首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of a new type of organic Ca2+ channel blocker, NC-1100 [(±)-1-(3,4-dimethoxyphenyl)-2-(4-diphenylmethylpiperazinyl)ethanol dihydrochloride], on both low- and high-threshold Ca2+ currents was studied in the whole-cell mode of the pyramidal neurons freshly dissociated from rat hippocampal CA1 region under voltage-clamp condition. The NC-1100 reversibly reduced the high-threshold Ca2+ current (HVAICa) in a concentration-dependent manner without affecting the current-voltage relationship. The values of half-inhibition (IC50) were 1.3 × 10−5 and 9.1 × 10−6M in external solution containing 10 and 2.5 mM Ca2+, respectively. The NC-1100 also decreased the low-threshold Ca2+ current (LVAICa) in a concentration-dependent manner. The inhibitory potency was augmented by increasing the stimulation frequency and / or decreasing the extracellular Ca2+ concentration to a physiological range (2.5 mM). The IC50 value decreased to 7.7 × 10−7M in external solution containing 2.5 mM Ca2+ at a stimulation frequency of 1 Hz. The NC-1100 delayed the reactivation of LVA Ca2+ channel and enhanced voltage-dependently the steady-state inactivation, suggesting that this drug bound not only the resting LVA Ca2+ channel but also the inactivated one.  相似文献   

2.
3.
Effects of nilvadipine on the low- and high-voltage activated Ca2+ currents (LVA and HVA ICa, respectively) were compared with other organic Ca2+ antagonists in acutely dissociated rat hippocampal CA1 pyramidal neurons. The inhibitory effects of nilvadipine, amlodipine and flunarizine on LVA ICa were concentration- and use-dependent. The apparent half-maximum inhibitory concentrations (IC50s) at every 1- and 30-s stimulation were 6.3×10−7 M and 1.8×10−6 M for flunarizine, 1.9×10−6 M and 7.6×10−6 M for nilvadipine, and 4.0×10−6 M and 8.0×10−6 M for amlodipine, respectively. Thus, the strength of the use-dependence was in the sequence of nilvadipine>flunarizine>amlodipine. Nilvadipine also inhibited the HVA ICa in a concentration-dependent manner with an IC50 of 1.5×10−7 M. The hippocampal CA1 neurons were observed to have five pharmacologically distinct HVA Ca2+ channel subtypes consisting of L-, N-, P-, Q- and R-types. Nilvadipine selectively inhibited the L-type Ca2+ channel current which comprised 34% of the total HVA ICa. On the other hand, amlodipine non-selectively inhibited the HVA Ca2+ channel subtypes. These results suggest that the inhibitory effect of nilvadipine on the neuronal Ca2+ influx through both LVA and HVA L-type Ca2+ channels, in combination with the cerebral vasodilatory action, may prevent neuronal damage during ischemia.  相似文献   

4.
Voltage-gated Ca2+ channels are expressed in neurones and greatly influence neuronal activity by activating Ca2+-dependent K+ channels. The whole cell patch-clamp technique was used to compare the kinetic and pharmacological properties of voltage-dependent Ca2+ currents in two groups of sympathetic neurones identified by the fluorescent tracer Fast Blue: putative muscular sympathetic neurones (MSN) and putative cutaneous sympathetic neurones (CSN). The tracer was injected into the muscular part of the diaphragm (to mark MSN) and into the skin of the ear (to mark CSN). The capacitance of MSN (23.0 pF) was larger than the capacitance of CSN (12.6 pF). The maximum current in MSN (1.3 nA) was also larger than in CSN (0.93 nA). However, the current density was larger in CSN (77.3 pA/pF) than in MSN (57.7 pA/pF) and the current activation rate was faster in CSN (0.27 nA/ms) than in MSN (0.19 nA/ms). V1/2 and slope factors of activation and inactivation were not significantly different for MSN and CSN. The majority of Ca2+ current was available for activation in both categories of neurones at resting membrane potential. Ca2+ currents in MSN and CSN were blocked by nifedipine (7.0 and 3.6%, respectively), ω-Agatoxin-IVA (23.0 and 25.6%, respectively) and ω-conotoxin-GVIA (67.0 and 65.1%, respectively). We found that CSN are twice as small, have higher Ca2+ current density and their Ca2+ activation rate is faster in comparison to MSN. Such properties may lead to faster rise of Ca2+ concentration in the cytoplasm of the CSN comparing to MSN and more effectively dampen their activity due to more effective activation of Ca2+-dependent K+ current. Both kinds of neurones express high proportion of N and P/Q Ca2+ current.  相似文献   

5.
Ionic currents were investigated by a patch clamp technique in a clonal strain of pituitary (GH3) cells, using the whole cell configuration with Cs+ internal solution. Depolarizing pulses positive to 0 mV from a holding potential of −50 mV activated the voltage-dependent L-type Ca2+ current (ICa,L) and late outward current. Upon repolarization to the holding potential, a slowly decaying inward tail current was also observed. This inward tail current upon repolarization following a depolarizing pulse was found to be enhanced by Bay K 8644, but blocked by nifedipine or tetrandrine. This current was eliminated by Ba2+ replacement of external Ca2+ as the charge carrier through Ca2+ channels, removal of Ca2+ from the bath solution, or buffering intracellular Ca2+ with EGTA (10 mM). The reversal potential of inward tail current was approximately −25 mV. When intracellular Cl was changed, the reversal potential of the Ca2+-activated currents was not shifted. Thus, this current is elicited by depolarizing pulses that activate ICa,L and allow Ca2+ influx, and is referred to as Ca2+-activated nonselective cationic current (ICAN). Without including EGTA in the patch pipette, the slowly decaying inward current underlying the long-lasting depolarizing potential after Ca2+ spike was also observed with a hybrid current–voltage protocol. Thus, the present studies clearly indicate that Ca2+-activated nonselective cationic channels are expressed in GH3 cells, and can be elicited by the depolarizing stimuli that lead to the activation of ICa,L.  相似文献   

6.
We investigated the effects of organic Ca2+ channel blockers, diltiazem and verapamil, on the high voltage-activated P-type Ca2+ channels in freshly isolated rat Purkinje neurons. Both diltiazem and verapamil blocked P-type Ca2+ channel current without any change in the current-voltage relation. The block was concentration-dependent. In the presence of these agents, the inactivation curve was shifted to hyperpolarizing potentials. The characteristics of block of P-type Ca2+ channels by diltiazem and verapamil are similar to that of L-type Ca2+ channels. These results indicate that both benzothiazepine and phenylalkylamine react with P-type Ca2+ channels and suggest that some structural features common to which operate in both L-type and P-type Ca2+ channels may be involved in drug binding to these channels.  相似文献   

7.
The effect of dibutyryl cGMP (dbcGMP), a membrane permeant cGMP analogue, on cytosolic concentrations of Ca2+ ([Ca2+]i) was studied in cultured nodose ganglion neurons of the rabbit using fura-2AM and microfluorometry. Application of dbcGMP (10–1000 μM) increased [Ca2+]i in 42% of neurons (n=67). The effect was observed in a dose-dependent fashion. The threshold dose was 100 μM and the increase at 500 μM averaged 117±8%. Removal of extracellular Ca2+ abolished the dbcGMP effect. Application of Ni2+ (1 mM) or neomycin (50 μM), a non-L-type voltage-gated Ca2+ channel (VGCC) antagonist, eliminated the dbcGMP effect. ω-conotoxin GVIA (2 μM), the N-type Ca2+ channel antagonist, or L-type Ca2+ channel antagonists (D600, 50 μM, or nifedipine, 10 μM) did not alter the dbcGMP effect. Ryanodine (10 μM) did not alter the effect of dbcGMP. Therefore, cGMP could play a part of role of an intracellular messenger in primary sensory neurons of the autonomic nervous system.  相似文献   

8.
Summary Dantrolene has been known to affect intracellular Ca2+ concentration ([Ca2+]i) by inhibiting Ca2+ release from intracellular stores in cultured neurons. We were interested in examining this property of dantrolene in influencing the [Ca2+]i affected by the NMDA receptor ligands, KCl, L-type Ca2+ channel blocker nifedipine, and two other intracellular Ca2+-mobilizing agents caffeine and bradykinin. Effect of dantrolene on the spontaneous oscillation of [Ca2+]i was also examined. Dantrolene in M concentrations dose-dependently inhibited the increase in [Ca2+]i elicited by NMDA and KCl. AP-5, MK-801 (NMDA antagonists), and nifedipine respectively reduced the NMDA and KCl-induced increase in [Ca2+]i. Dantrolene, added to the buffer solution together with the antagonists or nifedipine, caused a further reduction in [Ca2+]i to a degree similar to that seen with dantrolene alone inhibiting the increase in [Ca2+]i caused by NMDA or KCl. At 30 M, dantrolene partially inhibited caffeine-induced increase in [Ca2+]i whereas it has no effect on the bradykinin-induced change in [Ca2+]i. The spontaneous oscillation of [Ca2+]i in frontal cortical neurons was reduced both in amplitude and in base line concentration in the presence of 10 M dantrolene. Our results indicate that dantrolene's mobilizing effects on intracellular Ca2+ stores operate independently from the influxed Ca2+ and that a component of the apparent increase in [Ca2+]i elicited by NMDA or KCl represents a dantrolene-sensitive Ca2+ release from intracellular stores. Results also suggest that dantrolene does not affect the IP3-gated release of intracellular Ca2+ and that the spontaneous Ca2+ oscillation is, at least partially, under the control of Ca2+ mobilization from internal stores.Abbreviations AP-5 (±)-2-amino-5-phosphonopentanoic acid - AMPA amino-3-hydroxy-5-methyl-isoxazole-4-propionate - BSS balanced salt solution - CNS central nervous system - CICR Ca2+-induced Ca2+ release - DCKA 5,7-dichlorokynurenate - DNasel deoxyribonuclease I - DMEM Dulbecco's Modified Eagle's Medium - EGTA ethylene glycol-bis(-aminoethyl ether)N,N,N,N,-tetraacetic acid - FCS fetal calf serum - fura-2-AM 1-(2-(5-carboxyoxazol-2-yl)-6-aminobenzofuran-5-oxy-2-ethane-N,N,N,N-te-traacetic acid, pentaacetoxymethyl ester - HEPES N-[2-hydroxyethyl] piperazine-N-[2-ethanesulfonic acid] - [Ca 2+] i intracellular free Ca2+ concentration - LTP long-term potantiation - MK-801 (5R, 10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,b]-cyclohepten-5,10-imine hydrogen maleate - NMDA N-methyl-D-aspartate  相似文献   

9.
Yoko Higure  Mitsuo Nohmi   《Brain research》2002,954(1):467-150
Cytosolic free calcium concentration ([Ca(2+)](i)) was recorded from cultured bullfrog sympathetic ganglion cells loaded with the Ca(2+)-indicator Fura-2 or Fura-6F. Repetitive application of caffeine at a low concentration, which either failed to produce any [Ca(2+)](i) elevation or induced a small gradual increase in [Ca(2+)](i) at first challenge, produced a drastic increase in the amplitude of Ca(2+) release (caffeine response). The caffeine response eventually reached peak amplitude and then remained constant even if caffeine application were continued. This augmentation was maintained for up to 2 h, and was achieved not only by repetitive application but also by a long exposure of caffeine. However, this augmentation was neither achieved by repetitive administration of high K(+)-solution, nor caused by inhibition of phosphodiesterase by caffeine. The repetitive or sustained application of caffeine is suggested to increase the caffeine sensitivity of the calcium release channel to calcium, thus causing the potentiation of the caffeine response.  相似文献   

10.
The blockade of a slow Ca2+-activated K+-dependent afterhyperpolarization (AHPs) in rabbit visceral sensory neurons by the prostaglandins, PGE1 and PGD2, was investigated to determine whether the blockade was indirectly due to a reduction in Ca2+ influx. The prostaglandins (PGs) could block the AHPs in the absence of any change in Ca2+-dependent spikes elicited in the presence of tetrodotoxin and tetraethylammonium bromide. A PG-induced decrease in Ca2+-dependent spike width observed in some neurons was temporally dissociated from the PG-induced block of the AHPs. In addition, a slow afterhyperpolarization produced by the application of the Ca2+ ionophore, A23187, was blocked by the PGs. It is concluded that a reduction in Ca2+ influx is not responsible for the PG-induced blockade of the AHPs.  相似文献   

11.
The plasma membrane Na+/Ca2+ exchanger is believed to play a role in the regulation of Ca2+ fluxes in neurons, though the lack of specific inhibitors has limited the delineation of its precise contribution. We recently reported the development of antibodies against a 36-kDa brain synaptic membrane protein which immunoprecipitated exchanger activity from solubilized membranes. In the present study we examined the kinetics of the Na+/Ca2+ exchanger in primary neurons in culture, in a neuronal hybrid cell line (NCB-20), and in a fibroblast-like cell line (CV-1) to see whether the level of exchanger activity correlated with the degree of immunostaining produced by our antibodies. The Vmax was determined for each cell type and found to be highest in primary neurons. Exchanger activity increased in primary neurons between days 1 and 6 in culture, but no such time-dependent change occurred in either of the cell lines. Immunoblot analysis of the three cell types probed with the anti-36-kDa protein antibodies revealed significantly greater immunostaining in the primary neurons compared with the other two cell types. Intensity of staining of neurons also increased significantly between days 1 and 6 in culture. Immunocytochemistry showed significant labelling of the primary neurons on the neuritic processes and points of contact between cells. The NCB-20 and CV-1 cells showed considerably lower levels of immunoreactivity. The antibodies immunoextracted 90% of the exchanger activity in the primary neurons and 70 and 50% of the activity in NCB-20 and CV-1 cells respectively. Thus the expression of the 36-kDa protein appears to be closely associated with the Na+/Ca2+ exchanger in neuronal cells and, possibly to a lesser extent, in non-neuronal cells.  相似文献   

12.
A permanent increase in cytosolic Ca2+ levels seems to be associated with various pathological situations which may result in cell death. Hg2+ and CH3Hg+ are potent neurotoxic agents, but the precise molecular mechanism(s) underlying their effects are not sufficiently understood. In the present study we investigated the potential role of Ca2+-ATPase located in the endoplasmic reticulum as a molecular target for mercury. Hg2+ and CH3Hg+ inhibited Ca2+-ATPase and Ca2+ uptake by brain microsomes with similar potencies. However, the inhibitory potency of Hg2+ was higher than that of CH3Hg+, probably reflecting differences in the affinity for the sulfhydryl groups of these compounds. Passive or unidirectional Ca2+ efflux (measured in the absences of Ca2+-ATPase ligands) was increased significantly by CH3Hg+ and Hg2+. Again, the potency of Hg2+ was higher than that of CH3Hg+. Blockers of Ca2+ channels (ruthenium red, procaine, heparin) did not affect the increase in passive Ca t+ efflux induced by mercury compounds, possibly indicating that Ca2+ release occurs through Ca2+-ATPase. Addition of physiological concentrations of glutathione (GSH) simultaneously with mercury abolished the inhibitory effects of both forms of Hg on Ca Z+-transport. However, if the enzyme was first inhibited with Hg2+ or CH3Hg+ and subsequently treated with GSH, the reversal of inhibition was about 50%, suggesting that part of the cysteinyl residues involved in the inhibitory actions of mercury in Ca t+-transport bind to mercury with an extremely high affinity.  相似文献   

13.
Effect of the removal of extracellular Ca2+ on the response of cytosolic concentrations of Ca2+ ([Ca2+]i) to ouabain, an Na+/K+ exchanger antagonist, was examined in clusters of cultured carotid body glomus cells of adult rabbits using fura-2AM and microfluorometry. Application of ouabain (10 mM) induced a sustained increase in [Ca2+]i (mean±S.E.M.; 38±5% increase, n=16) in 55% of tested cells (n=29). The ouabain-induced [Ca2+]i increase was abolished by the removal of extracellular Na+. D600 (50 μM), an L-type voltage-gated Ca2+ channel antagonist, inhibited the [Ca2+]i increase by 57±7% (n=4). Removal of extracellular Ca2+ eliminated the [Ca2+]i increase, but subsequent washing out of ouabain in Ca2+-free solution produced a rise in [Ca2+]i (62±8% increase, n=6, P<0.05), referred to as a [Ca2+]i rise after Ca2+-free/ouabain. The magnitude of the [Ca2+]i rise was larger than that of ouabain-induced [Ca2+]i increase. D600 (5 μM) inhibited the [Ca2+]i rise after Ca2+-free/ouabain by 83±10% (n=4). These results suggest that ouabain-induced [Ca2+]i increase was due to Ca2+ entry involving L-type Ca2+ channels which could be activated by cytosolic Na+ accumulation. Ca2+ removal might modify the [Ca2+]i response, resulting in the occurrence of a rise in [Ca2+]i after Ca2+-free/ouabain which mostly involved L-type Ca2+ channels.  相似文献   

14.
Previous studies resulted in conflicting conclusions that glutamate application either decreases or increases the activity of Ca2+ channels in hippocampal neurons. We studied whole-cell Ca2+ currents (ICa) in chick dorsal root ganglion neurons and rat hippocampal cells. For both cell types glutamate (1–30 μM) increased high-threshold Ca2+ current. It was independent of the charge carriers, Ca2+ or Ba2+. Low-threshold Ca2+ channel current and the fast sodium current were not changed with glutamate application. The effect developed within 1–2 min and then further facilitated after washout of the agonist. A second application of glutamate produced no additional increase in ICa. No changes in the time-course of whole-cell currents were observed, suggesting that glutamate recruits ‘sleepy’ Ca2+ channels. Whatever its mechanism, overlasting increase of ICa by glutamate may be important in neuronal plasticity.  相似文献   

15.
Secretion of pituitary gonadotropins is regulated centrally by the hypothalamic decapeptide gonadotropin releasing hormone (GnRH). Using the immortalized hypothalamic GT1-7 neuron, we characterized pharmacologically the dynamics of cytosolic Ca2+ and GnRH release in response to K+-induced depolarization of GT1-7 neurons. Our results showed that K+ concentrations from 7.5 to 60 mM increased [Ca2+]cyt in a concentration-dependent manner. Resting [Ca2+]cyt in GT1-7 cells was determined to be 69.7 ± 4.0 nM (mean ± S.E.M.; N = 69). K+-induced increases in [Ca2+]cyt ranged from 58.2 nM at 7.5 mM [K+] to 347 nM at 60 mM [K+]. K+-induced GnRH release ranged from about 10 pg/ml at 7.5 mM [K+] to about 60 pg/ml at 45 mM [K+]. K+-induced increases in [Ca2+]cyt and GnRH release were enhanced by 1 μM BayK 8644, an L-type Ca2+ channel agonist. The BayK enhancement was completely inhibited by 1 μM nimodipine, an L-type Ca2+ channel antagonist. Nimodipine (1 μM) alone partially inhibited K+-induced increases in [Ca2+]cyt and GnRH release. Conotoxin (1 μM) alone had no effect on K+-induced GnRH release or [Ca2+]cyt, but the combination of conotoxin (1 μM) and nimodipine (1 μM) inhibited K+-induced increase in [Ca2+]cyt significantly more (p < 0.02) than nimodipine alone, suggesting that N-type Ca2+ channels exist in GT1-7 neurons and may be part of the response to K+. The response of [Ca2+]cyt to K+ was linear with increasing [K+] whereas the response of GnRH release to increasing [K+] appeared to be saturable. K+-induced increase in [Ca2+]cyt and GnRH release required extracellular [Ca2+]. These experiments suggest that voltage dependent N- and L-type Ca2+ channels are present in immortalized GT1-7 neurons and that GnRH release is, at least in part, dependent on these channels for release of GnRH.  相似文献   

16.
Activation of NMDA receptors produces large increases in cytosolic Ca(2+) that are taken up into mitochondria. We used recombinant aequorin targeted to mitochondria to report changes in matrix Ca(2+) in rat hippocampal neurons in culture. Upon binding Ca(2+), aequorin emits a photon in a one-shot reaction that consumes the indicator. Here we show that stimulation with NMDA produced a mitochondrial Ca(2+) response that rapidly inactivated. However, following a 30-min recovery period the response was restored, suggesting the presence of a pool of indicator that was not exposed to high Ca(2+) during the initial stimulus. We speculate that aequorin distant from the Ca(2+) source was protected from microdomains of high Ca(2+) near the plasmalemma and that this aequorin moved, either by movement of individual mitochondria or via the mitochondrial tubular network, to replenish consumed indicator during the recovery time. A large Ca(2+) increase in a subset of mitochondria could produce local changes in energy metabolism, regional Ca(2+) buffering, and foci that initiate neurotoxic processes.  相似文献   

17.
Effects of glutamate and kainate on the intracellular Ca2+ concentration ([Ca2+]i) in a large population (several thousand) of dissociated cerebellar granule cell neurons were evaluated using a flow-cytometer and a combination of two fluorescent dyes, fluo-3-AM for estimating [Ca2+]i and ethidium bromide for removing neurons that had compromised membranes from the cell population examined. The number of neurons responding to glutamate or kainate in augmenting the fluo-3 fluorescence increased in a dose-dependent manner. The number of neurons responding to kainate was much greater than that to glutamate. CNQX, a blocker of non-NMDA receptors, completely blocked the response elicited by kainate while the complete blockade of this glutamate-induced response was made by a combination of MK-801, a NMDA receptor blocker, and CNQX. Nicardipine, a calcium antagonist, decreased the number of neurons responding to glutamate and kainate, suggesting involvement of voltage-dependent calcium channels. These results indicate that the flow-cytometric measurement of glutamate and kainate responses has the potential to provide answers to such questions as what percentage of the population of neurons respond to these amino acids and what is the resulting distribution of [Ca2+]i.  相似文献   

18.
The Ca2+-antagonistic action of bevantolol, aβ1-adrenoceptor antagonist, on high- and low-voltage activated Ca2+ currents (HVA- and LVA-ICa) was examined on neurons dissociated from rat brain. Bevantolol (10−6 to 10−4 M) inhibited concentration-dependently bothICa. The IC50 value of bevantolol for LVA-ICa was 4 × 10−5 M, while bevantolol at 10−4 M inhibited HVA-ICa by 28.5 ± 7.7%. The potency of bevantolol in inhibiting bothICa was greater than those of propranolol, labetalol and lidocaine, while the inhibitory action of bevantolol on voltage-activated Na+ current was weakest among them. Bevantolol may possess Ca2+-antagonistic action that is independent from local anesthetic action.  相似文献   

19.
20.
Lactate production (Jlac), oxygen consumption rate (QO2), plasma membrane potentials (Em) and cytosolic free calcium levels [Ca2+]i were studied on symaptosomes isolated from rat brains, incubated in presence of high doses of nicardipine (90 μM), diltiazem (0.5 mM) and verapamil (0.25 mM), and submitted to depolarizing stimulation or inhibition of mitochondrial respiration. Nicardipine was able to completely prevent the veratridine-induced stimulation ofJlac, QO2andEm depolarization, whereas diltiazem and verapamil were less effective, although the concentrations used were 5 and 3 times higher, respectively, than nicardipine. Diltiazem, verapamil and nicardipine (9 μM) also prevented the veratridine-induced increase in [Ca2+]i, this effect being much less pronounced if the drugs were added after veratridine. Monensin (20 μM) was also able to increase [Ca2+]i but this effect was not affected by verapamil. Synaptosomes were also submitted to an inhibition of respiration of intrasynaptic mitochondria by incubation with rotenone (5 μM); in this condition of mimicked hypoxiaEm was more positive of about 11 mV; none of the drugs utilized modified this situation. The rotenone-induced 3-fold increase inJlac was barely modified by diltiazem and verapamil but it was completely abolished by nicardipine. The possible mechanism of the counteracting action of the drugs towards veratridine stimulation and rotenone inhibition and the involvement of Na+/Ca2+ exchanger in affecting [Ca2+]i are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号