首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Background: Methoxyflurane nephrotoxicity results from its metabolism, which occurs by both dechlorination (to methoxydifluoroacetic acid [MDFA]) and O-demethylation (to fluoride and dichloroacetic acid [DCAA]). Inorganic fluoride can be toxic, but it remains unknown why other anesthetics, commensurately increasing systemic fluoride concentrations, are not toxic. Fluoride is one of many methoxyflurane metabolites and may itself cause toxicity and/or reflect formation of other toxic metabolite(s). This investigation evaluated the disposition and renal effects of known methoxyflurane metabolites.

Methods: Rats were given by intraperitoneal injection the methoxyflurane metabolites MDFA, DCAA, or sodium fluoride (0.22, 0.45, 0.9, or 1.8 mmol/kg followed by 0.11, 0.22, 0.45, or 0.9 mmol/kg on the next 3 days) at doses relevant to metabolite exposure after methoxyflurane anesthesia, or DCAA and fluoride in combination. Renal histology and function (blood urea nitrogen, urine volume, urine osmolality) and metabolite excretion in urine were assessed.

Results: Methoxyflurane metabolite excretion in urine after injection approximated that after methoxyflurane anesthesia, confirming the appropriateness of metabolite doses. Neither MDFA nor DCAA alone had any effects on renal function parameters or necrosis. Fluoride at low doses (0.22, then 0.11 mmol/kg) decreased osmolality, whereas higher doses (0.45, then 0.22 mmol/kg) also caused diuresis but not significant necrosis. Fluoride and DCAA together caused significantly greater tubular cell necrosis than fluoride alone.  相似文献   


2.
Background: Methoxyflurane nephrotoxicity is mediated by cytochrome P450-catalyzed metabolism to toxic metabolites. It is historically accepted that one of the metabolites, fluoride, is the nephrotoxin, and that methoxyflurane nephrotoxicity is caused by plasma fluoride concentrations in excess of 50 micro Meter. Sevoflurane also is metabolized to fluoride ion, and plasma concentrations may exceed 50 micro Meter, yet sevoflurane nephrotoxicity has not been observed. It is possible that in situ renal metabolism of methoxyflurane, rather than hepatic metabolism, is a critical event leading to nephrotoxicity. We tested whether there was a metabolic basis for this hypothesis by examining the relative rates of methoxyflurane and sevoflurane defluorination by human kidney microsomes.

Methods: Microsomes and cytosol were prepared from kidneys of organ donors. Methoxyflurane and sevoflurane metabolism were measured with a fluoride-selective electrode. Human cytochrome P450 isoforms contributing to renal anesthetic metabolism were identified by using isoform-selective inhibitors and by Western blot analysis of renal P450s in conjunction with metabolism by individual P450s expressed from a human hepatic complementary deoxyribonucleic acid library.

Results: Sevoflurane and methoxyflurane did undergo defluorination by human kidney microsomes. Fluoride production was dependent on time, reduced nicotinamide adenine dinucleotide phosphate, protein concentration, and anesthetic concentration. In seven human kidneys studied, enzymatic sevoflurane defluorination was minimal, whereas methoxyflurane defluorination rates were substantially greater and exhibited large interindividual variability. Kidney cytosol did not catalyze anesthetic defluorination. Chemical inhibitors of the P450 isoforms 2E1, 2A6, and 3A diminished methoxyflurane and sevoflurane defluorination. Complementary deoxyribonucleic acid-expressed P450s 2E1, 2A6, and 3A4 catalyzed methoxyflurane and sevoflurane metabolism, in diminishing order of activity. These three P450s catalyzed the defluorination of methoxyflurane three to ten times faster than they did that of sevoflurane. Expressed P450 2B6 also catalyzed methoxyflurane defluorination, but 2B6 appeared not to contribute to renal microsomal methoxyflurane defluorination because the P450 2B6-selective inhibitor had no effect.  相似文献   


3.
4.
5.
BACKGROUND: Methoxyflurane nephrotoxicity results from biotransformation; inorganic fluoride is a toxic metabolite. Concern exists about potential renal toxicity from volatile anesthetic defluorination, but many anesthetics increase fluoride concentrations without consequence. Methoxyflurane is metabolized by both dechlorination to methoxydifluoroacetic acid (MDFA, which may degrade to fluoride) and O-demethylation to fluoride and dichloroacetatic acid. The metabolic pathway responsible for methoxyflurane nephrotoxicity has not, however, been identified, which was the aim of this investigation. METHODS: Experiments evaluated methoxyflurane metabolite formation and effects of enzyme induction or inhibition on methoxyflurane metabolism and toxicity. Rats pretreated with phenobarbital, barium sulfate, or nothing were anesthetized with methoxyflurane, and renal function and urine methoxyflurane metabolite excretion were assessed. Phenobarbital effects on MDFA metabolism and toxicity in vivo were also assessed. Metabolism of methoxyflurane and MDFA in microsomes from livers of pretreated rats was determined in vitro. RESULTS: Phenobarbital pretreatment increased methoxyflurane nephrotoxicity in vivo (increased diuresis and blood urea nitrogen and decreased urine osmolality) and induced in vitro hepatic microsomal methoxyflurane metabolism to inorganic fluoride (2-fold), dichloroacetatic acid (1.5-fold), and MDFA (5-fold). In contrast, phenobarbital had no influence on MDFA renal effects in vivo or MDFA metabolism in vitro or in vivo. MDFA was neither metabolized to fluoride nor nephrotoxic. Barium sulfate diminished methoxyflurane metabolism and nephrotoxicity in vivo. CONCLUSIONS: Fluoride from methoxyflurane anesthesia derives from O-demethylation. Phenobarbital increases in methoxyflurane toxicity do not seem attributable to methoxyflurane dechlorination, MDFA toxicity, or MDFA metabolism to another toxic metabolite, suggesting that nephrotoxicity is attributable to methoxyflurane O-demethylation. Fluoride, one of many metabolites from O-demethylation, may be toxic and/or reflect formation of a different toxic metabolite. These results may have implications for interpreting anesthetic defluorination, volatile anesthetic use, and methods to evaluate anesthetic toxicity.  相似文献   

6.
7.
8.
9.
BACKGROUND: Methoxyflurane nephrotoxicity results from its metabolism, which occurs by both dechlorination (to methoxydifluoroacetic acid [MDFA]) and O-demethylation (to fluoride and dichloroacetic acid [DCAA]). Inorganic fluoride can be toxic, but it remains unknown why other anesthetics, commensurately increasing systemic fluoride concentrations, are not toxic. Fluoride is one of many methoxyflurane metabolites and may itself cause toxicity and/or reflect formation of other toxic metabolite(s). This investigation evaluated the disposition and renal effects of known methoxyflurane metabolites. METHODS: Rats were given by intraperitoneal injection the methoxyflurane metabolites MDFA, DCAA, or sodium fluoride (0.22, 0.45, 0.9, or 1.8 mmol/kg followed by 0.11, 0.22, 0.45, or 0.9 mmol/kg on the next 3 days) at doses relevant to metabolite exposure after methoxyflurane anesthesia, or DCAA and fluoride in combination. Renal histology and function (blood urea nitrogen, urine volume, urine osmolality) and metabolite excretion in urine were assessed. RESULTS: Methoxyflurane metabolite excretion in urine after injection approximated that after methoxyflurane anesthesia, confirming the appropriateness of metabolite doses. Neither MDFA nor DCAA alone had any effects on renal function parameters or necrosis. Fluoride at low doses (0.22, then 0.11 mmol/kg) decreased osmolality, whereas higher doses (0.45, then 0.22 mmol/kg) also caused diuresis but not significant necrosis. Fluoride and DCAA together caused significantly greater tubular cell necrosis than fluoride alone. CONCLUSIONS: Methoxyflurane nephrotoxicity seems to result from O-demethylation, which forms both fluoride and DCAA. Because their co-formation is unique to methoxyflurane compared with other volatile anesthetics and they are more toxic than fluoride alone, this suggests a new hypothesis of methoxyflurane nephrotoxicity. This may explain why increased fluoride formation from methoxyflurane, but not other anesthetics, is associated with toxicity. These results may have implications for the interpretation of clinical anesthetic defluorination, use of volatile anesthetics, and the laboratory methods used to evaluate potential anesthetic toxicity.  相似文献   

10.
11.
Recurrent focal glomerulosclerosis (FSGS) in renal allografts has remained a frustrating and enigmatic disease. Recent studies on gene mutations encoding podocin and other components of the slit-diaphragm in patients with native kidney nephrotic syndrome have underscored the heterogenecity of the idiopathic form of FSGS. While familial FSGS rarely recurs following transplantation, the sporadic variety of FSGS is associated with a 30% recurrence rate. The patients with the sporadic variety of FSGS who have homozygous or complex heterozygous podocin mutations have a low recurrence rate. In the other patients with sporadic FSGS, a more complex and likely multifactorial etiology accounts for the recurrence of FSGS. The role of CD80 expression on podocytes is intriguing but requires confirmation in kidney biopsies of patients with recurrent FSGS. Recent findings on podocin genomics, the permeability factor and CD80 expression may ultimately lead to a better understanding of recurrent FSGS as well as a more effective approach to its prevention and treatment.  相似文献   

12.
The cyclin-dependent kinase inhibitor p27 (Kip1) is an important cell cycle regulatory gene in breast cancer, and decreased p27 expression is associated with poor prognosis. Some investigations of its role in mammary development have demonstrated reduced cyclin D1 expression and consequent lack of lobuloalveolar development, but others have found increased cyclin E-Cdk2 activity and increased proliferation balanced by increased apoptosis. It is unclear at present why these apparently divergent results have been obtained. Mice with reduced p27 gene dosage alone do not develop mammary carcinomas but do display substantially shorter tumor latency upon overexpression of erbB2, consistent with a role for p27 as a mammary tumor suppressor gene. In this review we summarize these and other data addressing the role of p27 in normal mammary epithelium and experimental models of mammary carcinogenesis.  相似文献   

13.
We recently demonstrated that the net accumulation of 3H-norepinephrine in the rat pheochromocytoma cell line PC12 was reduced by anesthetic concentrations of n-alkanols and the volatile anesthetics halothane, enflurane, isoflurane, and methoxyflurane. In PC12 cells, as in adrenergic neurons, norepinephrine is transported across the plasma membrane by a saturable, high-affinity, carrier-mediated mechanism (uptake1), which follows Michaelis-Menten kinetics, is energy- and sodium-dependent, and is inhibited by low concentrations of cocaine and the tricyclic antidepressant desipramine. Although uptake1 is the most important process for the removal of norepinephrine from the synaptic cleft, the net accumulation of norepinephrine within the neuron also depends on other factors including its vesicular uptake and storage within the granules, its metabolism by monoamine oxidase (MAO) and catechol-O-methyltransferase (COMT), and the efflux of its more lipophilic metabolites. In our previous report we could not exclude the contribution of any of these factors to the observed inhibitory effects of volatile substances. Therefore, the aim of the present study with ethanol and methoxyflurane was: (1) to elucidate further the exact mechanism responsible for the reduction of the norepinephrine accumulation; and (2) to investigate the anesthetics' interaction with the substrate recognition site, which is identical with the desipramine binding site on the norepinephrine carrier. METHODS. For 3H-norepinephrine uptake experiments, PC12 cells were cultured on dishes (60 mm, Nunc) coated with polyornithine. Reserpine (10 microM) was added to the culture 24 h before the experiment to deplete endogenous norepinephrine. The initial carrier-mediated transport rate (60 s) was measured as previously described. 3H-desipramine equilibrium binding was determined with isolated plasma membranes prepared from PC12 cells grown in suspension culture. The carrier-mediated uptake of 3H-norepinephrine and the specific 3H-desipramine binding were defined as those inhibited by 1 microM nisoxetine. All buffers contained 10 microM pargyline and 10 microM U-0521 to inhibit MAO and COMT. Incubations were done in the presence and absence of methoxyflurane (1% and 2% vol/vol in synthetic air containing 5% CO2) or ethanol (5% vol/vol). Media had been equilibrated with methoxyflurane by bubbling (30 min) and were routinely checked by gas chromatography. RESULTS AND DISCUSSION. Methoxyflurane and ethanol inhibited uptake1. However, reduction of uptake1 was far less pronounced than that previously found for the net accumulation of norepinephrine. Even at a vaporous concentration of 2% (corresponding with an over 15-fold half-maximal inhibitory concentration for norepinephrine accumulation), methoxyflurane produced only 58% inhibition of the high-affinity uptake...  相似文献   

14.
15.
16.
Introduction: Despite advances in the surgical and perioperative management of patients with hypoplastic left heart syndrome (HLHS), outcomes for this high‐risk group of patients remains suboptimal. The hybrid approach [bilateral pulmonary artery (PA) banding, ductal stenting, balloon atrial septostomy], is an emerging alternative therapy for the management of HLHS, which defers the risks of a major surgical repair until the infants are older. This article will describe our experience providing the anesthetic management of patients undergoing the hybrid procedure. Methods: After Institutional Review Board approval, we retrospectively reviewed the records of 77 patients who underwent the hybrid procedure as neonates between July 2002 and August 2008. We reviewed both the anesthetic and intensive care records. Results: The hybrid procedure was performed in 77 patients (31 female and 46 male). The average age of the patients was 11.8 days with an average weight of 2.98 kg. Fentanyl was used for analgesia at an average dose of 5.7 mcg·kg?1. The average increase in the systolic blood pressure after placement of the right and left PA bands was 11.3 mmHg. The average drop in the systemic saturation after placement of the bands was 7%, with an average postband and stent SaO2 of 82%. Twenty‐one patients received blood transfusion (27.3%) at an average dose of 43.5 ml (14.5 ml·kg?1). Forty patients received albumin during the case (51.9%) at an average dose of 23.2 ml (7.7 ml·kg?1). Seventeen patients arrived at the hybrid suite already intubated, and no attempt was made to extubate these patients at the end of the case. Thirty‐six patients were extubated at the end of the procedure, and a total of 64.9% of patients were extubated within the first 24 h postoperatively. Patients had notably stable hemodynamics throughout the first 24 h in the intensive care unit. Discussion: Patients undergoing the hybrid procedure have relatively stable intraoperative and early postoperative hemodynamics. The procedure is performed without cardiopulmonary bypass (CPB) and with minimal narcotic and anesthetic exposure. Patients typically do not require blood transfusions or inotropic support and are extubated at either the end of the procedure or within 24 h of ICU admission. In our experience, the anesthetic management of patients undergoing the hybrid procedure is straightforward and requires relatively few interventions when compared to traditional neonatal surgical repairs. Deferring the risks of anesthesia, CPB, hypothermic circulatory arrest, and prolonged postoperative sedation may yield developmental advantages to patients born with HLHS.  相似文献   

17.
18.
It is documented that chronic renal diseases are gender related. The protective role of angiotensin II receptor 1 (AT1) blocker losartan against cisplatin (CP)-induced nephrotoxicity was reported in males, but the role of gender is not well known. Six groups of Wistar rats were studied. Rats were divided into two groups of males and females to receive losartan for 9 days plus a single dose of CP (7 mg/kg) at day 3. Two positive control groups of males and females received the same regimen, except that they received saline instead of losartan. The negative control groups received saline instead of CP at day 3 and also saline instead of losartan. The blood samples were obtained, and the kidneys underwent histopathological investigations. All the CP-treated animals lost weight, but losartan promoted weight loss in females (p < 0.05). Coadministration of losartan and CP in females, but not in males, significantly increased the serum levels of blood urea nitrogen and creatinine when compared with the negative and positive control groups (p < 0.05). No significant differences were observed in serum levels of total proteins, magnesium, and nitrite between the groups. Administration of CP increased the kidney tissue damage score (KTDS) and normalized kidney weight (p < 0.05). However, in the presence of AT1 blockade, the KTDS (nonsignificantly) and normalized kidney weight (significantly, p < 0.05) increased in the CP-treated females. Such an observation was not seen in males. Losartan may prevent CP-induced nephrotoxicity in males, but it promotes the CP-induced damage in females, which may be related to the renin-angiotensin system receptors in the kidneys.  相似文献   

19.
《Renal failure》2013,35(8):1046-1051
It is documented that chronic renal diseases are gender related. The protective role of angiotensin II receptor 1 (AT1) blocker losartan against cisplatin (CP)-induced nephrotoxicity was reported in males, but the role of gender is not well known. Six groups of Wistar rats were studied. Rats were divided into two groups of males and females to receive losartan for 9 days plus a single dose of CP (7 mg/kg) at day 3. Two positive control groups of males and females received the same regimen, except that they received saline instead of losartan. The negative control groups received saline instead of CP at day 3 and also saline instead of losartan. The blood samples were obtained, and the kidneys underwent histopathological investigations. All the CP-treated animals lost weight, but losartan promoted weight loss in females (p < 0.05). Coadministration of losartan and CP in females, but not in males, significantly increased the serum levels of blood urea nitrogen and creatinine when compared with the negative and positive control groups (p < 0.05). No significant differences were observed in serum levels of total proteins, magnesium, and nitrite between the groups. Administration of CP increased the kidney tissue damage score (KTDS) and normalized kidney weight (p < 0.05). However, in the presence of AT1 blockade, the KTDS (nonsignificantly) and normalized kidney weight (significantly, p < 0.05) increased in the CP-treated females. Such an observation was not seen in males. Losartan may prevent CP-induced nephrotoxicity in males, but it promotes the CP-induced damage in females, which may be related to the renin–angiotensin system receptors in the kidneys.  相似文献   

20.
Etidocaine ist ein neues Lokalanaesthetikum vom Typus der Anilide, strukturell dem Lidocain verwandt. Bei vorklinischen Tests zeigte es eine vierfache Wirkungsstärke gegenüber dem Lidocain und in wirkungsgleichen Konzentrationen war seine Wirkungsdauer doppelt so lang als die des Lidocain. Bei 31 Patienten wurden Intercostalblockaden mit 30–60 ml Etidocaine in Konzentrationen von 0,25 und 0,5% unter Zusatz von 1:200.000 Adrenalin durchgeführt. Innerhalb von 6–9 Minuten trat komplette sensorische Anaesthesie auf und dauerte ungefähr 790 Minuten. 50 Patienten erhielten eine lumbale Epiduralanaesthesie mit 20 ml Etidocaine in steigenden Konzentrationen von 0,25%–1,5% unter Zusatz von Adrenalin 1:200.000. Bei alien Konzentrationen war die Anaesthesie in weniger als 20 Minuten komplett und dauerte zwischen 384 und 655 Minuten. Interessanterweise zeigte die l,5%ige Lösung eine kürzere Wirkungsdauer als die 1%ige. Bis zu einschließlich 300 mg Etidocaine mit Adrenalin 1:200.000 wurden keine Zeichen von lokaler oder systemischer Toxizität, kardiovaskulären Störungen oder abnorme Organfunktionen beobachtet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号