首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Antibodies against chicken and Torpedo agrin were used for immunofluorescent staining in order to assess the spatial distribution and temporal appearance of agrin-like molecules at newly formed synaptic contacts in cultures of embryonic Xenopus nerve and muscle cells. The antibodies stained Xenopus neuromuscular junctions and removed ACh receptor (AChR)-aggregating activity from extracts of Xenopus brain. Immunofluorescence was observed at almost all nerve-induced AChR aggregates, even at microaggregates in cocultures as young as 7.5 hr and at nerve-muscle contacts less than 2 hr old. Microdeposits of immunofluorescence extended as far distally as, or farther than, the microaggregates of AChRs along young nerve-muscle contacts. They also occurred along portions of growing neurites that were not in contact with muscle. By contrast, immunofluorescence was rarely observed at the nonsynaptic aggregates of AChRs that form on noninnervated muscle cells. These results raise the possibility that neuronally derived microaggregates of agrin-like molecules may be primary sites of nerve-induced clustering of AChRs, and they indicate that these molecules are present at embryonic nerve-muscle synapses from the very onset of AChR aggregation. The cellular origin of the agrin-like molecules at synapses was examined in cross-species cocultures in which the neurons and muscle cells were obtained from embryos of Xenopus laevis and Rana pipiens. Immunofluorescent staining with anti-agrin antibodies reactive at both Rana and Xenopus neuromuscular junctions revealed immunofluorescence at AChR aggregates along nerve-muscle contacts involving both cross-species combinations. Immunofluorescent staining with an anti-agrin antibody reactive at Rana but not at Xenopus neuromuscular junctions was positive only at cross-species nerve-muscle contacts involving Rana neurons. These results provide the first demonstration that embryonic neurons supply agrin-like molecules to the synapses they form with embryonic muscle cells.  相似文献   

2.
In order to study how neuromuscular junctions grow, we have repeatedly viewed the same junctions in mouse sternomastoid muscles at monthly intervals from 2 weeks to 18 months of age. Motor nerve terminals were stained with the nontoxic fluorescent dye 4-Di-2-ASP (Magrassi et al., 1987), and postsynaptic ACh receptors were labeled with fluorescently tagged alpha-bungarotoxin. Neuromuscular junctions grew primarily by expansion of existing motor nerve terminal and postsynaptic receptor regions without the addition or loss of synaptic areas. The expansion of pre- and postsynaptic specializations was precisely matched, suggesting that as neuromuscular junctions grow, the opposing specializations enlarge simultaneously. Each neuromuscular junction grew in length and width at the same rate that muscle fibers enlarged in those 2 dimensions, suggesting that junctional growth might be a mechanical consequence of muscle fiber growth. Repeated visualization of ACh receptors over time showed that previously labeled receptors spread apart in the membrane occupying a progressively larger area as muscle fibers grew. At the same time, new receptors were intercalated throughout the enlarged postsynaptic area. Thus, the growth of postsynaptic regions appears to be directly related to the expansion of the muscle fiber membrane as muscle fibers grow. The maintained alignment between growing motor nerve terminals and postsynaptic regions suggests that nerve terminal growth may be a consequence of its adhesion to growing postsynaptic specializations. This conclusion is supported by the coextensive stretching of motor nerve terminals and postsynaptic regions when muscle fibers are stretched. Thus, the growth of motor nerve terminals is coupled to the growth of postsynaptic regions, and the growth of the postsynaptic regions is in turn coupled to the growth of muscle fibers. In this way, the branching pattern of neuromuscular junctions may be stably maintained despite ongoing enlargement of synaptic area.  相似文献   

3.
Chronic block of nerve-muscle activity is known to induce sprouting of motor nerve terminals and to enhance transmitter release at the neuromuscular junction. Increased transmitter release has been assumed to be a physiological correlate of disuse-induced sprouting of nerve terminals. We examined this assumption in the rat extensor digitorum longus muscle following chronic conduction block of the sciatic nerve with TTX. The minimal period of nerve block required for the expression of terminal sprouting was 3 d, whereas transmitter release, measured by the quantal analysis of end-plate potentials, was already enhanced within 24 hr of nerve block. Following 6 d of nerve block, sprouting was observed in about 35% of the motor nerve terminals examined. Under this condition, the total length of individual terminals was significantly greater in the terminals with sprouts than those without sprouts. However, enhancement of transmitter release occurred uniformly at these junctions regardless of the presence or absence of terminal sprouts. Also, transmitter release enhanced by nerve block for 2 d remained elevated for at least 4 d even after resumption of nerve activity without the formation of terminal sprouts. It is concluded that terminal sprouting and increased transmitter release induced in disused neuromuscular junctions are not causally related and that the signals for inducing these 2 events are at least quantitatively different.  相似文献   

4.
Intracellular microelectrode recordings from chick dystrophic myotubes in cell culture reveal a capability for innervation by neurones from either dystrophic or normal embryos. Neither neuronal class differentially affects the incidence of synapse formation at neuromuscular junctions (about 75%) or at neural junctions (about 85%), the PSP frequency (about 10/sec), the maximum quantal content at neuromuscular junctions (over 70), or the resting membrane potentials of either myotubes (about − 53 mV) or neurones (about − 43 mV). In each culture conditon about 20% of nerve-muscle cell pairs exhibit bidirectional electrical coupling. Dual innervation of a muscle and nerve cell from a common presynaptic source sometimes occurs and both muscle and nerve cells probably have multiple innervation. Assuming the capability for expression in culture of genetic differences between neurones from the dystrophic and normal chick, we conclude that these differences are not significant in the regulation of synapse formation in dystrophic chick nerve-muscle cell culture.  相似文献   

5.
Rabies as a transneuronal tracer of circuits in the central nervous system   总被引:1,自引:0,他引:1  
The ability of selected neurotropic viruses to move transneuronally in the central nervous system makes them particularly well suited for use as tracers in experimental neuroanatomy. Recently, techniques have been developed for using rabies virus as a transneuronal tracer. Several features of rabies infection make the virus particularly useful for this purpose. We examined transneuronal transport of rabies in the central nervous system of primates after intracortical and intramuscular injections. Rabies was transported in a time-dependent manner to infect synaptically-connected chains of neurons. Transport occurred exclusively in the retrograde direction. At the survival times we used, rabies infection was restricted to neurons and did not cause cell lysis. There are several methodological and safety issues that must be considered when designing studies that use rabies as a transneuronal tracer. When appropriate protocols and laboratory practices have been established, transneuronal transport of rabies can be a safe and efficient tool for revealing the organization of multi-synaptic circuits in the central nervous system.  相似文献   

6.
The present study was undertaken to examine the fate of neuromuscular junctions in C57BL/Wlds mice (formerly known as OLA mice) after nerve injury. When a peripheral nerve is injured, the distal axons normally degenerate within 1-3 days. For motor axons, an early event is deterioration of motor nerve terminals at neuromuscular junctions. Previously, the vulnerability of motor terminals has been attributed either to a 'signal'originating at the site of nerve injury and transported rapidly to the terminals or to their continual requirement for essential maintenance factors synthesized in the motor neuron cell body and supplied to the terminals by fast axonal transport. Mice of the Wlds strain have normal axoplasmic transport but show an abnormally slow rate of axon and myelin degeneration. Structure and function are retained in the axons of distal nerve stumps for several days or even weeks after nerve injury in these mice. The results of the present study show that Wlds neuromuscular junctions are also preserved and continue to release neurotransmitter and recycle synaptic vesicle membrane for at least 3 days and in some cases up to 2 weeks after nerve injury. Varying the site of the nerve lesion delayed degeneration by -1-2 days per centimetre of distal nerve remaining. These findings suggest that the mechanisms of nerve terminal degeneration after injury are more complex than can be accounted for simply by the failure of motor neuron cell bodies to supply their terminals with essential maintenance factors. Rather, the data support the view that nerve section normally activates cellular components or processes already present, but latent, in motor nerve endings, and that in Wlds mice either the trigger or the cellular response is abnormal.  相似文献   

7.
Rabies is a fatal zoonotic disease for which no effective treatment measures are currently available. Rabies virus (RABV) has anti‐apoptotic and anti‐inflammatory properties that suppress nerve cell damage and inflammation in the CNS. These features imply that the elimination of RABV from the CNS by appropriate treatment could lead to complete recovery from rabies. Ten rabbits showing neuromuscular symptoms of rabies after subcutaneous (SC) immunization using commercially available vaccine containing inactivated whole RABV particles and subsequent fixed RABV (CVS strain) inoculation into hind limb muscles were allocated into three groups. Three rabbits received no further treatment (the SC group), three rabbits received three additional SC immunizations using the same vaccine, and four rabbits received three intrathecal (IT) immunizations, in which the vaccine was inoculated directly into the cerebrospinal fluid (the SC/IT group). An additional three naïve rabbits were inoculated intramuscularly with RABV and not vaccinated. The rabbits exhibited neuromuscular symptoms of rabies within 4–8 days post‐inoculation (dpi) of RABV. All of the rabbits died within 8–12 dpi with the exception of one rabbit in the SC group and all four rabbits in SC/IT group, which recovered and started to respond to external stimuli at 11–18 dpi and survived until the end of the experimental period. RABV was eliminated from the CNS of the surviving rabbits. We report here a possible, although still incomplete, therapy for rabies using IT immunization. Our protocol may rescue the life of rabid patients and prompt the future development of novel therapies against rabies.  相似文献   

8.
J Kiss  B Halász 《Brain research》1990,532(1-2):107-114
A combination of electron microscopic immunocytochemistry and autoradiography was employed to examine the synaptic organization of thyrotropin-releasing hormone (TRH) neurons in the periventricular subdivision of the paraventricular nucleus of the rat hypothalamus. TRH neurons were identified by immunocytochemistry. Selective uptake of tritiated serotonin (5-HT) was used to identify serotoninergic elements. TRH-immunoreactive axon terminals were found to be in synaptic contact with TRH-immunoreactive dendrites and with unlabeled dendritic branchlets. There were direct appositions between radiolabeled 5-HT terminals and TRH-immunoreactive dendrites, but differential synaptic contacts between 5-HT axonal elements and TRH neurons were not seen. TRH-immunopositive cell bodies and dendrites received a very intense innervation by unlabeled axon terminals or axonal varicosities showing morphologically defined synaptic junctions. These were mostly of the asymmetrical variety and different types could be distinguished. The findings substantiate the view that TRH neurons of the periventricular subvision of the paraventricular nucleus may be influenced by TRH axons, serotoninergic fibers and a large number of unidentified nerve terminals.  相似文献   

9.
Hereditary canine spinal muscular atrophy (HCSMA) features rapidly progressive muscle weakness that affects muscles in an apparent proximal-to-distal gradient. In the medial gastrocnemius (MG) muscle of homozygous HCSMA animals, motor unit tetanic failure is apparent before the appearance of muscle weakness and appears to be presynaptic in origin. We determined whether structural changes in neuromuscular junctions or muscle fibers were apparent at times when tetanic failure is prevalent. We were surprised to observe that, at ages when motor unit tetanic failure is common, the structure of neuromuscular junctions and the appearance of muscle fibers in the MG muscle were indistinguishable from those of symptom-free animals. In contrast, in more proximal muscles, many neuromuscular junctions were disassembled, with some postsynaptic specializations only partially occupied by motor nerve terminals, and muscle fiber atrophy and degeneration were also apparent. These observations suggest that the motor unit tetanic failure observed in the MG muscle in homozygous animals is not due to synaptic degeneration or to pathological processes that affect muscle fibers directly. Together with previous physiological analyses, our results suggest that motor unit failure is due to failure of neuromuscular synaptic transmission that precedes nerve or muscle degeneration.  相似文献   

10.
Jirmanová  I.  Lukáš  E. 《Acta neuropathologica》1984,63(3):255-263
Summary Adult Wistar rats were exposed to carbon disulphide (CS2) vapour at a concentration of 2.4 mg/l of air for 5 days a week (6h a day), and the ultrastructure of peripheral nerves, neuromuscular junctions and muscles was investigated after 6 months of exposure to CS2. Numerous giant axons, i.e. paranodal or internodal swellings, were seen in the peripheral nerves. At the swollen paranodes, the myelin sheath was thinned, in other regions large intramyelinic vacuoles indicative of more dramatic demyelination were observed at axonal enlargements. Axonal enlargements consisted essentially of whorls of tightly packed neurofilaments. A number of nerve fibres underwent complete degeneration, but at the same time there was evidence of nerve regeneration. Nerve terminals were affected in a similar way following CS2 exposure. At neuromuscular junctions, filamentous swellings of nerve terminals preceded their degeneration and eventual denudation of synaptic gutters. As a rule, the postsynaptic part of neuromuscular junctions remained unimpaired by CS2 treatment. Muscles were affected by both atrophy and degeneration. Clusters of dense and lamellar bodies and numerous autophagosomes indicative of direct myotoxic effect of CS2 were frequently encountered in the investigated muscles. Some muscle fibres apparently underwent necrosis judging from the occurrence of myotubes characteristic of muscle degeneration and regeneration.The pathomorphology of CS2 neuropathy resembles that of other toxic neuropathies which presumably have a common origin in impaired energy metabolism.  相似文献   

11.
The predicted C-terminal dodecapeptide of the human vesicular acetylcholine transporter (VAChT), deduced from the unique open reading frame of the recently cloned human VAChT cDNA, was conjugated through an N-terminal cysteine to keyhole limpet hemocyanin and used as an immunogen to generate polyclonal antihuman VAChT antibodies in rabbits. The distribution of the VAChT antigen in representative regions of the cholinergic nervous system was examined and compared to that of the acetylcholine biosynthetic enzyme choline acetyltransferase (ChAT), a specific marker for cholinergic neurons. VAChT immunoreactivity was localized in cell bodies of neurons in the basal forebrain and ventral horn of the spinal cord, regions in which major cholinergic projection systems to the cerebral cortex and to skeletal muscle, respectively, originate. The primate caudate nucleus contained numerous VAChT-positive interneurons. VAChT immunoreactivity was visualized in both cell bodies and extensive terminals in striatal interneurons, in contrast to formalin-fixed, deparaffinized sections stained for ChAT, in which cell bodies and fibers were stained but nerve terminals were less well visualized than with the VAChT antiserum. VAChT-positive nerve fibers were visualized in routinely immersion-fixed, paraffin-embedded human cerebral cortex, comparable to the density of fibers observed in perfusion-fixed Bouin’s-postfixed monkey cerebral cortex. Extensive investment of virtually all principal ganglion cells of thoracic sympathetic ganglia of monkey and human with VAChT-positive nerve terminals was observed. VAChT-positive cell bodies, presumably corresponding to cholinergic sympathetic sudomotor neurons, were a significant fraction of the total principal cell population in monkey and human thoracic sympathetic ganglia. VAChT is a specific marker for cholinergic neurons in human and rhesus monkey, visualizing especially nerve terminals more extensively than antibodies against the cholinergic biosynthetic enzyme ChAT, in routinely fixed tissue. VAChT immunoreactivity in cholinergic nerve terminals of the central and peripheral nervous systems ought to prove useful for visualizing cholinergic synapses and neuroeffector junctions, and their functional status during development and in neurodegenerative and autonomic disease.  相似文献   

12.
The existence of nicotinic acetylcholine receptors (AChRs) on the motor nerve terminals of vertebrates has long been controversial. We have re-examined this issue by electron microscope autoradiography with [125I] alpha-bungarotoxin, following separation of nerve terminals from muscle fibers by collagenase and protease treatment. We found no label over nerve terminal membranes other than that due to background, and we calculate upper limits of less than 0.1% of the postsynaptic AChR density for nerve terminals in frogs, lizards, and mice. We conclude that there are essentially no presynaptic acetylcholine receptors that bind alpha-bungarotoxin at vertebrate neuromuscular junctions.  相似文献   

13.
Rabies virus is a neurotropic lyssavirus which is 100% fatal in its pathogenic form when reaching unprotected CNS tissues. Death can be prevented by mechanisms delivering appropriate immune effectors across the blood-brain barrier which normally remains intact during pathogenic rabies virus infection. One therapeutic approach is to superinfect CNS tissues with attenuated rabies virus which induces blood-brain barrier permeability and immune cell entry. Current thinking is that peripheral rabies immunization is sufficient to protect against a challenge with pathogenic rabies virus. While this is undoubtedly the case if the virus is confined to the periphery, what happens if the virus reaches the CNS is less well-understood. In the current study, we find that peripheral immunization does not fully protect mice long-term against an intranasal challenge with pathogenic rabies virus. Protection is significantly better in mice that have cleared attenuated virus from the CNS and is associated with a more robust CNS recall response evidently due to the presence in CNS tissues of elevated numbers of lymphocytes phenotypically resembling long-term resident immune cells. Adoptive transfer of cells from rabies-immune mice fails to protect against CNS challenge with pathogenic rabies virus further supporting the concept that long-term resident immune cell populations must be established in brain tissues to protect against a subsequent CNS challenge with pathogenic rabies virus.  相似文献   

14.
Evaluation of morphological alterations at the neuromuscular junction associated with sprouting or other pathological changes has been limited by the inability to visualize simultaneously the multiple cell types that make up a junction. A new combined stain for the concurrent demonstration of motor nerve terminals, cholinesterase, and Schwann cell myelin and other antigens at neuromuscular junctions using bromoindoxyl acetate dye staining for cholinesterase, silver-gold impregnation for nerve terminals, and immunocytochemistry of selected antigens is described. The clarity of the stain permits graphic demonstration of the alteration of neuromuscular junction components during sprouting as well as other pathological changes.  相似文献   

15.
Neuromuscular synapses differ markedly in their plasticity. Motor nerve terminals innervating slow muscle fibers sprout vigorously following synaptic blockage, while those innervating fast-fatigable muscle fibers fail to exhibit any sprouting. Here, we show that the axon repellent Semaphorin 3A is differentially expressed in terminal Schwann cells (TSCs) on different populations of muscle fibers: postnatal, regenerative and paralysis induced remodeling of neuromuscular connections is accompanied by increased expression of Sema3A selectively in TSCs on fast-fatigable muscle fibers. To our knowledge, this is the first demonstration of a molecular difference between TSCs on neuromuscular junctions of different subtypes of muscle fibers. Interestingly, also in a mouse model for amyotrophic lateral sclerosis (ALS), Sema3A is expressed at NMJs of fast-fatigable muscle fibers. We propose that expression of Sema3A by TSCs not only suppresses nerve terminal plasticity at specific neuromuscular synapses, but may also contribute to their early and selective loss in the motor neuron disease ALS.  相似文献   

16.
A new combined stain for the simultaneous demonstration of motor nerve terminals and cholinesterase at neuromuscular junctions is described. It employs bromoindoxyl acetate dye-staining for cholinesterase and silver-gold impregnation for nerve terminals. The clarity and reliability of the stain permit quantitative measurements of neuromuscular junctions in order to evaluate nerve terminal sprouting as well as other pathological changes. The method is rapid, reproducible, and simple, and it is well suited for the processing of large numbers of frozen sections.  相似文献   

17.
Transplanted axons induced multiple, irregularly distributed acetylcholine receptor (AChR) aggregates on muscle fibers at early stages of ectopic neuromuscular junction formation in denervated adult rat soleus muscles. Subsequently, most AChR aggregates disappeared (the losers). A few aggregates survived (the winners) and, as part of the surviving junctions, reached a certain size and spatial separation along the fibers. This elimination of losers and development of winners occurred only in electrically active muscles whether the activity was elicited by intact axons or by electrical muscle stimulation after the axons had been cut early. We conclude that electrical muscle activity regulates the size and distribution of ectopic neuromuscular junctions by acting in conjunction with a nerve-derived priming influence that does not require the continued presence of nerve terminals.  相似文献   

18.
Essential to understanding the roles proteins and structural elements play at the synapse is to understand the development, remodeling and reinnervation of peripheral neuromuscular junctions. It has, however, been a challenging task to label and visualize neuromuscular junctions. In this paper we demonstrate how adenovirus technology can be combined with intraspinal microinjection techniques to follow both the development and the reinnervation of a distant peripheral neuromuscular junction in the rat. A recombinant adenovirus containing VAMP-2 (synaptobrevin-2) was fused to the green fluorescent protein (GFP) and microinjected into the region of the lumbar motor neurons. We were able to follow the neuronal incorporation, axonal transport and synaptic localization of the GFP-VAMP-2 using fluorescence microscopy. GFP-VAMP-2 was found in neuronal cell bodies, selected sciatic nerve axons and was concentrated in the presynaptic nerve terminal. During reinnervation of the neuromuscular junction, GFP-VAMP-2 allows us to follow the time course of junctional reinnervation. Thus, the microinjection of microliter amounts of labeled recombinant virus into locations far distant from target regions can be used to efficiently study the formation of neuromuscular junctions with a minimum of trauma to the animal.  相似文献   

19.
To better understand the role of the postsynaptic cell in the differentiation of presynaptic terminals, we transplanted muscles that lacked postsynaptic differentiation from mutant mice into normal adult immunocompatible hosts and attached the host nerve to the grafts. Host motor axons innervated wild-type grafted muscle fibers and established normal appearing chimeric neuromuscular junctions. By repeated in vivo imaging, we found that these synapses were stably maintained. Results were different when nerves entered transplanted muscles derived from mice lacking muscle-specific receptor tyrosine kinase (MuSK) or rapsyn, muscle-specific components required for postsynaptic differentiation. Initial steps in presynaptic differentiation (e.g., formation of rudimentary arbors and vesicle clustering at terminals) occurred when wild-type neurites contacted MuSK- or rapsyn deficient muscle fibers, either in vivo or in vitro. However, wild-type terminals contacting MuSK or rapsyn mutant muscle fibers were unable to mature, even when the chimeras were maintained for up to 7 months. Moreover, in contrast to the stability of wild-type synapses, wild-type nerve terminals in mutant muscles underwent continuous remodeling. These results suggest that postsynaptic cells supply two types of signals to motor axons: ones that initiate presynaptic differentiation and others that stabilize the immature contacts so that they can mature. Normal postsynaptic differentiation appears to be dispensable for initial stages of presynaptic differentiation but required for presynaptic maturation.  相似文献   

20.
The multiterminal slow and fast neuromuscular junctions of the moth Manduca sexta were compared using scanning, thin-section, and freeze-fracture techniques to see what structural features might underlie their functional differences. Slow neuromuscular junctions, here formed on tonic muscle fibers, produce a facilitating e.j.p. the amplitude of which is 1/5 to 1/3 the size of a fast excitatory junction potential (EJP) and the duration of which is nearly four times longer. A slow junction consists of a single terminal branch that is shorter in length than either of the pair of branches that a fast junction forms close together on the muscle fiber. Within the junction, slow nerve terminals exhibit longer, more frequent constrictions and are very varicose compared with fast. Since fast larval junctions on tonic muscle fibers are also varicose (Schaner and Rheuben, 1985), this is unlikely to represent an intrinsic property of the nerve. However, calculations of the length constants of the varicose versus nonvaricose shapes indicate that the effect of passive cable properties on normal functioning may act to limit the length of the slow terminals more than that of fast. Even though the varicose shape can be predicted to prolong the time course of the EJP, calculations show that, at the measured length, this would not explain the very long EJP that is observed. Within the neuromuscular junctions, the synapses are characterized on the muscle membrane by a patch of densely packed particles on the external leaflet and on the nerve membrane by a single linear active zone. The total number of synapses per slow junction is about 1/3 that of fast junctions. There is a weak correlation between average area of the individual postsynaptic particle patches and cross-sectional area of the muscle fibers that transcends nerve and muscle fiber types. The average lengths of active zones from the two types do not differ significantly. However, the number of particles per active zone in slow junctions is about 55% of the number in fast active zones. Chemically fixed slow nerve terminals have a greater density of synaptic vesicles remaining than do fast. If a proportion of the active zone particles represent structures directly involved in the probability of transmitter release, such as Ca++ channels, then the latter two characteristics may jointly reflect differences in capability to release and mobilize transmitter that would partly explain the different EJP amplitude and facilitation properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号