首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We previously demonstrated that VEGF and its receptors were expressed in human herniated discs (HD). TNF‐α induced VEGF, resulting in neovascularization of disc tissues in a model of HD. The goal of the current research was to investigate the precise role of TNF‐α–induced VEGF and the mechanism of angiogenesis in disc tissues. We performed ELISAs, Western blots, and immunohistological examinations to assess the role of TNF‐α–induced VEGF using organ disc cultures with wild type, TNF receptor 1‐null (TNF‐RInull), or TNF receptor 2‐null (TNF‐RIInull) mice. VEGF induction was inhibited when we used TNF‐RInull‐derived disc tissues. NF‐κB pathway inhibitors also strongly suppressed VEGF induction. Thus, TNF‐α induced VEGF expression in disc cells primarily through the NF‐κB pathway. In addition, VEGF immunoreactivity was detected predominantly in annulus fibrosus cells and increased after TNF‐α stimulation. TNF‐α treatment also resulted in CD31 expression on endothelial cells and formation of an anastomosing network. In contrast, angiogenic activity was strongly inhibited in the presence of NF‐κB inhibitors or anti‐VEGF antibody. Our data show angiogenesis activity in disc tissues is regulated by VEGF and the NF‐κB pathway, both of which are induced by TNF‐α. The level of angiogenic activity in disc tissues was closely related to aging. Because neovascularization of HD is indispensable for HD resorption, the prognosis of HD and the rate of the resorption process in patients may vary as a function of the patient's age. © 2008 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 27:229–235, 2009  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
Gene targeting of the p50 and p52 subunits of NF‐κB has shown that NF‐κB plays a critical role in osteoclast differentiation. However, the molecular mechanism by which NF‐κB regulates osteoclast differentiation is still unclear. To address this issue, we analyzed alymphoplasia (aly/aly) mice in which the processing of p100 to p52 does not occur owing to an inactive form of NF‐κB‐inducing kinase (NIK). Aly/aly mice showed a mild osteopetrosis with significantly reduced osteoclast numbers. RANKL‐induced osteoclastogenesis from bone marrow cells of aly/aly mice also was suppressed. RANKL still induced the degradation of IκBα and activated classical NF‐κB, whereas processing of p100 to p52 was abolished by the aly/aly mutation. Moreover, RANKL‐induced expression of NFATc1 was impaired in aly/aly bone marrow. Overexpression of constitutively active IKKα or p52 restored osteoclastogenesis in aly/aly cells. Finally, transfection of either wild‐type p100, p100ΔGRR that cannot be processed to p52, or p52 into NF‐κB2‐deficient cells followed by RANKL treatment revealed a strong correlation between the number of osteoclasts induced by RANKL and the ratio of p52 to p100 expression. Our data provide a new finding for a previously unappreciated role for NF‐κB in osteoclast differentiation. © 2010 American Society for Bone and Mineral Research  相似文献   

13.
14.
Introduction: The bone marrow microenvironment is further enriched by growth factors released during osteoclastic bone resorption. It has been reported that the chemokine interleukin (IL)‐8 is a potent and direct activator of osteoclastic differentiation and bone resorption. However, the effect of bone‐derived growth factors on the IL‐8 production in human cancer cells and the promotion of osteoclastogenesis are largely unknown. The aim of this study was to investigate whether osteoblast‐derived TGF‐β1 is associated with osteolytic bone diseases. Materials and Methods: IL‐8 mRNA levels were measured using RT‐PCR analysis. MAPK phosphorylation was examined using the Western blot method. siRNA was used to inhibit the expression of TGF‐β1, BMP‐2, and IGF‐1. DNA affinity protein‐binding assay and chromatin immunoprecipitation assays were used to study in vitro and in vivo binding of c‐fos, c‐jun, p65, and p50 to the IL‐8 promoter. A transient transfection protocol was used to examine IL‐8, NF‐κB, and activator protein (AP)‐1 activity. Results: Osteoblast conditioned medium (OBCM) induced activation of IL‐8, AP‐1, and NF‐κB promoter in human cancer cells. Osteoblasts were transfected with TGF‐β1, BMP‐2, or IGF‐1 small interfering RNA, and the medium was collected after 48 h. TGF‐β1 but not BMP‐2 or IGF‐1 siRNA inhibited OBCM‐induced IL‐8 release in human cancer cells. In addition, TGF‐β1 also directly induced IL‐8 release in human cancer cells. Activation of AP‐1 and NF‐κB DNA‐protein binding and MAPKs after TGF‐β1 treatment was shown, and TGF‐β1–induced IL‐8 promoter activity was inhibited by the specific inhibitors of MAPK cascades. Conclusions: In this study, we provide evidence to show that the osteoblasts release growth factors, including TGF‐β1, BMP‐2, and IGF‐1. TGF‐β1 is the major contributor to the activation of extracellular signal‐related kinase (ERK), p38, and c‐Jun N‐terminal kinase (JNK), leading to the activation of AP‐1 and NF‐κB on the IL‐8 promoter and initiation of IL‐8 mRNA and protein release, thereby promoting osteoclastogenesis.  相似文献   

15.
Silent information regulator T1 (SirT1) is linked to longevity and negatively controls NF‐κB signaling, a crucial mediator of survival and regulator of both osteoclasts and osteoblasts. Here we show that NF‐κB repression by SirT1 in both osteoclasts and osteoblasts is necessary for proper bone remodeling and may contribute to the mechanisms linking aging and bone loss. Osteoclast‐ or osteoblast‐specific SirT1 deletion using the Sirtflox/flox mice crossed to lysozyme M‐cre and the 2.3 kb col1a1‐cre transgenic mice, respectively, resulted in decreased bone mass caused by increased resorption and reduced bone formation. In osteoclasts, lack of SirT1 promoted osteoclastogenesis in vitro and activated NF‐κB by increasing acetylation of Lysine 310. Importantly, this increase in osteoclastogenesis was blocked by pharmacological inhibition of NF‐κB. In osteoblasts, decreased SirT1 reduced osteoblast differentiation, which could also be rescued by inhibition of NF‐κB. In further support of the critical role of NF‐κB signaling in bone remodeling, elevated NF‐κB activity in IκBα+/? mice uncoupled bone resorption and formation, leading to reduced bone mass. These findings support the notion that SirT1 is a genetic determinant of bone mass, acting in a cell‐autonomous manner in both osteoblasts and osteoclasts, through control of NF‐κB and bone cell differentiation. © 2013 American Society for Bone and Mineral Research.  相似文献   

16.
The alternative NF‐κB pathway consists predominantly of NF‐κB‐inducing kinase (NIK), IκB kinase α (IKKα), p100/p52, and RelB. The hallmark of the alternative NF‐κB signaling is the processing of p100 into p52 through NIK, thus allowing the binding of p52 and RelB. The physiologic relevance of alternative NF‐κB activation in bone biology, however, is not well understood. To elucidate the role of the alternative pathway in bone homeostasis, we first analyzed alymphoplasic (aly/aly) mice, which have a defective NIK and are unable to process p100, resulting in the absence of p52. We observed increased bone mineral density (BMD) and bone volume, indicating an osteopetrotic phenotype. These mice also have a significant defect in RANKL‐induced osteoclastogenesis in vitro and in vivo. NF‐κB DNA‐binding assays revealed reduced activity of RelA, RelB, and p50 and no binding activity of p52 in aly/aly osteoclast nuclear extracts after RANKL stimulation. To determine the role of p100 itself without the influence of a concomitant lack of p52, we used p100?/? mice, which specifically lack the p100 inhibitor but still express p52. p100?/? mice have an osteopenic phenotype owing to the increased osteoclast and decreased osteoblast numbers that was rescued by the deletion of one allele of the relB gene. Deletion of both allele of relB resulted in a significantly increased bone mass owing to decreased osteoclast activity and increased osteoblast numbers compared with wild‐type (WT) controls, revealing a hitherto unknown role for RelB in bone formation. Our data suggest a pivotal role of the alternative NF‐κB pathway, especially of the inhibitory role of p100, in both basal and stimulated osteoclastogenesis and the importance of RelB in both bone formation and resorption. © 2010 American Society for Bone and Mineral Research  相似文献   

17.
Intervertebral disc (IVD) degeneration is associated with the imbalance between anabolism and catabolism of the nucleus pulposus (NP) extracellular matrix (ECM). Serum deprivation (SD) has been reported to exacerbate IVD degeneration; however, the effect of SD on ECM metabolism is not fully understood. Hypoxia plays important roles in maintaining the physiological functions of IVD cells; however, whether hypoxia has any effect on NP ECM production under conditions of SD is still unclear. In the current study, we established an in vitro SD model by exposing NP cells to serum‐free medium. SD decreased the expression of aggrecan and collagen II, as well as the production of sulfated glycosaminoglycan (sGAG) in a time‐dependent manner. However, hypoxia abolished SD‐mediated down‐regulation of aggrecan and collagen II expression via JNK1/2 activation. Moreover, hypoxia abolished SD‐induced MMP‐3 and MMP‐13 expression by inhibiting NF‐κB activation, p65 translocation, and MMP‐3 and MMP‐13 promoter activity. These results indicated that, hypoxia maintained ECM production under conditions of SD. This effect was elicited in part through JNK1/2‐mediated up‐regulation of matrix gene expression and down‐regulation of MMP expression, through the inhibition of NF‐κB. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2059–2066, 2017.
  相似文献   

18.
This study aimed to investigate the mechanism of Jiedu Huoxue decoction (JDHXD) in type III prostatitis based on the NF‐κB signalling pathway. Twenty‐six Sprague–Dawley male rats were divided into blank control, model, positive (Prostate Plus), low‐dose JDHXD, medium‐dose JDHXD and high‐dose JDHXD groups. Type III prostatitis rat model was established and confirmed with HE staining. NF‐кB P50 and NF‐κB P65 expression was detected with immunohistochemistry. NF‐κB mRNA expression was detected with qRT‐PCR. Protein expression of NF‐κB and its inhibitor Iκ‐Bα was detected with Western blot. Compared to the model group, a decrease in glandular hyperplasia and inflammation, and in NF‐кB P50 and NF‐κB P65 expression in the medium‐ and high‐dose JDHXD groups was observed. NF‐κB mRNA expression was significantly increased in the model group compared to control (p < 0.05), and significantly decreased in the JDHXD treatment groups compared to model group (p < 0.05). Protein expression of NF‐κB was significantly increased in the model and low‐dose JDHXD groups compared to control(p < 0.05), and significantly decreased in the medium‐ and high‐dose JDHXD groups compared to model group (p < 0.05). Protein expression of Iκ‐Bα was vice versa. JDHXD could be a potential treatment for type III prostatitis via its regulation of NF‐κB and Iκ‐Bα expression.  相似文献   

19.
Activation of NF‐κB and MAPK/activator protein 1 (AP‐1) signaling pathways by receptor activator NF‐κB ligand (RANKL) is essential for osteoclast activity. Targeting NF‐κB and MAPK/AP‐1 signaling to modulate osteoclast activity has been a promising strategy for osteoclast‐related diseases. In this study we examined the effects of maslinic acid (MA), a pentacyclic triterpene acid that is widely present in dietary plants, on RANKL‐induced osteoclastogenesis, osteoclast function, and signaling pathways by in vitro and in vivo assay systems. In mouse bone marrow monocytes (BMMs) and RAW264.7 cells, MA inhibited RANKL‐induced osteoclastogenesis in a dose‐dependent manner within nongrowth inhibitory concentration, and MA decreased osteoclastogenesis‐related marker gene expression, including TRACP, MMP9, c‐Src, CTR, and cathepsin K. Specifically, MA suppressed osteoclastogenesis and actin ring formation at early stage. In ovariectomized mice, administration of MA prevented ovariectomy‐induced bone loss by inhibiting osteoclast activity. At molecular levels, MA abrogated the phosphorylation of MAPKs and AP‐1 activity, inhibited the IκBα phosphorylation and degradation, blocked NF‐κB/p65 phosphorylation, nuclear translocation, and DNA‐binding activity by downregulating RANK expression and blocking RANK interaction with TRAF6. Together our data demonstrate that MA suppresses RANKL‐induced osteoclastogenesis through NF‐κB and MAPK/AP‐1 signaling pathways and that MA is a promising agent in the treatment of osteoclast‐related diseases such as osteoporosis. © 2011 American Society for Bone and Mineral Research.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号