首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PTH‐stimulated intracellular signaling is regulated by the cytoplasmic adaptor molecule β‐arrestin. We reported that the response of cancellous bone to intermittent PTH is reduced in β‐arrestin2?/? mice and suggested that β‐arrestins could influence the bone mineral balance by controlling RANKL and osteoprotegerin (OPG) gene expression. Here, we study the role of β‐arrestin2 on the in vitro development and activity of bone marrow (BM) osteoclasts (OCs) and Ephrins ligand (Efn), and receptor (Eph) mRNA levels in bone in response to PTH and the changes of bone microarchitecture in wildtype (WT) and β‐arrestin2?/? mice in models of bone remodeling: a low calcium diet (LoCa) and ovariectomy (OVX). The number of PTH‐stimulated OCs was higher in BM cultures from β‐arrestin2?/? compared with WT, because of a higher RANKL/OPG mRNA and protein ratio, without directly influencing osteoclast activity. In vivo, high PTH levels induced by LoCa led to greater changes in TRACP5b levels in β‐arrestin2?/? compared with WT. LoCa caused a loss of BMD and bone microarchitecture, which was most prominent in β‐arrestin2?/?. PTH downregulated Efn and Eph genes in β‐arrestin2?/?, but not WT. After OVX, vertebral trabecular bone volume fraction and trabecular number were lower in β‐arrestin2?/? compared with WT. Histomorphometry showed that OC number was higher in OVX‐β‐arrestin2?/? compared with WT. These results indicate that β‐arrestin2 inhibits osteoclastogenesis in vitro, which resulted in decreased bone resorption in vivo by regulating RANKL/OPG production and ephrins mRNAs. As such, β‐arrestins should be considered an important mechanism for the control of bone remodeling in response to PTH and estrogen deprivation.  相似文献   

2.
Osteoporosis is a major global health issue in elderly people. Because Wnt/β‐catenin signaling plays a key role in bone homeostasis, we screened activators of this pathway through cell‐based screening, and investigated indirubin‐3′‐oxime (I3O), one of the positive compounds known to inhibit GSK3β, as a potential anti‐osteoporotic agent. Here, we show that I3O activated Wnt/β‐catenin signaling via inhibition of the interaction of GSK3β with β‐catenin, and induced osteoblast differentiation in vitro and increased calvarial bone thickness ex vivo. Intraperitoneal injection of I3O increased bone mass and improved microarchitecture in normal mice and reversed bone loss in an ovariectomized mouse model of age‐related osteoporosis. I3O also increased thickness and area of cortical bone, indicating improved bone strength. Enhanced bone mass and strength correlated with activated Wnt/β‐catenin signaling, as shown by histological analyses of both trabecular and cortical bones. I3O also restored mass and density of bone in hindlimb‐unloaded mice compared with control, suspended mice, demonstrating bone‐restoration effects of I3O in non‐aged–related osteoporosis as well. Overall, I3O, a pharmacologically active small molecule, could be a potential therapeutic agent for the treatment and prevention of osteoporosis. © 2014 American Society for Bone and Mineral Research.  相似文献   

3.
The Wnt/β‐catenin signaling pathway is essential for bone cell viability and function and for skeletal integrity. To determine if β‐catenin in osteocytes plays a role in the bone anabolic response to mechanical loading, 18‐ to 24‐week‐old osteocyte β‐catenin haploinsufficient mice (Dmp1‐Cre × β‐catenin fl/ + ; HET cKO) were compared with their β‐catenin fl/fl (control) littermates. Trabecular bone volume (BV/TV) was significantly less (58.3%) in HET cKO females versus controls, whereas male HET cKO and control mice were not significantly different. Trabecular number was significantly less in HET cKO mice compared with controls for both genders, and trabecular separation was greater in female HET cKO mice. Osteoclast surface was significantly greater in female HET cKO mice. Cortical bone parameters in males and females showed subtle or no differences between HET cKO and controls. The right ulnas were loaded in vivo at 100 cycles, 2 Hz, 2500 µ?, 3 days per week for 3 weeks, and the left ulnas served as nonloaded controls. Calcein and alizarin complexone dihydrate were injected 10 days and 3 days before euthanization, respectively. Micro‐computed tomography (µCT) analysis detected an 8.7% and 7.1% increase in cortical thickness in the loaded right ulnas of male and female control mice, respectively, compared with their nonloaded left ulnas. No significant increase in new cortical bone formation was observed in the HET cKO mice. Histomorphometric analysis of control mice showed a significant increase in endocortical and periosteal mineral apposition rate (MAR), bone‐formation rate/bone surface (BFR/BS), BFR/BV, and BFR/TV in response to loading, but no significant increases were detected in the loaded HET cKO mice. These data show that deleting a single copy of β‐catenin in osteocytes abolishes the anabolic response to loading, that trabecular bone in females is more severely affected and suggest that a critical threshold of β‐catenin is required for bone formation in response to mechanical loading. © 2014 American Society for Bone and Mineral Research  相似文献   

4.
Excess of glucocorticoids, either due to disease or iatrogenic, increases bone resorption and decreases bone formation and is a leading cause of osteoporosis and bone fractures worldwide. Improved therapeutic strategies are sorely needed. We investigated whether activating Wnt/β‐catenin signaling protects against the skeletal actions of glucocorticoids, using female mice lacking the Wnt/β‐catenin antagonist and bone formation inhibitor Sost. Glucocorticoids decreased the mass, deteriorated the microarchitecture, and reduced the structural and material strength of bone in wild‐type (WT), but not in Sost–/– mice. The high bone mass exhibited by Sost–/– mice is due to increased bone formation with unchanged resorption. However, unexpectedly, preservation of bone mass and strength in Sost–/– mice was due to prevention of glucocorticoid‐induced bone resorption and not to restoration of bone formation. In WT mice, glucocorticoids increased the expression of Sost and the number of sclerostin‐positive osteocytes, and altered the molecular signature of the Wnt/β‐catenin pathway by decreasing the expression of genes associated with both anti‐catabolism, including osteoprotegerin (OPG), and anabolism/survival, such as cyclin D1. In contrast in Sost–/– mice, glucocorticoids did not decrease OPG but still reduced cyclin D1. Thus, in the context of glucocorticoid excess, activation of Wnt/β‐catenin signaling by Sost/sclerostin deficiency sustains bone integrity by opposing bone catabolism despite markedly reduced bone formation and increased apoptosis. This crosstalk between glucocorticoids and Wnt/β‐catenin signaling could be exploited therapeutically to halt resorption and bone loss induced by glucocorticoids and to inhibit the exaggerated bone formation in diseases of unwanted hyperactivation of Wnt/β‐catenin signaling. © 2016 American Society for Bone and Mineral Research.  相似文献   

5.
Plasticizer di(2‐ethylhexyl)phthalate (DEHP) can leach from medical devices such as blood storage bags and the tubing. Recently, epidemiological studies showed that phthalate metabolites levels in the urine are associated with low bone mineral density (BMD) in older women. The detailed effect and mechanism of DEHP on osteoblastogenesis and adipogenesis, and bone loss remain to be clarified. Here, we investigated the effect and mechanism of DEHP and its active metabolite mono(2‐ethylhexyl)phthalate (MEHP) on osteoblastogenesis and adipogenesis. The in vitro study showed that osteoblast differentiation of bone marrow stromal cells (BMSCs) was significantly and dose‐dependently decreased by DEHP and MEHP (10–100 µM) without cytotoxicity to BMSCs. The mRNA expressions of alkaline phosphatase, Runx2, osteocalcin (OCN), Wnt1, and β‐catenin were significantly decreased in DEHP‐ and MEHP‐treated BMSCs during differentiation. MEHP, but not DEHP, significantly increased the adipocyte differentiation of BMSCs and PPARγ mRNA expression. Both DEHP and MEHP significantly increased the ratios of phosphorylated β‐catenin/β‐catenin and inhibited osteoblastogenesis, which could be reversed by Wnt activator lithium chloride and PPARγ inhibitor T0070907. Moreover, exposure of mice to DEHP (1, 10, and 100 mg/kg) for 8 weeks altered BMD and microstructure. In BMSCs isolated from DEHP‐treated mice, osteoblastogenesis and Runx2, Wnt1, and β‐catenin expression were decreased, but adipogenesis and PPARγ expression were increased. These findings suggest that DEHP and its metabolite MEHP exposure may inhibit osteoblastogenesis and promote adipogenesis of BMSCs through the Wnt/β‐catenin‐regulated and thus triggering bone loss. PPARγ signaling may play an important role in MEHP‐ and DEHP‐induced suppression of osteogenesis. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1124–1134, 2018.
  相似文献   

6.
Wnt signaling is important for bone formation and osteoblastic differentiation. Recent findings indicate a stimulating role of Wnt signaling in bone mechanotransduction. However, negative effects of Wnt signaling on osteoblast differentiation and mineralization have been described as well. We conducted in vitro stretch experiments using human pre‐osteoblasts to study short‐ and long‐term effects of mechanical loading on Wnt/β‐catenin signaling. As the extracellular regulated kinase (ERK) pathway is known to be involved in mechanotransduction in osteoblasts, we also evaluated its role in Wnt/β‐catenin signaling. Stretch experiments up to 21 days (using stretch episodes of 15 min, alternated with 90 min rest) resulted in higher mineralization compared to static control cultures. We found that 15 min of stretch initially increased nuclear β‐catenin, but ultimately resulted in significant decrease at 12 and 40 h after stretch. Downregulation of Wnt‐responsive element activity 16 h after stretch, using a luciferase construct, further supported these findings. The presence of the ERK inhibitor U0126 did not alter the stretch‐induced decrease of β‐catenin levels. Our data indicate a biphasic effect of mechanical loading on β‐catenin in mineralizing human differentiating osteoblasts, which is independent of the ERK pathway. The osteogenic potential of our loading regime was confirmed by an increase in osteogenic differentiation markers such as alkaline phosphatase activity and calcium deposition after 3 weeks of culture. We conjecture that the biphasic aspect of Wnt/β‐catenin signaling with a strong decrease up to 40 h after the stretch induction, is important for the anabolic effects of mechanical stretch on bone. © 2009 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 28:390–396, 2010  相似文献   

7.
The cytokine receptor activator of nuclear factor‐κB ligand (RANKL) induces osteoclast formation from monocyte/macrophage lineage cells. However, the mechanisms by which RANKL expression is controlled in cells that support osteoclast differentiation are still unclear. We show that deletion of TSC1 (tuberous sclerosis complex 1) in murine B cells causes constitutive activation of mechanistic target of rapamycin complex 1 (mTORC1) and stimulates RANKL but represses osteoprotegerin (OPG) expression and subsequently promotes osteoclast formation and causes osteoporosis in mice. Furthermore, the regulation of RANKL/OPG and stimulation of osteoclastogenesis by mTORC1 was confirmed in a variety of RANKL‐expressing cells and in vivo. Mechanistically, mTORC1 controls RANKL/OPG expression through negative feedback inactivation of Akt, destabilization of β‐catenin mRNA, and downregulation of β‐catenin. Our findings demonstrate that mTORC1 activation‐stimulated RANKL expression in B cells is sufficient to induce bone loss and osteoporosis. The study also established a link between mTORC1 and the RANKL/OPG axis via negative regulation of β‐catenin. © 2016 American Society for Bone and Mineral Research.  相似文献   

8.
9.
Wnt signaling is essential for osteogenesis and also functions as an adipogenic switch, but it is not known if interrupting wnt signaling via knockout of β‐catenin from osteoblasts would cause bone marrow adiposity. Here, we determined whether postnatal deletion of β‐catenin in preosteoblasts, through conditional cre expression driven by the osterix promoter, causes bone marrow adiposity. Postnatal disruption of β‐catenin in the preosteoblasts led to extensive bone marrow adiposity and low bone mass in adult mice. In cultured bone marrow–derived cells isolated from the knockout mice, adipogenic differentiation was dramatically increased, whereas osteogenic differentiation was significantly decreased. As myoblasts, in the absence of wnt/β‐catenin signaling, can be reprogrammed into the adipocyte lineage, we sought to determine whether the increased adipogenesis we observed partly resulted from a cell‐fate shift of preosteoblasts that had to express osterix (lineage‐committed early osteoblasts), from the osteoblastic to the adipocyte lineage. Using lineage tracing both in vivo and in vitro we showed that the loss of β‐catenin from preosteoblasts caused a cell‐fate shift of these cells from osteoblasts to adipocytes, a shift that may at least partly contribute to the bone marrow adiposity and low bone mass in the knockout mice. These novel findings indicate that wnt/β‐catenin signaling exerts control over the fate of lineage‐committed early osteoblasts, with respect to their differentiation into osteoblastic versus adipocytic populations in bone, and thus offers potential insight into the origin of bone marrow adiposity. © 2012 American Society for Bone and Mineral Research.  相似文献   

10.
Reduced mechanical stress leads to bone loss, as evidenced by disuse osteoporosis in bedridden patients and astronauts. Osteocytes have been identified as major cells responsible for mechanotransduction; however, the mechanism underlying the response of bone to mechanical unloading remains poorly understood. In this study, we found that mechanical unloading of wildtype mice caused decrease of Wnt/β‐catenin signaling activity accompanied by upregulation of Sost. To further analyze the causal relationship among these events, Sost gene targeting mice were generated. We showed that sclerostin selectively inhibited Wnt/β‐catenin in vivo, and sclerostin suppressed the activity of osteoblast and viability of osteoblasts and osteocytes. Interestingly, Sost?/? mice were resistant to mechanical unloading‐induced bone loss. Reduction in bone formation in response to unloading was also abrogated in the mutant mice. Moreover, in contrast to wildtype mice, Wnt/β‐catenin signaling was not altered by unloading in Sost?/? mice. Those data implied that sclerostin played an essential role in mediating bone response to mechanical unloading, likely through Wnt/β‐catenin signaling. Our findings also indicated sclerostin is a promising target for preventing disuse osteoporosis.  相似文献   

11.
Thyroid hormone regulates terminal differentiation of growth plate chondrocytes in part through modulation of the Wnt/β‐catenin signaling pathway. Insulin‐like growth factor 1 (IGF‐1) has been described as a stabilizer of β‐catenin, and thyroid hormone is a known stimulator of IGF‐1 receptor expression. The purpose of this study was to test the hypothesis that IGF‐1 signaling is involved in the interaction between the thyroid hormone and the Wnt/β‐catenin signaling pathways in regulating growth plate chondrocyte proliferation and differentiation. The results show that IGF‐1 and the IGF‐ receptor (IGF1R) stimulate Wnt‐4 expression and β‐catenin activation in growth plate chondrocytes. The positive effects of IGF‐1/IGF1R on chondrocyte proliferation and terminal differentiation are partially inhibited by the Wnt antagonists sFRP3 and Dkk1. T3 activates IGF‐1/IGF1R signaling and IGF‐1‐dependent PI3K/Akt/GSK‐3β signaling in growth plate chondrocytes undergoing proliferation and differentiation to prehypertrophy. T3‐mediated Wnt‐4 expression, β‐catenin activation, cell proliferation, and terminal differentiation of growth plate chondrocytes are partially prevented by the IGF1R inhibitor picropodophyllin as well as by the PI3K/Akt signaling inhibitors LY294002 and Akti1/2. These data indicate that the interactions between thyroid hormone and β‐catenin signaling in regulating growth plate chondrocyte proliferation and terminal differentiation are modulated by IGF‐1/IGF1R signaling through both the Wnt and PI3K/Akt signaling pathways. While chondrocyte proliferation may be triggered by the IGF‐1/IGF1R‐mediated PI3K/Akt/GSK3β pathway, cell hypertrophy is likely due to activation of Wnt/β‐catenin signaling, which is at least in part initiated by IGF‐1 signaling or the IGF‐1‐activated PI3K/Akt signaling pathway. © 2010 American Society for Bone and Mineral Research  相似文献   

12.
Apert syndrome is one of the most severe craniosynostoses, resulting from gain‐of‐function mutations in fibroblast growth factor receptor 2 (FGFR2). Previous studies have shown that gain‐of‐function mutations of FGFR2 (S252W or P253R) cause skull malformation of human Apert syndrome by affecting both chondrogenesis and osteogenesis, underscoring the key role of FGFR2 in bone development. However, the effects of FGFR2 on bone formation at the adult stage have not been fully investigated. To investigate the role of FGFR2 in bone formation, we generated mice with tamoxifen‐inducible expression of mutant FGFR2 (P253R) at the adult stage. Mechanical bone marrow ablation (BMX) was performed in both wild‐type and Fgfr2 mutant (MT) mice. Changes in newly formed trabecular bone were assessed by micro‐computed tomography and bone histomorphometry. We found that MT mice exhibited increased trabecular bone formation and decreased bone resorption after BMX accompanied with a remarkable increase in bone marrow stromal cell recruitment and proliferation, osteoblast proliferation and differentiation, and enhanced Wnt/β‐catenin activity. Furthermore, pharmacologically inhibiting Wnt/β‐catenin signaling can partially reverse the increased trabecular bone formation and decreased bone resorption in MT mice after BMX. Our data demonstrate that gain‐of‐function mutation in FGFR2 exerts a Wnt/β‐catenin‐dependent anabolic effect on trabecular bone by promoting bone formation and inhibiting bone resorption at the adult stage. © 2017 American Society for Bone and Mineral Research.  相似文献   

13.
The correlation between BMP‐2 and osteosarcoma growth has gained increased interest in the recent years, however, there is still no consensus. In this study, we tested the effects of BMP‐2 on osteosarcoma cells through both in vitro and in vivo experiments. The effect of BMP‐2 on the proliferation, migration and invasion of osteosarcoma cells was tested in vitro. Subcutaneous and intratibial tumor models were used for the in vivo experiments in nude mice. The effects of BMP‐2 on EMT of osteosarcoma cells and the Wnt/β‐catenin signaling pathway were also tested using a variety of biochemical methods. In vitro tests did not show a significant effect of BMP‐2 on tumor cell proliferation. However, BMP‐2 increased the mobility of tumor cells and the invasion assay demonstrated that BMP‐2 promoted invasion of osteosarcoma cells in vitro. In vivo animal study showed that BMP‐2 dramatically enhanced tumor growth. We also found that BMP‐2 induced EMT of osteosarcoma cells. The expression levels of Axin2 and Dkk‐1 were both down regulated by BMP‐2 treatment, while β‐catenin, c‐myc and Cyclin‐D1 were all upregulated. The expression of Wnt3α and p‐GSK‐3β were also significantly upregulated indicating that the Wnt/β‐catenin signaling pathway was activated during the EMT of osteosarcoma driven by BMP‐2. From this study, we can conclude that BMP‐2 significantly promotes growth of osteosarcoma cells (143B, MG63), and enhances mobility and invasiveness of tumor cells as demonstrated in vitro. The underlying mechanism might be that BMP‐2 promotes EMT of osteosarcoma through the Wnt/β‐catenin signaling pathway. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1638–1648, 2019.  相似文献   

14.
15.
16.
Although inhibitors of bone resorption concomitantly reduce bone formation because of the coupling between osteoclasts and osteoblasts, inhibition or deletion of cathepsin k (CatK) stimulates bone formation despite decreasing resorption. The molecular mechanisms responsible for this increase in bone formation, particularly at periosteal surfaces where osteoclasts are relatively poor, remain unclear. Here we show that CatK pharmacological inhibition or deletion (Ctsk‐/‐ mice) potentiates mechanotransduction signals mediating cortical bone formation. We identify periostin (Postn) as a direct molecular target for degradation by CatK and show that CatK deletion increases Postn and β‐catenin expression in vivo, particularly at the periosteum. In turn, Postn deletion selectively abolishes cortical, but not trabecular, bone formation in CatK‐deficient mice. Taken together, these data indicate that CatK not only plays a major role in bone remodeling but also modulates modeling‐based cortical bone formation by degrading periostin and thereby moderating Wnt‐β‐catenin signaling. These findings provide novel insights into the role of CatK on bone homeostasis and the mechanisms of increased cortical bone volume with CatK mutations and pharmacological inhibitors. © 2017 American Society for Bone and Mineral Research.  相似文献   

17.
The activation of the canonical Wnt/β‐catenin signaling pathway in both mesenchymal stem cells and osteoblasts has been demonstrated to increase bone mass, showing promise for the treatment of low bone volume conditions such as osteoporosis. However, the possible side effects of manipulating this pathway have not been fully addressed. Previously, we reported that the constitutive activation of ß‐catenin in osteoblasts impaired vertebral linear growth. In the present study, β‐catenin was constitutively activated in osteocytes by crossing Catnb+/lox(exon 3) mice with dentin matrix protein 1(DMP1)‐Cre transgenic mice, and the effects of this activation on bone mass, bone growth and bone strength were then observed. DMP1‐Cre was found to be predominantly expressed in osteocytes, with weak expression in a small portion of osteoblasts and growth plate chondrocytes. After the activation, the cancellous bone mass was dramatically increased, almost filling the entire bone marrow cavity in long bones. However, bone strength decreased significantly. Thinner and more porous cortical bone along with impaired mineralization were responsible for the decrease in bone strength. Furthermore, the mice showed shorter stature with impaired linear growth of the long bones. Moreover, the concentration of serum phosphate decreased significantly after the activation of ß‐catenin, and a high inorganic phosphate (Pi) diet could partially rescue the phenotype of decreased mineralization level and impaired linear growth. Taken together, the constitutive activation of β‐catenin in osteocytes may increase cancellous bone mass; however, the activation also had adverse effects on bone strength and bone growth. These adverse effects should be addressed before the adoption of any therapeutic clinical application involving adjustment of the Wnt/β‐catenin signaling pathway. © 2015 American Society for Bone and Mineral Research.  相似文献   

18.
Alterations of Wnt signaling appear to be involved in the pathogenesis of osteosarcoma, presenting mutations of adenomatous polyposis coli (APC) and epigenetic downregulation of Wnt inhibitory factor 1. However, the precise role of Wnt effectors in the bone cancer progression remains unclear. We previously showed that Wnt/β‐catenin/T‐cell factor (TCF) activation are responsible for the repression of syndecan‐2, a key modulator of apoptosis and chemosensitivity in osteosarcoma cells, suggesting a role of Wnt signaling in chemoresistance. In this study, we investigated the functional relationship between syndecan‐2, Wnt/β‐catenin/TCF signaling and chemosensitivity in these cells. To this goal, we selected resistant osteosarcoma cells from sensitive human cell lines using repeated exposures to doxorubicin. In doxorubicin‐responsive but not in doxorubicin‐resistant‐derived cells syndecan‐2 expression was upregulated by doxorubicin treatment. Moreover, syndecan‐2 overexpression restored the sensitivity to doxorubicin in resistant‐derived cells. We found that syndecan‐2 induction by doxorubicin is forkhead box protein O3A (Foxo3a)‐dependent. Foxo3a overexpression resulted in increased syndecan‐2 expression in sensitive and resistant‐derived cells. Doxorubicin modulated Foxo3a binding on syndecan‐2 gene promoter and induced Foxo‐dependent inhibition of Wnt/TCF activity. Conversely, β‐catenin/TCF activation impaired syndecan‐2 induction by doxorubicin, indicating that Wnt signaling is competing with the action of the cytotoxic drug. However, β‐catenin was also found to be required for Foxo3a activity. Consistently, Dickkopf 1 (DKK1) and secreted frizzled‐related protein 1 (sFRP‐1) altered doxorubicin action in sensitive cells, whereas inhibition of TCF activity strongly decreased cell viability and increased sensitivity to doxorubicin in sensitive and resistant cells. TCF inhibition also increased the effect of doxorubicin treatment in an orthotopic bone tumor model in mice. Altogether, these data provide evidence that the repression of syndecan‐2 by Wnt/β‐catenin/TCF signaling contributes to the resistance of osteosarcoma cells to doxorubicin and suggest that TCF inhibition may represent a novel therapeutic strategy in osteosarcoma. © 2012 American Society for Bone and Mineral Research.  相似文献   

19.
20.
Osteoarthritis (OA) is a degenerative joint disease, and the mechanism of its pathogenesis is poorly understood. Recent human genetic association studies showed that mutations in the Frzb gene predispose patients to OA, suggesting that the Wnt/β‐catenin signaling may be the key pathway to the development of OA. However, direct genetic evidence for β‐catenin in this disease has not been reported. Because tissue‐specific activation of the β‐catenin gene (targeted by Col2a1‐Cre) is embryonic lethal, we specifically activated the β‐catenin gene in articular chondrocytes in adult mice by generating β‐catenin conditional activation (cAct) mice through breeding of β‐cateninfx(Ex3)/fx(Ex3) mice with Col2a1‐CreERT2 transgenic mice. Deletion of exon 3 of the β‐catenin gene results in the production of a stabilized fusion β‐catenin protein that is resistant to phosphorylation by GSK‐3β. In this study, tamoxifen was administered to the 3‐ and 6‐mo‐old Col2a1‐CreERT2;β‐cateninfx(Ex3)/wt mice, and tissues were harvested for histologic analysis 2 mo after tamoxifen induction. Overexpression of β‐catenin protein was detected by immunostaining in articular cartilage tissues of β‐catenin cAct mice. In 5‐mo‐old β‐catenin cAct mice, reduction of Safranin O and Alcian blue staining in articular cartilage tissue and reduced articular cartilage area were observed. In 8‐mo‐old β‐catenin cAct mice, cell cloning, surface fibrillation, vertical clefting, and chondrophyte/osteophyte formation were observed. Complete loss of articular cartilage layers and the formation of new woven bone in the subchondral bone area were also found in β‐catenin cAct mice. Expression of chondrocyte marker genes, such as aggrecan, Mmp‐9, Mmp‐13, Alp, Oc, and colX, was significantly increased (3‐ to 6‐fold) in articular chondrocytes derived from β‐catenin cAct mice. Bmp2 but not Bmp4 expression was also significantly upregulated (6‐fold increase) in these cells. In addition, we also observed overexpression of β‐catenin protein in the knee joint samples from patients with OA. These findings indicate that activation of β‐catenin signaling in articular chondrocytes in adult mice leads to the premature chondrocyte differentiation and the development of an OA‐like phenotype. This study provides direct and definitive evidence about the role of β‐catenin in the development of OA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号