首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sulfate metabolites have been described as long‐term metabolites for some anabolic androgenic steroids (AAS). 4‐chlorometandienone (4Cl‐MTD) is one of the most frequently detected AAS in sports drug testing and it is commonly detected by monitoring metabolites excreted free or conjugated with glucuronic acid. Sulfation reactions of 4Cl‐MTD have not been studied. The aim of this work was to evaluate the sulfate fraction of 4Cl‐MTD metabolism by liquid chromatography‐tandem mass spectrometry (LC‐MS/MS) to establish potential long‐term metabolites valuable for doping control purposes. 4Cl‐MTD was administered to two healthy male volunteers and urine samples were collected up to 8 days after administration. A theoretical selected reaction monitoring (SRM) method working in negative mode was developed. Ion transitions were based on ionization and fragmentation behaviour of sulfate metabolites as well as specific neutral losses (NL of 15 Da and NL of 36 Da) of compounds with related chemical structure. Six sulfate metabolites were detected after the analysis of excretion study samples. Three of the identified metabolites were characterized by liquid chromatography‐tandem mass spectrometry (LC‐MS/MS) and gas chromatography‐tandem mass spectrometry (GC‐MS/MS). Results showed that five out of the six identified sulfate metabolites were detected in urine up to the last collected samples from both excretion studies. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
The aim of this study was to evaluate the direct detection of glucuronoconjugated metabolites of metandienone (MTD) and their detection times. Metabolites resistant to enzymatic hydrolysis were also evaluated. Based on the common mass spectrometric behaviour of steroid glucuronides, three liquid chromatography‐tandem mass spectrometry (LC‐MS/MS) strategies were applied for the detection of unpredicted and predicted metabolites: precursor ion scan (PI), neutral loss scan (NL), and theoretical selected reaction monitoring (SRM) methods. Samples from four excretion studies of MTD were analyzed for both the detection of metabolites and the establishment of their detection times. Using PI and NL methods, seven metabolites were observed in post‐administration samples. SRM methods allowed for the detection of 13 glucuronide metabolites. The detection times, measured by analysis with an SRM method, were between 1 and 22 days. The metabolite detected for the longest time was 18‐nor‐17β‐hydroxymethyl‐17α‐methyl‐5β‐androsta‐1,4,13‐triene‐3‐one‐17‐glucuronide. One metabolite was resistant to hydrolysis with β ‐glucuronidase; however it was only detected in urine up to four days after administration. The three glucuronide metabolites with the highest retrospectivity were identified by chemical synthesis or mass spectrometric data, and although they were previously reported, this is the first time that analytical data of the intact phase II metabolites are presented for some of them. The LC‐MS/MS strategies applied have demonstrated to be useful for detecting glucuronoconjugated metabolites of MTD, including glucuronides resistant to enzymatic hydrolysis which cannot be detected by conventional approaches. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
Anabolic androgenic steroids (AAS) are an important class of doping agents. The metabolism of these substances is generally very extensive and includes phase‐I and phase‐II pathways. In this work, a comprehensive detection of these metabolites is described using a 2‐fold dilution of urine and subsequent analysis by liquid chromatography‐high resolution mass spectrometry (LC‐HRMS). The method was applied to study 32 different metabolites, excreted free or conjugated (glucuronide or sulfate), which permit the detection of misuse of at least 21 anabolic steroids. The method has been fully validated for 21 target compounds (8 glucuronide, 1 sulfate and 12 free steroids) and 18 out of 21 compounds had detection limits in the range of 1–10 ng mL?1 in urine. For the conjugated compounds, for which no reference standards are available, metabolites were synthesized in vitro or excretion studies were investigated. The detection limits for these compounds ranged between 0.5 and 18 ng mL?1 in urine. The simple and straightforward methodology complements the traditional methods based on hydrolysis, liquid‐liquid extraction, derivatization and analysis by gas chromatography–mass spectrometry (GC‐MS) and liquid chromatography‐mass spectrometry (LC‐MS). Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
N‐Ethyl‐1,2‐diphenylethylamine (NEDPA) and N‐iso‐propyl‐1,2‐diphenylethylamine (NPDPA) are two designer drugs, which were confiscated in Germany in 2008. Lefetamine (N,N‐dimethyl‐1,2‐diphenylethylamine, also named L‐SPA), the pharmaceutical lead of these designer drugs, is a controlled substance in many countries. The aim of the present work was to study the phase I and phase II metabolism of these drugs in rats and to check for their detectability in urine using the authors’ standard urine screening approaches (SUSA). For the elucidation of the metabolism, rat urine samples were worked up with and without enzymatic cleavage, separated and analyzed by gas chromatography‐mass spectrometry (GC‐MS) and liquid chromatography‐high resolution‐tandem mass spectrometry (LC‐HR‐MS/MS). According to the identified metabolites, the following metabolic pathways for NEDPA and NPDPA could be proposed: N‐dealkylation, mono‐ and bis‐hydroxylation of the benzyl ring followed by methylation of one of the two hydroxy groups, combinations of these steps, hydroxylation of the phenyl ring after N‐dealkylation, glucuronidation and sulfation of all hydroxylated metabolites. Application of a 0.3 mg/kg BW dose of NEDPA or NPDPA, corresponding to a common lefetamine single dose, could be monitored in rat urine using the authors’ GC‐MS and LC‐MSn SUSA. However, only the metabolites could be detected, namely N‐deethyl‐NEDPA, N‐deethyl‐hydroxy‐NEDPA, hydroxy‐NEDPA, and hydroxy‐methoxy‐NEDPA or N‐de‐iso‐propyl‐NPDPA, N‐de‐iso‐propyl‐hydroxy‐NPDPA, and hydroxy‐NPDPA. Assuming similar kinetics, an intake of these drugs should also be detectable in human urine. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Among the recently emerged synthetic cannabinoids, MDMB‐CHMICA (methyl N ‐{[1‐(cyclohexylmethyl)‐1H ‐indol‐3‐yl]carbonyl}‐3‐methylvalinate) shows an extraordinarily high prevalence in intoxication cases, necessitating analytical methods capable of detecting drug uptake. In this study, the in vivo phase I metabolism of MDMB‐CHMICA was investigated using liquid chromatography‐electrospray ionization‐tandem mass spectrometry (LC‐ESI‐MS/MS) and liquid chromatography‐electrospray ionization‐quadrupole time‐of‐flight‐mass spectrometry (LC‐ESI‐Q ToF‐MS) techniques. The main metabolites are formed by hydrolysis of the methyl ester and oxidation of the cyclohexyl methyl side chain. One monohydroxylated metabolite, the ester hydrolysis product and two further hydroxylated metabolites of the ester hydrolysis product are suggested as suitable targets for a selective and sensitive detection in urine. All detected in vivo metabolites could be verified in vitro using a human liver microsome assay. Two of the postulated main metabolites were successfully included in a comprehensive LC‐ESI‐MS/MS screening method for synthetic cannabinoid metabolites. The screening of 5717 authentic urine samples resulted in 818 cases of confirmed MDMB‐CHMICA consumption (14%). Since the most common route of administration is smoking, smoke condensates were analyzed to identify relevant thermal degradation products. Pyrolytic cleavage of the methyl ester and amide bond led to degradation products which were also formed metabolically. This is particularly important in hair analysis, where detection of metabolites is commonly considered a proof of consumption. In addition, intrinsic activity of MDMB‐CHMICA at the CB1 receptor was determined applying a cAMP accumulation assay and showed that the compound is a potent full agonist. Based on the collected data, an enhanced interpretation of analytical findings in urine and hair is facilitated. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Diphenidine is a new psychoactive substance (NPS) sold as a ‘legal high’ since 2013. Case reports from Sweden and Japan demonstrate its current use and the necessity of applying analytical procedures in clinical and forensic toxicology. Therefore, the phase I and II metabolites of diphenidine should be identified and based on these results, the detectability using standard urine screening approaches (SUSAs) be elucidated. Urine samples were collected after administration of diphenidine to rats and analyzed using different sample workup procedures with gas chromatography‐mass spectrometry (GC‐MS) and liquid chromatography‐(high resolution)‐mass spectrometry (LC‐(HR)‐MS). With the same approaches incubates of diphenidine with pooled human liver microsomes (pHLM) and cytosol (pHLC) were analyzed. According to the identified metabolites, the following biotransformation steps were proposed in rats: mono‐ and bis‐hydroxylation at different positions, partly followed by dehydrogenation, N,N‐bis‐dealkylation, and combinations of them followed by glucuronidation and/or methylation of one of the bis‐hydroxy‐aryl groups. Mono‐ and bis‐hydroxylation followed by dehydrogenation could also be detected in pHLM or pHLC. Cytochrome‐P450 (CYP) isozymes CYP1A2, CYP2B6, CYP2C9, and CYP3A4 were all capable of forming the three initial metabolites, namely hydroxy‐aryl, hydroxy‐piperidine, and bis‐hydroxy‐piperidine. In incubations with CYP2D6 hydroxy‐aryl and hydroxy‐piperidine metabolites were detected. After application of a common users’ dose, diphenidine metabolites could be detected in rat urine by the authors’ GC‐MS as well as LC‐MSn SUSA. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Many N,N‐dialkylated tryptamines show psychoactive properties and were encountered as new psychoactive substances. The aims of the presented work were to study the phase I and II metabolism and the detectability in standard urine screening approaches (SUSA) of 5‐methoxy‐2‐methyl‐N,N‐diallyltryptamine (5‐MeO‐2‐Me‐DALT), 5‐methoxy‐2‐methyl‐N‐allyl‐N‐cyclohexyltryptamine (5‐MeO‐2‐Me‐ALCHT), and 5‐methoxy‐2‐methyl‐N,N‐diisopropyltryptamine (5‐MeO‐2‐Me‐DIPT) using gas chromatography–mass spectrometry (GC–MS), liquid chromatography coupled with multistage accurate mass spectrometry (LC–MSn), and liquid chromatography‐high‐resolution tandem mass spectrometry (LC‐HR‐MS/MS). For metabolism studies, urine was collected over a 24 h period after administration of the compounds to male Wistar rats at 20 mg/kg body weight (BW). Phase I and II metabolites were identified after urine precipitation with acetonitrile by LC‐HR‐MS/MS. 5‐MeO‐2‐Me‐DALT (24 phase I and 12 phase II metabolites), 5‐MeO‐2‐Me‐ALCHT (24 phase I and 14 phase II metabolites), and 5‐MeO‐2‐Me‐DIPT (20 phase I and 11 phase II metabolites) were mainly metabolized by O‐demethylation, hydroxylation, N‐dealkylation, and combinations of them as well as by glucuronidation and sulfation of phase I metabolites. Incubations with mixtures of pooled human liver microsomes and cytosols (pHLM and pHLC) confirmed that the main metabolic reactions in humans and rats might be identical. Furthermore, initial CYP activity screenings revealed that CYP1A2, CYP2C19, CYP2D6, and CYP3A4 were involved in hydroxylation, CYP2C19 and CYP2D6 in O‐demethylation, and CYP2C19, CYP2D6, and CYP3A4 in N‐dealkylation. For SUSAs, GC–MS, LC‐MSn, and LC‐HR‐MS/MS were applied to rat urine samples after 1 or 0.1 mg/kg BW doses, respectively. In contrast to the GC–MS SUSA, both LC–MS SUSAs were able to detect an intake of 5‐MeO‐2‐Me‐ALCHT and 5‐MeO‐2‐Me‐DIPT via their metabolites following 1 mg/kg BW administrations and 5‐MeO‐2‐Me‐DALT following 0.1 mg/kg BW dosage. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

8.
4‐methyl‐N‐ethcathinone (4‐MEC), the N‐ethyl homologue of mephedrone, is a novel psychoactive substance of the beta‐keto amphetamine (cathinone) group. The aim of the present work was to study the phase I and phase II metabolism of 4‐MEC in human urine as well as in pooled human liver microsome (pHLM) incubations. The urine samples were worked up with and without enzymatic cleavage, the pHLM incubations by simple deproteinization. The metabolites were separated and identified by gas chromatography‐mass spectrometry (GC‐MS) and liquid chromatography‐high resolution‐tandem mass spectrometry (LC‐HR‐MS/MS). Based on the metabolites identified in urine and/or pHLM, the following metabolic pathways could be proposed: reduction of the keto group, N‐deethylation, hydroxylation of the 4‐methyl group followed by further oxidation to the corresponding 4‐carboxy metabolite, and combinations of these steps. Glucuronidation could only be observed for the hydroxy metabolite. These pathways were similar to those described for the N‐methyl homologue mephedrone and other related drugs. In pHLM, all phase I metabolites with the exception of the N‐deethyl‐dihydro isomers and the 4‐carboxy‐dihydro metabolite could be confirmed. Glucuronides could not be formed under the applied conditions. Although the taken dose was not clear, an intake of 4‐MEC should be detectable in urine by the GC‐MS and LC‐MSn standard urine screening approaches at least after overdose. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
The synthetic tryptamine 5‐methoxy‐N‐methyl‐N‐isopropyltryptamine (5‐MeO‐MiPT) has recently been abused as a hallucinogenic drug in Germany and Switzerland. This study presents a case of 5‐MeO‐MiPT intoxication and the structural elucidation of metabolites in pooled human liver microsomes (pHLM), blood, and urine. Microsomal incubation experiments were performed using pHLM to detect and identify in vitro metabolites. In August 2016, the police encountered a naked man, agitated and with aggressive behavior on the street. Blood and urine samples were taken at the hospital and his premises were searched. The obtained blood and urine samples were analyzed for in vivo metabolites of 5‐MeO‐MiPT using liquid chromatography–high resolution tandem mass spectrometry (LC–HRMS/MS). The confiscated pills and powder samples were qualitatively analyzed using Fourier transform infrared (FTIR), gas chromatography–mass spectrometry (GC–MS), LC‐HRMS/MS, and nuclear magnetic resonance (NMR). 5‐MeO‐MiPT was identified in 2 of the seized powder samples. General unknown screening detected cocaine, cocaethylene, methylphenidate, ritalinic acid, and 5‐MeO‐MiPT in urine. Seven different in vitro phase I metabolites of 5‐MeO‐MiPT were identified. In the forensic case samples, 4 phase I metabolites could be identified in blood and 7 in urine. The 5 most abundant metabolites were formed by demethylation and hydroxylation of the parent compound. 5‐MeO‐MiPT concentrations in the blood and urine sample were found to be 160 ng/mL and 3380 ng/mL, respectively. Based on the results of this study we recommend metabolites 5‐methoxy‐N‐isopropyltryptamine (5‐MeO‐NiPT), 5‐hydroxy‐N‐methyl‐N‐isopropyltryptamine (5‐OH‐MiPT), 5‐methoxy‐N‐methyl‐N‐isopropyltryptamine‐N‐oxide (5‐MeO‐MiPT‐N‐oxide), and hydroxy‐5‐methoxy‐N‐methyl‐N‐isopropyltryptamine (OH‐5‐MeO‐MiPT) as biomarkers for the development of new methods for the detection of 5‐MeO‐MiPT consumption, as they have been present in both blood and urine samples.  相似文献   

10.
Psychoactive substances of the 2C‐series are phenethylamine‐based designer drugs that can induce psychostimulant and hallucinogenic effects. The so‐called 2C‐FLY series contains rigidified methoxy groups integrated in a 2,3,6,7‐tetrahydrobenzo[1,2‐b:4,5‐b']difuran core. The aim of the presented work was to investigate the in vivo and in vitro metabolic fate including isoenzyme activities and toxicological detectability of the three new psychoactive substances (NPS) 2C‐E‐FLY, 2C‐EF‐FLY, and 2C‐T‐7‐FLY to allow clinical and forensic toxicologists the identification of these novel compounds. Rat urine, after oral administration, and pooled human liver S9 fraction (pS9) incubations were analyzed by liquid chromatography?high‐resolution tandem mass spectrometry (LC?HRMS/MS). By performing activity screenings, the human isoenzymes involved were identified and toxicological detectability in rat urine investigated using standard urine screening approaches (SUSAs) based on gas chromatography (GC)?MS, LC?MSn, and LC?HRMS/MS. In total, 32 metabolites were tentatively identified. Main metabolic steps consisted of hydroxylation and N‐acetylation. Phase I metabolic reactions were catalyzed by CYP2D6, 3A4, and FMO3 and N‐acetylation by NAT1 and NAT2. Methoxyamine was used as a trapping agent for detection of the deaminated metabolite formed by MAO‐A and B. Interindividual differences in the metabolism of the 2C‐FLY drugs could be caused by polymorphisms of enzymes involved or drug–drug interactions. All three SUSAs were shown to be suitable to detect an intake of these NPS but common metabolites of 2C‐E‐FLY and 2C‐EF‐FLY have to be considered during interpretation of analytical findings.  相似文献   

11.
Zolpidem and zopiclone (Z‐compounds) are non‐benzodiazepine hypnotics of new generation that can be used in drug‐facilitated sexual assault (DFSA). Their determination in biological fluids, mainly urine, is of primary importance; nevertheless, although they are excreted almost entirely as metabolites, available methods deal mainly with the determination of the unmetabolized drug. This paper describes a method for the determination in urine of Z‐compounds and their metabolites by ultra‐high‐pressure liquid chromatography/tandem mass spectrometry (UHPLC‐MS/MS) and UHPLC coupled with high resolution/high accuracy Orbitrap® mass spectrometry (UHPLC‐HRMS). The metabolic profile was studied on real samples collected from subjects in therapy with zolpidem or zopiclone; the main urinary metabolites were identified and their MS behaviour studied by MS/MS and HRMS. Two carboxy‐ and three hydroxy‐ metabolites, that could be also detected by gas chromatography/mass spectrometry (GC‐MS) as trimethylsylyl derivatives, have been identified for zolpidem. Also, at least one dihydroxilated metabolite was detected. As for zopiclone, the two main metabolites detected were N‐demethyl and N‐oxide zopiclone. For both substances, the unmetabolized compounds were excreted in low amounts in urine. In consideration of these data, a UHPLC‐MS/MS method for the determination of Z‐compounds and their main metabolites after isotopic dilution with deuterated analogues of zolpidem and zopiclone and direct injection of urine samples was set up. The proposed UHPLC‐MS/MS method appears to be practically applicable for the analysis of urine samples in analytical and forensic toxicology cases, as well as in cases of suspected DFSA. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
LGD‐4033 is one of a number of selective androgen receptor modulators (SARMs) that are being developed by the pharmaceutical industry to provide the therapeutic benefits of anabolic androgenic steroids, without the less desirable side effects. Though not available therapeutically, SARMs are available for purchase online as supplement products. The potential for performance enhancing effects associated with these products makes them a significant concern with regards to doping control in sports. The purpose of this study was to investigate the metabolism of LGD‐4033 in the horse following oral administration, in order to identify the most appropriate analytical targets for doping control laboratories. LGD‐4033 was orally administered to two Thoroughbred horses and urine, plasma and hair samples were collected and analysed for parent drug and metabolites. LC‐HRMS was used for metabolite identification in urine and plasma. Eight metabolites were detected in urine, five of which were excreted only as phase II conjugates, with the longest detection time being observed for di‐ and tri‐hydroxylated metabolites. The parent compound could only be detected in urine in the conjugated fraction. Seven metabolites were detected in plasma along with the parent compound where mono‐hydroxylated metabolites provided the longest duration of detection. Preliminary investigations with hair samples using LC–MS/MS analysis indicated the presence of trace amounts of the parent compound and one of the mono‐hydroxylated metabolites. In vitro incubation of LGD‐4033 with equine liver microsomes was also performed for comparison, yielding 11 phase I metabolites. All of the metabolites observed in vivo were also observed in vitro.  相似文献   

13.
The introduction of alternative markers to the steroid profile can be an effective approach to improving the screening capabilities for the detection of testosterone (T) misuse. In this work, endogenous steroid sulfates were evaluated as potential markers to detect intramuscular (IM) T administration. Fourteen sulfate metabolites were quantified using mixed‐mode solid‐phase extraction and analysis by liquid chromatography–tandem mass spectrometry (LC–MS/MS). Urine samples after a single IM injection (100 mg) of T cypionate to six Caucasian and six Asian healthy male volunteers were analyzed. Principal component analysis (PCA) was used to characterize the sample cohort and to obtain the most useful markers for discrimination between pre‐ and post‐administration samples. For Caucasian volunteers, a separation between pre‐ and post‐administration samples was observed in PCA, whereas for Asian volunteers no separation was obtained. Seventeen ratios between sulfate metabolites were selected and further considered. Detection times (DTs) of each marker were evaluated using individual thresholds for each volunteer. The best results were obtained using ratios involving T and epitestosterone (E) sulfates in the denominator. The best marker was the ratio androsterone sulfate/testosterone sulfate (A‐S/T‐S) which prolonged the DT 1.2–2.1 times in respect to those obtained using T/E ratio in all Caucasian volunteers and 1.3–1.5 times in two Asian volunteers. Other ratios between A‐S or etiocholanolone sulfate and E‐S, and sulfates of etiocholanolone, dehydroandrosterone or epiandrosterone, and T‐S were also found adequate. These ratios improve the DT after IM T administration and their incorporation to complement the current steroid profile is recommended.  相似文献   

14.
The detection of testosterone (T) misuse by doping control laboratories is mainly based on monitoring urinary T phase I metabolites released after enzymatic hydrolysis of the corresponding phase II glucuronide metabolites by gas chromatography (tandem) mass spectrometry (GC‐MS(/MS)) methods. However, this strategy fails to properly determine two recently reported phase II metabolites of T conjugated with glucuronic acid that remained mostly conjugated after the hydrolysis step. These metabolites were identified as glucuronides of 6β‐hydroxyandrosterone (6β‐OH‐And) and 6β‐hydroxyetiocholanolone (6β‐OH‐Etio) but their exact conjugation site remained undetermined. In this study, the four possible glucuronides of 6β‐OH‐And and 6β‐OH‐Etio were synthesized and characterized by nuclear magnetic resonance (NMR) spectroscopy. Moreover, their chromatographic properties and MS spectra were compared to those obtained for the urine samples collected after administration of T. Results confirmed that the recently reported metabolites were the 3α‐glucuronides of 6β‐OH‐And and 6β‐OH‐Etio. The synthesis and the elucidation of the exact structure of the metabolites presented in this study are crucial steps for the development of analytical methods in order to explore their role in T metabolism and their potential usefulness as biomarkers of T misuse. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
Guanfacine is used for the treatment of attention‐deficit/hyperactivity disorder (ADHD). Using liquid chromatography–tandem mass spectrometry (LC–MS/MS), metabolite profiling of guanfacine was performed in plasma and urine collected from healthy Japanese adults following repeated oral administration of guanfacine extended‐release formulation. Unchanged guanfacine was the most abundant component in both plasma and urine (from the MS signal intensity). In plasma, the M3 metabolite (a sulfate of hydroxy‐guanfacine) was the prominent metabolite; the M2 metabolite (a glucuronide of a metabolite formed by monooxidation of guanfacine), 3‐hydroxyguanfacine and several types of glucuronide at different positions on guanfacine were also detected. In urine, the M2 metabolite and 3‐hydroxyguanfacine were the principal metabolites. From metabolite analysis, the proposed main metabolic pathway of guanfacine is monooxidation on the dichlorobenzyl moiety, followed by glucuronidation or sulfation. A minor pathway is glucuronidation at different positions on guanfacine. As the prominent metabolites in plasma were glucuronide and sulfate of hydroxyguanfacine, which have no associated toxicity concerns, further toxicity studies of the metabolites, for example in animals, were not deemed necessary.  相似文献   

16.
Synthetic cannabinoids (SCs) are a structurally diverse class of new psychoactive substances. Most SCs used for recreational purposes are based on indole or indazole core structures. EG‐018 (naphthalen‐1‐yl(9‐pentyl‐9H‐carbazol‐3‐yl)methanone), EG‐2201 ((9‐(5‐fluoropentyl)‐9H‐carbazol‐3‐yl)(naphthalen‐1‐yl)methanone), and MDMB‐CHMCZCA (methyl 2‐(9‐(cyclohexylmethyl)‐9H‐carbazole‐3‐carboxamido)‐3,3‐dimethylbutanoate) are 3 representatives of a structural subclass of SCs, characterized by a carbazole core system. In vitro and in vivo phase I metabolism studies were conducted to identify the most suitable metabolites for the detection of these substances in urine screening. Detection and characterization of metabolites were performed by liquid chromatography–electrospray ionization–tandem mass spectrometry (LC–ESI–MS/MS) and liquid chromatography–electrospray ionization–quadrupole time‐of‐flight–mass spectrometry (LC–ESI–QToF–MS). Eleven in vivo metabolites were detected in urine samples positive for metabolites of EG‐018 (n = 8). A hydroxypentyl metabolite, most probably the 4‐hydroxypentyl isomer, and an N‐dealkylated metabolite mono‐hydroxylated at the carbazole core system were most abundant. In vitro studies of EG‐018 and EG‐2201 indicated that oxidative defluorination of the 5‐fluoropentyl side chain of EG‐2201 as well as dealkylation led to common metabolites with EG‐018. This has to be taken into account for interpretation of analytical findings. A differentiation between EG‐018 and EG‐2201 (n = 1) uptake is possible by the detection of compound‐specific in vivo phase I metabolites evaluated in this study. Out of 30 metabolites detected in urine samples of MDMB‐CHMCZCA users (n = 20), a metabolite mono‐hydroxylated at the cyclohexyl methyl tail is considered the most suitable compound‐specific consumption marker while a biotransformation product of mono‐hydroxylation in combination with hydrolysis of the terminal methyl ester function provides best sensitivity due to its high abundance.  相似文献   

17.
Reliable, sensitive, and comprehensive urine screening procedures by gas chromatography–mass spectrometry (GC–MS) or liquid chromatography–mass spectrometry (LC–MS) with low or high resolution (HR) are of high importance for drug testing, adherence monitoring, or detection of toxic compounds. Besides conventional urine sampling, dried urine spots are of increasing interest. In the present study, the power of LC–HR–MS/MS was investigated for comprehensive drug testing in urine with or without conjugate cleavage or using dried urine spots after on‐spot cleavage in comparison to established LC–MSn or GC–MS procedures. Authentic human urine samples (n = 103) were split in 4 parts. One aliquot was prepared by precipitation (UP), one by UP with conjugate cleavage (UglucP), one spot on filter paper cards and prepared by on‐spot cleavage followed by liquid extraction (DUSglucE), and one worked‐up by acid hydrolysis, liquid–liquid extraction, and acetylation for GC–MS analysis. The 3 series of LC–HR–MS/MS results were compared among themselves, to corresponding published LC–MSn data, and to screening results obtained by conventional GC–MS. The reference libraries used for the 3 techniques contained over 4500 spectra of parent compounds and their metabolites. The number of all detected hits (770 drug intakes) was set to 100%. The LC–HR–MS/MS approach detected 80% of the hits after UP, 89% after UglucP, and 77% after DUSglucE, which meant over one‐third more hits in comparison to the corresponding published LC–MSn results with ≤49% detected hits. The GC–MS approach identified 56% of all detected hits. In conclusion, LC–HR–MS/MS provided the best screening results after conjugate cleavage and precipitation.  相似文献   

18.
This article comprises the development and validation of a protocol for the qualitative analysis of 61 phase I synthetic cannabinoid metabolites in urine originating from 29 synthetic cannabinoids, combining solid‐phase extraction (SPE) utilizing a reversed phase silica‐based sorbent (phenyl) with liquid chromatography–tandem mass spectrometry (LC?MS/MS). Validation was performed according to the guidelines of the German Society of Toxicological and Forensic Chemistry. Sufficient chromatographic separation was achieved within a total runtime of 12.3 minutes. Validation included specificity and selectivity, limit of detection (LOD), recovery and matrix effects, as well as auto‐sampler stability of processed urine samples. LOD ranged between 0.025 ng/mL and 0.5 ng/mL in urine. Recovery ranged between 43% and 97%, with only two analytes exhibiting recoveries below 50%. However, for those two analytes, the LODs were 0.05 ng/mL in urine. In addition, matrix effects between 81% and 185% were determined, whereby matrix effects over 125% were observed for 10 non‐first‐generation synthetic cannabinoid metabolites. The developed method enables the rapid and sensitive detection of synthetic cannabinoid metabolites in urine, complementing the spectrum of existing analytical tools in forensic case work. Finally, application to 61 urine samples from both routine and autopsy case work yielded one urine sample that tested positive for ADB‐PINACA N‐pentanoic acid.  相似文献   

19.
Although hair is widely used to identify drug use, there is a risk of false positives due to environmental contamination. This especially applies to cocaine (COC). Several strategies such as detection of norcocaine (NCOC) or cocaethylene, metabolite concentration ratios or intricate washing procedures have been proposed to differentiate actual use from contamination. The aim of the present study was to identify hydroxy metabolites of COC in hair specimens, thus enabling unambiguous prove of ingestion. A suspect screening of 41 COC‐positive samples for these compounds was performed by liquid chromatography–quadrupole time of flight–mass spectrometry (LC–QTOF–MS). Once identified, mass transitions for o‐, p‐ and m‐isomers of hydroxy COC as well as p‐ and m‐isomers of hydroxy benzoylecgonine (BE) and hydroxy NCOC were introduced into a routine procedure for testing drugs of abuse in hair by liquid chromatography–tandem mass spectrometry (LC–MS/MS) which was applied to 576 hair samples. Hydroxy metabolites were present in 92.2% of COC‐positive hair samples; their detection rate exceeded that of cocaethylene and NCOC. Moreover, p‐OH‐BE, m‐OH‐BE as well as p‐OH‐NCOC and m‐OH‐NCOC have been identified for the first time in COC‐positive hair specimens. Hydroxy cocainics could be detected in samples having a negative conclusion on drug use applying hitherto established criteria. We suggest a more conclusive interpretation outcome including detection of hydroxy metabolites into the evaluation of COC‐positive hair samples.  相似文献   

20.
The use of bioactive peptides as a doping agent in both human and animal sports has become increasingly popular in recent years. As such, methods to control the misuse of bioactive peptides in equine sports have received attention. This paper describes a sensitive accurate mass method for the detection of 40 bioactive peptides and two non‐peptide growth hormone secretagogues (< 2 kDa) at low pg/mL levels in horse urine using ultra‐high performance liquid chromatography‐high resolution mass spectrometry (UHPLC/HRMS). A simple mixed‐mode cation exchange solid‐phase extraction (SPE) cartridge was employed for the extraction of 42 targets and/or their in vitro metabolites from horse urine. The final extract was analyzed using UHPLC/HRMS in positive electrospray ionization (ESI) mode under both full scan and data independent acquisition (DIA, for MS2). The estimated limits of detection (LoD) for most of the targets could reach down to 10 pg/mL in horse urine. This method was validated for qualitative detection purposes. The validation data, including method specificity, method sensitivity, extraction recovery, method precision, and matrix effect were reported. A thorough in vitro study was also performed on four gonadotrophin‐releasing factors (GnRHs), namely leuprorelin, buserelin, goserelin, and nafarelin, using the S9 fraction isolated from horse liver. The identified in vitro metabolites have been incorporated into the method for controlling the misuse of GnRHs. The applicability of this method was demonstrated by the identification of leuprorelin and one of its metabolites, Leu M4, in urine obtained after intramuscular administration of leuprorelin to a thoroughbred gelding (castrated horse).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号