首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Autosomal recessive progressive external ophthalmoplegia is a mitochondrial disease characterized by accumulation of multiple large-scale deletions of mitochondrial DNA. We previously reported missense mutations in POLG, the gene encoding the mitochondrial DNA polymerase gamma in two nuclear families compatible with autosomal recessive progressive external ophthalmoplegia. Here, we report a novel POLG missense mutation (R627W) in a sporadic patient and we provide genetic support that all these POLG mutations are actually causal and recessive. The novel patient presented with sensory ataxic neuropathy and has the clinical triad of sensory ataxic neuropathy, dysarthria and ophthalmoparesis (SANDO). This is the first finding of a genetic cause of Sensory Ataxic Neuropathy, Dysarthria and Ophthalmoparesis and it implies that this disorder may actually be a variant of autosomal recessive progressive external ophthalmoplegia. Sensory neuropathy is the initial feature in Belgian compound heterozygote autosomal recessive progressive external ophthalmoplegia patients, all carrying the POLG A467T mutation, which occurs at a frequency of 0.6% in the Belgian population.  相似文献   

2.
Missense mutations in the gene for polymerase γ 1 (POLG1) cause a number of phenotypically heterogeneous mitochondrial diseases, most commonly progressive external ophthalmoplegia, and are characterized by the accumulation of multiple, large‐scale deletions of mitochondrial DNA. The triad of sensory ataxic neuropathy, dysarthria, and ophthalmoparesis (SANDO) has been demonstrated in a small subset of patients with POLG1 mutations. We report a sporadic case of an 80‐year‐old compound heterozygote man who presented with SANDO and was found to have three known pathogenic mutations in the POLG1 gene (p.T251I/p.P587L/p.G848S). To our knowledge, none of these mutations have been demonstrated previously in SANDO. This patient's late presentation illustrates that a mitochondrial disorder should be considered regardless of age if the clinical symptoms warrant. Muscle Nerve, 2010  相似文献   

3.
Two siblings who developed fifth‐decade‐onset, concurrent progressive sensory ataxia, dysarthria, and ophthalmoparesis were found to be homozygous for the p.A467T mutation of the polymerase gamma (POLG) gene. The clinical course in both subjects was progression to severe disability. The enlarging spectrum of sensory ataxic neuropathies associated with mitochondrial DNA (mtDNA) instability and POLG mutations should be recognized and considered in the differential diagnosis of this unusual presentation. Muscle Nerve, 2010  相似文献   

4.
Sensory ataxia with neuropathy, dysarthria and ophthalmoparesis represent the clinical triad of SANDO, a specific mitochondrial phenotype first reported in 1997 in association with multiple mitochondrial DNA deletions and mutations in POLG1 or more rarely in the C10orf2 (twinkle-helicase) gene. We report a 44-year-old man with SANDO who harboured two novel mutations (P648R/R807C) in the POLG1 gene.  相似文献   

5.
POLG mutations and Alpers syndrome   总被引:2,自引:0,他引:2  
Alpers-Huttenlocher syndrome (AHS) an autosomal recessive hepatocerebral syndrome of early onset, has been associated with mitochondrial DNA (mtDNA) depletion and mutations in polymerase gamma gene (POLG). We have identified POLG mutations in four patients with hepatocerebral syndrome and mtDNA depletion in liver, who fulfilled criteria for AHS. All were compound heterozygous for the G848S and W748S mutations, previously reported in patients with progressive external ophtalmoplegia or ataxia. We conclude that AHS should be included in the clinical spectrum of mtDNA depletion and is often associated with POLG mutations, which can cause either multiple mtDNA deletions or mtDNA depletion.  相似文献   

6.
BACKGROUND: Both dominant and recessive mutations were reported in the gene encoding the mitochondrial (mt) DNA polymerase gamma (POLG) in patients with progressive external ophthalmoplegia (PEO). Phenotypes other than PEO were recently documented in patients with mutations in the POLG gene. OBJECTIVE: To screen patients with mitochondrial disease and multiple mtDNA deletions in muscle for mutations in the coding regions of the POLG, PEO1, and SLC25A4 genes. DESIGN: To identify the underlying molecular defect in a group of patients with multiple mtDNA deletions comparing their molecular genetic findings with those of healthy controls. PATIENTS: Twenty-four patients (16 men and 8 women) diagnosed with mitochondrial disease and having multiple mtDNA deletions in muscle by Southern blot analysis. Thirteen patients had PEO; 2 had PEO alone, 4 had PEO and myopathy, and 5 had PEO and multisystem involvement. Four patients had multisystem disease without PEO. The remaining 9 patients had isolated myopathy. DNA from 100 healthy individuals was also studied. RESULTS: No mutation was identified in the PEO1 or SLC25A4 genes. Nine POLG mutations were observed in 6 of 24 patients. Four novel mutations were detected and mapped in the linker region (M603L) and in the pol domain of the enzyme (R853W; D1184N; R1146C). Five patients with PEO had mutations: 2 were compound heterozygotes, 1 was homozygous, and another showed a mutation in a single allele. The remaining patient also showed a sole mutation and had an unusual phenotype lacking ocular involvement. CONCLUSIONS: POLG molecular defects were found in 25% of our patients with multiple mtDNA deletions and mitochondrial disease. The uncommon phenotype found in 1 of these patients stresses the clinical variability of patients harboring POLG mutations. Molecular studies in the POLG gene should be addressed in patients with mitochondrial disease, particularly in those with PEO, and multiple mtDNA deletions.  相似文献   

7.
Sensory ataxic neuropathy with dysarthria and ophthalmoparesis (SANDO) is an adult onset sensory ataxic neuropathy, dysarthria and chronic progressive external ophthalmoplegia associated with mutations in POLG1. We report a 38-year-old woman with a history of progressive gait instability and bilateral ptosis. Neurological examination found ataxia, ophthalmoplegia, and dysarthria. MRI showed bilateral thalamic and cerebellar lesions. A POLG related disorder was suspected and after DNA sequencing a SANDO with a novel mutation in POLG was confirmed.  相似文献   

8.
Purpose: Polymerase gamma (POLG) is the sole enzyme in the replication of mitochondrial DNA (mtDNA). Numerous mutations in the POLG1 gene have been detected recently in patients with various phenotypes including a classic infantile-onset Alpers-Huttenlocher syndrome (AHS). Here we studied the molecular etiology of juvenile-onset AHS manifesting with status epilepticus and liver disease in three teenagers.
Patients and Methods: We examined 14- and 17-year-old female siblings (patients 1 and 2) and an unrelated 15-year-old girl (patient 3) with juvenile-onset AHS, sequenced POLG1, and the entire mtDNA, examined mtDNA deletions by amplification of the full-length mtDNA with the long PCR method and used real-time PCR to quantify mtDNA in the tissue samples.
Results: The initial manifestations were migraine-like headache and epilepsy, and the terminal manifestations status epilepticus and hepatic failure. A homozygous W748S mutation in POLG1 was detected in the three patients. No deletions or pathogenic point mutations were found in mtDNA, but all three patients had mtDNA depletion.
Conclusions: POLG mutations should be considered in cases of teenagers and young adults with a sudden onset of intractable seizures or status epilepticus, and acute liver failure. The W748S POLG1 mutation seems to lead to tissue-specific, partial mtDNA depletion in patients with juvenile-onset Alpers syndrome. Valproic acid should be avoided in the treatment of epileptic seizures in these patients.  相似文献   

9.
Both dominant and recessive missense mutations were recently reported in the gene encoding the mitochondrial DNA polymerase gamma (POLG) in patients with progressive external ophthalmoplegia (PEO). The authors report on a patient homozygous for a recessive missense mutation in POLG who presented with a multisystem disorder without PEO. The most prominent features were myoclonus, seizure, and sensory ataxic neuropathy, so the clinical picture overlapped with the syndrome of myoclonus, epilepsy, and ragged red fibers (MERRF).  相似文献   

10.
This 54year old woman presented with symptoms of sensory ataxic neuropathy, with cerebellar features. She developed further weakness, visual disturbances with diplopia, dysarthria and dysphasia. After her death at 66years, she was found to have compound heterozygous mutations of POLG1 gene in muscle, and Southern blot showed low levels of multiple deletions of mitochondrial DNA. Neuropathological examination showed profound dorsal column and dorsal spinocerebellar tract degeneration, degeneration of dorsal root ganglia and Clarke's nucleus in spinal cord and severe predominantly sensory peripheral neuropathy. The brain showed severe neuronal loss and gliosis in substantia nigra, medial posterior thalamus and head of caudate. Excess numbers of COX-negative fibres and "ragged-red" fibres were found in five skeletal muscles sampled.  相似文献   

11.
Mitochondrial DNA (mtDNA) is maternally inherited. After birth, secondary mtDNA defects can arise. MtDNA depletion is a reduction in the amount of mtDNA in particular tissues. Multiple deletions of mtDNA accumulate as somatic mutations in mainly postmitotic tissues. These disorders of mtDNA maintenance frequently show Mendelian inheritance. Positional cloning has identified several genes involved in the control of mtDNA stability. Recessive mutations in the genes ECGF1, dGK, TK2, SUCLA2 and POLG cause mtDNA depletion syndromes (MDS). Generally, MDS has infantile onset tissue specific features. Mutations in the genes ECGF1, ANT1, C10orf2 and POLG are associated with multiple mtDNA deletions. The nature of these mutations is dominant in ANT1, C10orf2 and POLG and recessive in ECGF1, C10orf2 and POLG. Mutations in these genes frequently cause progressive external ophthalmoplegia (PEO). However clinical heterogeneity results in different neurological syndromes with considerable overlap. The most common features are PEO, neuropathy, myopathy, ataxia, epilepsy and hepatopathy.  相似文献   

12.
The instability of the mitochondrial genome in individuals harboring pathogenic mutations in the catalytic subunit of mitochondrial DNA (mtDNA) polymerase gamma (POLG) is well recognized, but the underlying molecular mechanisms remain to be elucidated. In 5 pediatric patients with severe myoclonic epilepsy and valproic acid-induced liver failure, we identified 1 novel and 4 previously described pathogenic mutations in the linker region of this enzyme. Although muscle biopsies in these patients showed unremarkable histologic features, postmortem liver tissue available from 1 individual exhibited large cytochrome c oxidase-negative areas. These cytochrome c oxidase-negative areas contained 4-fold less mtDNA than cytochrome c oxidase-positive areas. Decreased copy numbers of mtDNA were observed not only in the liver, skeletal muscle, and brain but also in blood samples from all patients. There were also patient-specific patterns of multiple mtDNA deletions in different tissues, and in 2 patients, there were clonally expanded mtDNA point mutations. The low amount of deleted mtDNA molecules makes it unlikely that the deletions contribute significantly to the general biochemical defect. The clonal expansion of a few individual-specific deletions and point mutations indicates an accelerated segregation of early mtDNA mutations that likely are a consequence of low mtDNA copy numbers. Moreover, these results suggest a potential diagnostic approach for identifying mtDNA depletion in patients.  相似文献   

13.
Background Progressive external ophthalmoplegia (PEO) is a mitochondrial disorder associated with defective enzymatic activities of oxidative phosphorylation (OXPHOS), depletion of mitochondrial DNA (mtDNA) and/or accumulation of mtDNA mutations and deletions. Recent positional cloning studies have linked the disease to four different chromosomal loci. Mutations in POLG1 are a frequent cause of this disorder. Methods We describe two first–cousins: the propositus presented with PEO,mitochondrial myopathy and neuropathy, whereas his cousin showed a Charcot– Marie–Tooth phenotype. Neurophysiological studies, peroneal muscle and sural nerve biopsies, and molecular studies of mtDNA maintenance genes (ANT1, Twinkle, POLG1, TP) and non dominant CMT–related genes (GDAP1, LMNA, GJB1) were performed. Results A severe axonal degeneration was found in both patients whereas hypomyelination was observed only in the patient with PEO whose muscle biopsy specimen also showed defective OXPHOS and multiple mtDNA deletions. While no pathogenetic mutations in GDAP1, LMNA, and GJB1 were found, we identified a novel homozygous POLG1 mutation (G763R) in the PEO patient. The mutation was heterozygous in his healthy relatives and in his affected cousin. Conclusions A homozygous POLG1 mutation might explain PEO with mitochondrial abnormalities in skeletal muscle in our propositus, and it might have aggravated his axonal and hypomyelinating sensory–motor neuropathy. Most likely, his cousin had an axonal polyneuropathy with CMT phenotype of still unknown etiology.  相似文献   

14.
Mitochondrial DNA depletion syndrome due to mutations in the RRM2B gene   总被引:3,自引:0,他引:3  
Mitochondrial DNA depletion syndrome (MDS) is characterized by a reduction in mtDNA copy number and has been associated with mutations in eight nuclear genes, including enzymes involved in mitochondrial nucleotide metabolism (POLG, TK2, DGUOK, SUCLA2, SUCLG1, PEO1) and MPV17. Recently, mutations in the RRM2B gene, encoding the p53-controlled ribonucleotide reductase subunit, have been described in seven infants from four families, who presented with various combinations of hypotonia, tubulopathy, seizures, respiratory distress, diarrhea, and lactic acidosis. All children died before 4 months of age. We sequenced the RRM2B gene in three unrelated cases with unexplained severe mtDNA depletion. The first patient developed intractable diarrhea, profound weakness, respiratory distress, and died at 3 months. The other two unrelated patients had a much milder phenotype and are still alive at ages 27 and 36 months. All three patients had lactic acidosis and severe depletion of mtDNA in muscle. Muscle histochemistry showed RRF and COX deficiency. Sequencing the RRM2B gene revealed three missense mutations and two single nucleotide deletions in exons 6, 8, and 9, confirming that RRM2B mutations are important causes of MDS and that the clinical phenotype is heterogeneous and not invariably fatal in infancy.  相似文献   

15.
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an autosomal recessive disease caused by mutations in the gene encoding thymidine phosphorylase (TYMP). Clinically, MNGIE is characterized by gastrointestinal dysmotility, cachexia, ptosis, ophthalmoparesis, peripheral neuropathy and leukoencephalopathy. Most MNGIE patients have signs of mitochondrial dysfunction in skeletal muscle at morphological and enzyme level, as well as mitochondrial DNA depletion, multiple deletions and point mutations. A case without mitochondrial skeletal muscle involvement and with a TYMP splice-acceptor site mutation (c. 215–1 G>C) has been reported. Here, we describe an Italian patient with the same mutation and without mitochondrial skeletal muscle involvement, suggesting a possible genotype–phenotype correlation.  相似文献   

16.
Progressive external ophthalmoplegia (PEO) with secondary accumulation of multiple deletions of mitochondrial DNA (mtDNA) clinically resembles disorders due to primary mutations of mtDNA but follows a Mendelian inheritance pattern. The disorder belongs to an interesting group of diseases in which both the nuclear and the mitochondrial genome are involved in the pathology. Both autosomal dominant (adPEO) and recessive (arPEO) variants of this disorder occur. Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) patients may have multiple mtDNA deletions and/or depletion of mtDNA. Recent reports of mutations in Thymidine Phosphorylase in MNGIE, and of mutations in adenine nucleotide translocator (ANT1), Twinkle and mitochondrial DNA polymerase gamma (POLG) in adPEO, have lead to new insights in the pathogenesis of these disorders of mtDNA maintenance. We also identified POLG mutations in two families with arPEO, which underlines the crucial role of the mtDNA replication machinery for mtDNA maintenance.  相似文献   

17.
The authors describe siblings with progressive external ophthalmoplegia (PEO) due to a novel heterozygous A to G transition at nucleotide 955 of C10Orf2 (Twinkle). The mutation was not identified in parents' blood, hair follicles, buccal mucosa, or urinary epithelium, indicating germ line mosaicism. One sibling presented with sensory ataxic neuropathy, dysarthria, and ophthalmoparesis (SANDO), a phenotype previously associated with the POLG1 gene, highlighting the clinical overlap in autosomal PEO.  相似文献   

18.
Maintenance and replication of mitochondrial DNA require the concerted action of several factors encoded by nuclear genome. The mitochondrial helicase Twinkle is a key player of replisome machinery. Heterozygous mutations in its coding gene, PEO1, are associated with progressive external ophthalmoplegia (PEO) characterised by ptosis and ophthalmoparesis, with cytochrome c oxidase (COX)-deficient fibres, ragged-red fibres (RRF) and multiple mtDNA deletions in muscle. Here we describe clinical, histological and molecular features of two patients presenting with mitochondrial myopathy associated with PEO. PEO1 sequencing disclosed two novel mutations in exons 1 and 4 of the gene, respectively. Although mutations in PEO1 exon 1 have already been described, this is the first report of mutation occurring in exon 4.  相似文献   

19.
BACKGROUND: The mendelian forms of progressive external ophthalmoplegia (PEO) associated with multiple mitochondrial DNA deletions are clinically heterogeneous disorders transmitted as dominant or recessive traits. Autosomal dominant PEO is caused by mutations in at least 3 genes: adenine nucleotide translocator-1 (ANT1), encoding the muscle-specific adenine nucleotide translocator; chromosome 10 open reading frame 2 (C10orf2), encoding Twinkle helicase; and polymerase gamma (POLG), encoding the alpha subunit of polymerase gamma. Mutations in POLG can also cause autosomal recessive PEO, which is often associated with multisystemic disorders. OBJECTIVE AND METHODS: To further investigate the frequency and genotype-phenotype correlations of mutations in the POLG gene, we used single-stranded conformational polymorphism analysis and direct sequencing to screen 30 patients with familial or sporadic PEO and multiple mitochondrial DNA deletions in muscle but without mutations in ANT1 and C10orf2. RESULTS: Four unrelated patients had novel POLG mutations. A woman with PEO and mental retardation had a heterozygous Gly1076Val mutation. Two patients, one with PEO, exercise intolerance, and gastrointestinal dysmotility and the other with PEO, neuropathy, deafness, and hypogonadism, both had a Pro587Leu change. The fourth patient, who was compound heterozygous for Ala889Thr and Arg579Trp mutations, had PEO, gastrointestinal dysmotility, and neuropathy. These mutations were not detected in 120 healthy control alleles. CONCLUSIONS: Our results demonstrate that POLG mutations account for a substantial proportion of patients (13%) with PEO and multiple mitochondrial DNA deletions and cause both clinically and genetically heterogeneous disorders.  相似文献   

20.
We have identified compound heterozygous missense mutations in POLG1, encoding the mitochondrial DNA polymerase gamma (Pol gamma), in 7 children with progressive encephalopathy from 5 unrelated families. The clinical features in 6 of the children included psychomotor regression, refractory seizures, stroke-like episodes, hepatopathy, and ataxia compatible with Alpers-Huttenlocher syndrome. Three families harbored a previously reported A467T substitution, which was found in compound with the earlier described G848S or the W748S substitution or a novel R574W substitution. Two families harbored the W748S change in compound with either of 2 novel mutations predicted to give an R232H or M1163R substitution. Muscle morphology showed mitochondrial myopathy with cytochrome c oxidase (COX)-deficient fibers in 4 patients. mtDNA analyses in muscle tissue revealed mtDNA depletion in 3 of the children and mtDNA deletions in the 2 sibling pairs. Neuropathologic investigation in 3 children revealed widespread cortical degeneration with gliosis and subcortical neuronal loss, especially in the thalamus, whereas there were only subcortical neurodegenerative findings in another child. The results support the concept that deletions as well as depletion of mtDNA are involved in the pathogenesis of Alpers-Huttenlocher syndrome and add 3 new POLG1 mutations associated with an early-onset neurodegenerative disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号