μm γ‐Al2O3) and ultra‐fine NPs (5 nm γ‐Al2O3 and 50 nm α‐Al2O3) accumulated substantially. Differences in toxicity were detected as changing with NP size and morphology. The malondialdehyde levels indicated that smaller γ‐Al2O3 (5 nm) NPs were more toxic than larger γ‐Al2O3 (0.4 µm) particulates in 96 h. The highest mortality was measured as 34% in 96 h for γ‐Al2O3 NPs (5 nm) at 100 mg/L (LC50 > 100 mg/L). γ‐Al2O3 NPs were more toxic than α‐Al2O3 NPs at all conditions. © 2013 Wiley Periodicals, Inc. Environ Toxicol 30: 109–118, 2015.  相似文献   

5.
ABSTRACT

The objective of this study was to examine the cytotoxic effects of binary mixtures of Al2O3 and ZnO NPs using mouse fibroblast cells (L929) and human bronchial epithelial cells (BEAS-2B) as biological test systems. The synergistic, additive, or antagonistic behavior of the binary mixture was also investigated. In toxicity experiments, cellular morphology, mitochondrial function (MTT assay), apoptosis, nuclear size and shape, clonogenic assays, and damage based upon oxidative stress parameters were assessed under control and NPs exposure conditions. Although Abbott modeling results provided no clear evidence of the binary mixture of Al2O3 and ZnO NPs exhibiting synergistic toxicity, some specific assays such as apoptosis, nuclear size and shape, clonogenic assay, activities of antioxidant enzymatic enzymes catalase, superoxide dismutase, and levels of glutathione resulted in enhanced toxicity for the mixtures with 1 and 1.75 toxic units (TU) toward both cell types. Data demonstrated that co-presence of Al2O3 and ZnO NPs in the same environment might lead to more realistic environmental conditions. Our findings indicate cytotoxicity of binary mixtures of Al2O3 and ZnO NPs produced greater effects compared to toxicity of either individual compound.  相似文献   

6.
The exigency of semiconductor and super capacitor tungsten oxide nanoparticles (WO3 NPs) is increasing in various sectors. However, limited information on their toxicity and biological interactions are available. Hence, we explored the underlying mechanisms of toxicity induced by WO3 NPs and their microparticles (MPs) using different concentrations (0–300 μg ml–1) in human lung carcinoma (A549) cells. The mean size of WO3 NPs and MPs by transmission electron microscopy was 53.84 nm and 3.88 μm, respectively. WO3 NPs induced reduction in cell viability, membrane damage and the degree of induction was size‐ and dose‐dependent. There was a significant increase in the percentage tail DNA and micronuclei formation at 200 and 300 μg ml–1 after 24 hours of exposure. The DNA damage induced by WO3 NPs could be attributed to increased oxidative stress and inflammation through reactive oxygen species generation, which correlated with the depletion of reduced glutathione content, catalase and an increase in malondialdehyde levels. Cellular uptake studies unveiled that both the particles were attached/surrounded to the cell membrane according to their size. In addition, NP inhibited the progression of the cell cycle in the G2/M phase. Other studies such as caspase‐9 and ‐3 and Annexin‐V‐fluorescein isothiocyanate revealed that NPs induced intrinsic apoptotic cell death at 200 and 300 μg ml–1 concentrations. However, in comparison to NPs, WO3 MPs did not incite any toxic effects at the tested concentrations. Under these experimental conditions, the no‐observed‐significant‐effect level of WO3 NPs was determined to be ≤200 μg ml–1 in A549 cells.  相似文献   

7.
Gold nanoparticles (Au NPs), silver nanoparticles (Ag NPs), zinc oxide nanoparticles (ZnO NPs) and titanium dioxide nanoparticles (TiO2 NPs) are widely used in cosmetic products such as preservatives, colorants and sunscreens. This study investigated the genotoxicity of Au NPs, Ag NPs, ZnO NPs and TiO2 NPs using the SOS chromotest with Escherichia coli PQ37. The maximum exposure concentrations for each nanoparticle were 3.23 mg l–1 for Au NPs, 32.3 mg l–1 for Ag NPs and 100 mg l–1 for ZnO NPs and TiO2 NPs. Additionally, in order to compare the genotoxicity of nanoparticles and corresponding dissolved ions, the ions were assessed in the same way as nanoparticles. The genotoxicity of the titanium ion was not assessed because of the extremely low solubility of TiO2 NPs. Au NPs, Ag NPs, ZnO NPs, TiO2 NPs and ions of Au, Ag and Zn, in a range of tested concentrations, exerted no effects in the SOS chromotest, evidenced by maximum IF (IFmax) values of below 1.5 for all chemicals. Owing to the results, nanosized Au NPs, Ag NPs, ZnO NPs, TiO2 NPs and ions of Au, Ag and Zn are classified as non‐genotoxic on the basis of the SOS chromotest used in this study. To the best of our knowledge, this is the first study to evaluate the genotoxicity of Au NPs, Ag NPs, ZnO NPs and TiO2 NPs using the SOS chromotest. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
《Nanotoxicology》2013,7(6):795-811
Abstract

Human oral exposure to copper oxide nanoparticles (NPs) may occur following ingestion, hand-to-mouth activity, or mucociliary transport following inhalation. This study assessed the cytotoxicity of Cupric (II) oxide (CuO) and Cu2O-polyvinylpyrrolidone (PVP) coated NPs and copper ions in rat (intestine epithelial cells; IEC-6) and human intestinal cells, two- and three-dimensional models, respectively. The effect of pretreatment of CuO NPs with simulated gastrointestinal (GI) fluids on IEC-6 cell cytotoxicity was also investigated. Both dose- and time-dependent decreases in viability of rat and human cells with CuO and Cu2O-PVP NPs and Cu2+ ions was observed. In the rat cells, CuO NPs had greater cytotoxicity. The rat cells were also more sensitive to CuO NPs than the human cells. Concentrations of H2O2 and glutathione increased and decreased, respectively, in IEC-6 cells after a 4-h exposure to CuO NPs, suggesting the formation of reactive oxygen species (ROS). These ROS may have damaged the mitochondrial membrane of the IEC-6 cells causing a depolarization, as a dose-related loss of a fluorescent mitochondrial marker was observed following a 4-h exposure to CuO NPs. Dissolution studies showed that Cu2O-PVP NPs formed soluble Cu whereas CuO NPs essentially remained intact. For GI fluid-treated CuO NPs, there was a slight increase in cytotoxicity at low doses relative to non-treated NPs. In summary, copper oxide NPs were cytotoxic to rat and human intestinal cells in a dose- and time-dependent manner. The data suggests Cu2O-PVP NPs are toxic due to their dissolution to Cu ions, whereas CuO NPs have inherent cytotoxicity, without dissolving to form Cu ions.  相似文献   

9.
A number of studies have investigated the adverse toxic effects of titanium dioxide (TiO2) nanoparticles (NPs) or zinc oxide (ZnO) NPs. Information on the potential genotoxic effects of the interactions of TiO2 NPs and ZnO NPs in vivo is lacking. Therefore, this study was designed to investigate the cytogenotoxicity of TiO2 NPs or ZnO NPs alone or their mixtures using the bone marrow micronucleus assay, and mechanism of damage through the evaluation of oxidative stress parameters in the liver and kidney tissues of Swiss mice. Intraperitoneal administration of doses between 9.38 and 150.00 mg/kg of TiO2 NPs or ZnO NPs or TiO2 NPs + ZnO NPs was performed for 5 and 10 days, respectively. TiO2 NPs alone induced a significant (P < 0.05) increase in micronucleated (Mn) polychromatic erythrocytes (PCEs) at the applied doses compared with the negative controls, with a significant difference between 5 and 10 days for TiO2 NPs alone and TiO2 NPs + ZnO NPs. Concurrently, TiO2 NPs alone for 5 days and TiO2 NPs and TiO2 NPs + ZnO NPs for 10 days significantly (P < 0.05) decreased the percentage PCE: normochromatic erythrocyte (NCE) indicating cytotoxicity; with a significant difference between the two periods. Significant (P < 0.001) changes in the activities of superoxide dismutase (SOD) and catalase (CAT), and levels of reduced glutathione (GSH) and malondialdehyde (MDA) were observed in the liver and kidney of mice exposed to TiO2 NPs or ZnO NPs alone or their mixtures. These results suggest that TiO2 NPs alone was genotoxic; TiO2 NPs and TiO2 NPs + ZnO NPs were noticeably cytotoxic while ZnO NPs was not cytogenotoxic. The individual NPs or their mixtures induced oxidative stress.  相似文献   

10.
In this study, the impact of alpha‐iron oxide (α‐Fe2O3, 20‐40 nm) and gamma iron oxide (γ‐Fe2O3, 20‐40 nm) nanoparticles (NPs) on phytoplankton species Selenastrum capricornutum and Nannochloropsis oculata was investigated Characterizations of the NPs were systematically carried out by TEM, dynamic light scattering, zeta potential, X‐ray diffraction, SEM, and Fourier transformation infrared spectroscopy. Acute toxicity was tested between 0.2 and 50 mg/L for each NP for a period of 72 hours exposure. γ‐Fe2O3 NP inhibited development of N oculata at the rate of 54% in 0.2 mg/L group with a high mortality rate of up to 82%. α‐Fe2O3 NPs were less toxic that induced 97% mortality on N oculata at 10 mg/L suspensions. In contrast, α‐Fe2O3 NP inhibited growth of S capricornutum strongly (73%) in 0.2 mg/L group. γ‐Fe2O3 NPs showed similar growth inhibition (72%) on S capricornutum in 10 mg/L suspensions. Despite the differential effects, the results indicated acute toxicity of α‐Fe2O3 and γ‐Fe2O3 NPs on N oculata and S capricornutum.  相似文献   

11.
Chromium oxide (Cr2O3) nanoparticles (NPs) are being increasingly used as a catalyst for aromatic compound manufacture, abrading agents and as pigments (e.g., Viridian). Owing to increased applications, it is important to study the biological effects of Cr2O3 NPs on human health. The lung is one of the main exposure routes to nanomaterials; therefore, the present study was designed to determine the genotoxic and apoptotic effect of Cr2O3 NPs in human lung epithelial cells (A549). The study also elucidated the molecular mechanism of its toxicity. Cr2O3 NPs led to DNA damage, which was deduced by comet assay and cytokinesis block micronucleus assay. The damage could be mediated by the increased levels of reactive oxygen species. Further, the oxygen species led to a decrease in mitochondrial membrane potential and an increase in the ratio of BAX/Bcl‐2 leading to mitochondria‐mediated apoptosis induced by Cr2O3 NPs, which ultimately leads to cell death. Hence, there is a need of regulations to be imposed in NP usage. The study provided insight into the caspase‐dependent mechanistic pathway of apoptosis. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Titanium dioxide nanoparticles (TiO2 NPs) have already been used as food additive in various products and are usually consumed with a considerable amount of sugar. Oral consumption of TiO2 NPs poses concerning health risks; however, research on the combined effect of ingested TiO2 NPs and glucose is limited. We examined young Sprague‐Dawley rats administrated TiO2 NPs orally at doses of 0, 2, 10 and 50 mg/kg body weight per day with and without 1.8 g/kg body weight glucose for 30 and 90 days. Heart rate, systolic and diastolic blood pressure, blood biochemical parameters and histopathology of cardiac tissues was assessed to quantify cardiovascular damage. The results showed that oral exposure to TiO2 NPs and high doses of glucose both could induce cardiovascular injuries. The toxic effects were dose‐, time‐ and gender‐dependent. The interaction effects between oral‐exposed TiO2 NPs and glucose existed and revealed to be antagonism in most of the biological parameters. However, toxic effects of the high‐dose glucose seemed to be more severe than TiO2 NPs and the interaction of TiO2 NPs with glucose. These results suggest that it may be more important to control the sugar intake than TiO2 NPs for protecting the health of TiO2 NP consumers.  相似文献   

13.
Titanium dioxide nanoparticles (TiO2 NPs) are widely found in food‐related consumer products. Understanding the effect of TiO2 NPs on the intestinal barrier and absorption is essential and vital for the safety assessment of orally administrated TiO2 NPs. In this study, the cytotoxicity and translocation of two native TiO2 NPs, and these two TiO2 NPs pretreated with the digestion simulation fluid or bovine serum albumin were investigated in undifferentiated Caco‐2 cells, differentiated Caco‐2 cells and Caco‐2 monolayer. TiO2 NPs with a concentration less than 200 µg ml–1 did not induce any toxicity in differentiated cells and Caco‐2 monolayer after 24 h exposure. However, TiO2 NPs pretreated with digestion simulation fluids at 200 µg ml–1 inhibited the growth of undifferentiated Caco‐2 cells. Undifferentiated Caco‐2 cells swallowed native TiO2 NPs easily, but not pretreated NPs, implying the protein coating on NPs impeded the cellular uptake. Compared with undifferentiated cells, differentiated ones possessed much lower uptake ability of these TiO2 NPs. Similarly, the traverse of TiO2 NPs through the Caco‐2 monolayer was also negligible. Therefore, we infer the possibility of TiO2 NPs traversing through the intestine of animal or human after oral intake is quite low. This study provides valuable information for the risk assessment of TiO2 NPs in food. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
《Nanotoxicology》2013,7(5):543-553
Abstract

Increasing the production and applications of TiO2 nanoparticles (NPs) has led to grow concerns about the consequences for the environment. In this study, we investigated the effects of a set of TiO2 NPs on the viability of mussel hemocytes and gill cells using neutral red and thiazolyl tetrazolium bromide assays. For this, we compared the cytotoxicity of TiO2 NPs (0.1–100?mg Ti/L) produced by different techniques: rutile NPs (60?nm) produced by milling and containing disodium laureth sulfosuccinate (DSLS), rutile NPs (10, 40 and 60?nm) produced by wet chemistry and anatase/rutile NPs (~100?nm) produced by plasma synthesis. The commercially available P25 anatase/rutile NPs (10–20?nm) were also tested. Exposures were performed in parallel with their respective bulk forms and the cytotoxicity of the additive DSLS was also tested. Z potential values in distilled water indicated different stabilities depending on the NP type and all NPs tested formed agglomerates/aggregates in cell culture media. In general, TiO2 NPs showed a relatively low and dose-dependent toxicity for both cell models with the two assays tested. NPs produced by milling showed the highest effects, probably due to the toxicity of DSLS. Size-dependent toxicity was found for NPs produced by wet chemistry (10?nm?>?40?nm and 60?nm). All TiO2 NPs tested were more toxic than bulk forms excepting for plasma produced ones, which were the least toxic TiO2 tested. The mixture bulk anatase/rutile TiO2 was more toxic than bulk rutile TiO2. In conclusion, the toxicity of TiO2 NPs varied with the mode of synthesis, crystalline structure and size of NPs and can also be influenced by the presence of additives in the suspensions.  相似文献   

15.
16.
Concomitant releases of various engineered nanoparticles (NPs) into the environment have resulted in concerns regarding their combined toxicity to aquatic organisms. It is however, still elusive to distinguish the contribution to toxicity of components in NP mixtures. In the present study, we quantitatively evaluated the relative contribution of NPs in their particulate form (NP(particle)) and of dissolved ions released from NPs (NP(ion)) to the combined toxicity of binary mixtures of ZnO NPs and graphene oxide nanoplatelets (GO NPs) to three aquatic organisms of different trophic levels, including an alga species (Scenedesmus obliquus), a cladoceran species (Daphnia magna), and a freshwater fish larva (Danio rerio). Our results revealed that the effects of ZnO NPs and GO NPs were additive to S. obliquus and D. magna but antagonistic to D. rerio. The relative contribution to toxicity (RCT) of the mixture components to S. obliquus decreased in the order of RCTGO NP(particle) >?RCTZnO NP(particle)?>?RCTZnO NP(ion), while the RCT of the mixture components to D. magna and D. rerio decreased in the order of RCTZnO NP(particle)?>?RCTGO NP(particle)?>?RCTZnO NP(ion). This finding also implies that the suspended particles rather than the dissolved Zn-ions dictated the combined toxicity of binary mixtures of ZnO NPs and GO NPs to the aquatic organisms of different trophic level. The alleviation of the contribution to toxicity of the ionic form of ZnO NPs was caused by the adsorption of the dissolved ions on GO NPs. Furthermore, the ZnO NP(particle) and GO NP(particle) displayed a different contribution to the observed mixture toxicity, dependent on the trophic level of the aquatic organisms tested. The difference of the contributions between the two particulate forms was mainly associated with differences in the intracellular accumulation of reactive oxygen species. Our findings highlight the important role of particles in the ecological impact of multi-nanomaterial systems.  相似文献   

17.
Recent studies show that Janus Fe3O4‐TiO2 nanoparticles (NPs) have potential applications as a multifunctional agent of magnetic resonance imaging (MRI) and photodynamic therapy (PDT) for the diagnosis and therapy of cancer. However, little work has been done on their biological effects. To evaluate the toxicity and underlying molecular mechanisms of Janus Fe3O4‐TiO2 nanoparticles, an in vitro study using a human liver cell line HL‐7702 cells was conducted. For comparison, the Janus Fe3O4‐TiO2 NPs parent material TiO2 NPs was also evaluated. Results showed that both Fe3O4‐TiO2 NPs and TiO2 NPs decreased cell viability and ATP levels when applied in treatment, but increased malonaldehyde (MDA) and reactive oxygen species (ROS) generation. Mitochondria JC‐1 staining assay showed that mitochondrial membrane permeability injury occurred in both NPs treated cells. Cell viability analysis showed that TiO2 NPs induced slightly higher cytotoxicity than Fe3O4‐TiO2 NPs in HL7702 cells. Western blotting indicated that both TiO2 NPs and Fe3O4‐TiO2 NPs could induce apoptosis, inflammation, and carcinogenesis related signal protein alterations. Comparatively, Fe3O4‐TiO2 NPs induced higher signal protein expressions than TiO2 NPs under a high treatment dose. However, under a low dose (6.25 μg/cm2), neither NPs had any significant toxicity on HL7702 cells. In addition, our results suggest both Fe3O4‐TiO2 NPs and TiO2 NPs could induce oxidative stress and have a potential carcinogenetic effect in vitro. Further studies are needed to elaborate the detailed mechanisms of toxicity induced by a high dose of Fe3O4‐TiO2 NPs.  相似文献   

18.
Despite the growing interest in nanoparticles (NPs), standardized procedures for the evaluation of their toxicity have not been defined. The risk of human exposure is rapidly increasing and reliable toxicity test systems are urgently needed. In vitro methods are ideal in toxicology research because they can rapidly provide reproducible results while preventing the use of animals. Recently, a new test for acute toxicity based on the use of human bone marrow mesenchymal stem cells (hBMMSCs) has been developed and successfully tested in our laboratory following the Interagency Coordinating Committee on the Validation of Alternative Methods guidelines. Along these lines, the aim of this study is to evaluate the acute cytotoxicity of copper oxide (CuO) NPs using the new toxicity test based on hBMMSCs. Our results show that CuO NPs are much more toxic compared to micrometer ones. Specifically, CuO NP exposure exhibits a significant cytotoxicity at all the concentrations used, with an IC50 value of 2.5?±?0.53?µg/ml. On the other hand, CuO microsized particle exposure exhibits a very low cytotoxicity at the same concentrations, with an IC50 value of 72.13?±?16.2?µg/ml.  相似文献   

19.
With the ongoing commercialization of nanotechnology products, human exposure to nanoparticles (NPs) is set to increase dramatically and an evaluation of their potential adverse effects is essential. Surface charge, among other physico‐chemicals parameters, is a key criterion that should be considered when using a definition for nanomaterials in a regulatory context. It has recently been recognized as an important factor in determining the toxicity of NPs; however, a complete understanding of the mechanisms involved is still lacking. In this context, the aim of the present study was to investigate the influence of the surface charge modification of NPs on in vitro toxicity assays. Poly(lactic‐co‐glycolic acid) (PLGA) nanoparticles bearing different surface charges, positive(+), neutral(n) or negative(?), were synthesized. In vitro genotoxicity assays (micronucleus and comet assays) coupled with an assessment of cytotoxicity, were performed in different cell lines (L5178Y mouse lymphoma cells, TK6 human B‐lymphoblastoid cells and 16HBE14o‐ human bronchial epithelial cells). Reactive oxygen species (ROS) production and endocytosis studies were also performed. Our results showed that PLGA(+) NPs were cytotoxic. They are endocytosed by the clathrin pathway and induced ROS in the three cell lines. They led to chromosomal aberrations without primary DNA damage in 16HBE14o‐ cells, suggesting that aneuploidy may be considered as an important biomarker when assessing the genotoxic potential of NPs. Moreover, 16HBE14o‐ cells seem to be more suitable for the in vitro screening of inhaled NPs than the regulatory L5178Y and TK6 cells. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Doxorubicin‐loaded chitosan‐coated superparamagnetic iron oxide nanoparticles (Fe3O4; SPIO‐NPs) were prepared by coprecipitation and emulsification cross‐linking method and uniform NPs with an average particle size of 82 nm, with high encapsulation efficiencies, were obtained. The drug‐loading efficiency of doxorubicin (3.2 mg/mg NPs) showed better results for the chitosan‐loaded SPIO‐NPs as compared to the bare ones (0.5 mg/mg; p < 0.05). The incubation of A2780 and OVCAR‐3 human ovarian cancer cells with doxorubicin‐loaded and doxorubicin‐loaded chitosan‐coated SPIO‐NPs, for 24, 48, 72, 96, and 120 h, showed significant IC50 (2.0 ± 0.6 and 7.1 ± 2.7 mm doxorubicin) and IC90 (4.0 ± 9.2 and 10 ± 0.5 mm doxorubicin), respectively, after 96 h of incubation. While, 95% and 98% growth inhibition was seen in A2780 and OVCAR‐3 cells after the 96‐h exposure to the doxorubicin‐chitosan‐SPIO‐NPs (p < 0.05). A 5‐day (120 h) incubation with doxorubicin‐chitosan‐SPIO‐NPs showed that A2780 and OVCAR‐3 cells were able to uptake 120 and 110 pg iron/cell, respectively, when treated with doxorubicin‐chitosan‐SPIO‐NPs for 72 h (p < 0.05).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号