首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The progress in the innovative nanocrystal synthesis process by using environmentally benign and low-priced nontoxic chemicals, solvents, and renewable sources remains a challenging task for researchers worldwide. The majority of the existing synthesis techniques engage in the potentially dangerous, for either human health or the environment. Current investigation has been centered on green synthesis processes to create novel nanomaterials, which are eco-friendly as well as safer for sustainable marketable feasibility. The current work provides the green synthesis method for gold nanoparticle (GNPs) synthesis using Commiphora myrrh (C.myrrh) extract. This simple method includes 6 ml of HAuCl4·3H2O treated with 4 ml C.myrrh extract having pH 4.5 after 80 min at 25 °C temperature. In this novel method, green synthesized GNPs characterized by UV–Vis, X_ray diffraction spectroscopy (XRD), zeta potential, fourier transform infrared (FT_IR), high_resolution transmission electron microscopy (HR_TEM), energy dispersive X_ray spectroscopy (EDXA), and dynamic light scattering (DLS). During the development successful antioxidant assay, the DPPH assay was applied. The cell toxicity of green synthesized GNPs was evaluated following an MTT assay against HCT-116 (colon cancer) and MCF-7 (breast cancer).Besides molecular docking in the δ-elemene for inhibitor to VEGFR‐2 domain revealed more negative docking score (?3.976) which is an excellent binding affinity to the C.myrrh@GNP. The synthesized GNPs showed antidiabetic, antibiotic, and antibacterial properties and anti_inflammatory inhibition against inhibiting COX-1, and COX-2 enzymes. In addition, molecular docking by Lindestrene (?3.806) and Furanoeudesma-1,3-dien (?3.912) against COX1 and COX2 respectively showed strong binding affinity. The molecular docking study evidenced the anti-inflammatory and cell toxicity study.  相似文献   

3.
Application of silver nanoparticles serves as a new approach in cancer treatment due to its unique features. Biosynthesis of silver nanoparticles using plant is advantageous since they are easily accessible, nontoxic and produce quicker reaction compared to other methods. To evaluate the cytotoxicity, mechanism of cell death and DNA damage of biosynthesized Catharanthus roseus-silver nanoparticles on human liver cancer (HepG2) cells. The antiproliferative activity of Catharanthus roseus‑silver nanoparticles was measured using MTT assay. The cytotoxic effects were further evaluated by measuring nitric oxide and reactive oxygen species (ROS). The mechanism of cell death was determined by annexin-FITC/propidium iodide, mitochondrial membrane potential (MMP) and cell cycle assays. The assessment of DNA damage was evaluated using Comet assay method. The uptake of the nanoparticles were evaluated by Transmission Electron Microscopy (TEM). Catharanthus roseus‑silver nanoparticles has inhibited the proliferation of HepG2 cells in a time-dependent manner with a median IC50 value of 3.871 ± 0.18 μg/mL. The concentration of nitrite and ROS were significantly higher than control. The cell death was due to apoptosis associated with MMP loss, cell cycle arrest, and extensive DNA damage. TEM analysis indicated the presence of free nanoparticles and endosomes containing the nanoparticles. The findings show that Catharanthus roseus‑silver nanoparticles have produced cytotoxic effects on HepG2 cells and thus may have a potential to be used as an anticancer treatment, particularly for hepatocellular carcinoma.  相似文献   

4.
The objective of this study was to develop an albumin nanoparticle with improved stability and drug loading capacity. Generation of nanomaterials having physiologically stable and high potential for drug delivery is still challenging. Herein we synthesized cholesteryl albumin conjugate using N,N-disuccinimidyl carbonate coupling reagent and prepared paclitaxel-loaded cholesteryl albumin nanoparticle (PTX-Chol-BSA) by self-assembly with the mean hydrodynamic diameter of 147.6 ± 1.6 nm and with high loading capacity. PTX-Chol-BSA nanoparticle showed much higher colloidal stability than a simple complex of PTX and BSA (PTX–BSA) and sustained release profile. PTX-Chol-BSA nanoparticles exhibited greater cellular uptake and cytotoxicity in B16F10 and MCF-7 cancer cell lines, as compared with PTX in Cremophor EL/ethanol (PTX-Cre/EtOH) and PTX–BSA formulations. A pharmacokinetic study in tumor-bearing mice showed that the area under the concentration–time curve (AUC0–8 h) following the administration of PTX-Chol-BSA was 1.6–2-fold higher than those following the administration of PTX-Cre/EtOH and PTX–BSA. In addition, the tumor AUC0–8 h of PTX-Chol-BSA was around 2-fold higher than that of PTX–BSA. Furthermore, in vivo antitumor efficacy results revealed that PTX-Chol-BSA nanoparticles have greater antitumor efficacy. In conclusion, we demonstrated the potential of PTX-Chol-BSA nanoparticles for anti-tumor chemotherapy, with enhanced in vitro and in vivo behaviors, as compared to PTX–BSA and PTX-Cre/EtOH.  相似文献   

5.
Busulfan is one of the most effective chemotherapeutic agents used for the treatment of chronic myeloid leukemia. Busulfan is involved in secondary malignancy due to its genotoxic potential in normal tissues. As an alkylating agent busulfan can cause DNA damage by cross-linking DNAs and DNA and proteins, induces senescence in normal cells via transient depletion of intracellular glutathione (GSH) and subsequently by a continuous increase in reactive oxygen species (ROS) production. Erythropoietin, a glycoprotein widely used against drug induced anemia in cancerous patients and regulates hematopoiesis, has been shown to exert an important cyto-protective effect in many tissues. Recombinant human erythropoietin has been demonstrated to directly limit cell injury and ROS generation during oxidative stress. Furthermore, rhEPO decreased levels of pro-apoptotic factor (Bax) and also increased expression of the anti-apoptotic factor Bcl2. According to EPO's short half-life and requirements for the frequently administration, finding the new strategies to attenuate its side effects is important. The aim of this study was to explore whether rhEPO loading chitosan-tripolyphosphate nanoparticles protects against busulfan-induced genotoxicity in HepG2 cells. For this purpose cells were incubated with busulfan alone, regular rhEPO alone and regular rhEPO and CS-TPP-EPO nanoparticles along with busulfan in pre and co-treatment condition. Our results showed that busulfan induced a noticeable genotoxic effects in HepG2 cells (p < 0.0001). Both regular rhEPO and CS-TPP-EPO nanoparticles reduced the effects of busulfan significantly (p < 0.0001) by reduction of the level of DNA damage via blocking ROS generation, and enhancement intracellular glutathione levels. CS-TPP-EPO nanoparticles were more effective than regular rhEPO in both pre and co-treatment conditions. In conclusion, our results show that administration of rhEPO and CS-TPP-EPO nanoparticles especially in the pre-treatment conditions, significantly decreased the level of DNA damage induced by busulfan, measured with the comet assay, in HepG2 cells compared to the regular rhEPO group.  相似文献   

6.
New drug delivery systems have rarely been used in the formulation of traditional Chinese medicine, especially those that are crude active Chinese medicinal ingredients. In the present study, hyaluronic acid decorated lipid-polymer hybrid nanoparticles were used to prepare a targeted drug delivery system (TDDS) for total alkaloid extract from Picrasma quassioides (TAPQ) to improve its targeting property and anti-inflammatory activity. Picrasma quassioides, a common-used traditional Chinese medicine (TCM), containing a series of hydrophobic total alkaloids including β-carboline and canthin-6-one alkaloids show great anti-inflammatory activity. However, its high toxicity (IC50= 8.088±0.903 μg/ml), poor water solubility (need to dissolve with 0.8% Tween-80) and poor targeting property severely limits its clinical application. Herein, hyaluronic acid (HA) decorated lipid-polymer hybrid nanoparticles loaded with TAPQ (TAPQ-NPs) were designed to overcome above mentioned deficiencies. TAPQ-NPs have good water solubility, strong anti-inflammatory activity and great joint targeting property. The in vitro anti-inflammatory activity assay showed that the efficacy of TAPQ-NPs was significantly higher than TAPQ(P<0.001). Animal experiments showed that the nanoparticles had good joint targeting property and had strong inhibitory activity against collagen-induced arthritis (CIA). These results indicate that the application of this novel targeted drug delivery system in the formulation of traditional Chinese medicine is feasible.  相似文献   

7.
方宁 《现代药物与临床》2019,42(8):1557-1562
目的 以聚乳酸-羟基乙酸共聚物(PLGA)作为纳米制剂载体材料将葫芦素B制备成纳米粒,并考察其对HepG2肝癌细胞的抑制效果。方法 使用乳化溶剂蒸发法制备葫芦素B-PLGA载药纳米粒,以PLGA浓度(X1)、PVA浓度(X2)和药物浓度(X3)作为考察因素,以载药纳米粒的粒径大小(Y1)和包封率(Y2)作为评价指标,应用中心复合设计-效应面法优化葫芦素B-PLGA载药纳米粒处方;测定了纳米粒的粒径分布和Zeta电位值,通过透射电镜观察其微观形态,并考察了葫芦素B-PLGA载药纳米粒的体外药物释放特性;比较了葫芦素B与葫芦素B-PLGA载药纳米粒对HepG2肝癌细胞的抑制效果。结果 葫芦素B-PLGA载药纳米粒的最优处方组成为:PLGA浓度为9.0%,PVA浓度为2.0%,药物浓度为4.5%,制备的纳米粒粒径为(145.4±15.8) nm,Zeta电位值为(-7.6±0.8) mV;透射电镜下可观察到纳米粒表面光滑,分布均匀;葫芦素B-PLGA载药纳米粒释药前期出现突释,后期平缓,48 h药物释放达到86%;葫芦素B-PLGA载药纳米粒对HepG2肝癌细胞的抑制作用显著高于葫芦素B。结论 葫芦素B-PLGA载药纳米粒可延缓药物释放,提高对HepG2肝癌细胞的抑制活性,为进一步临床研究奠定实验基础。  相似文献   

8.
Studies have shown that Casearia sylvestris compounds protect DNA from damage both in vitro and in vivo. Complementarily, the aim of the present study was to assess the chemopreventive effect of casearin B (CASB) against DNA damage using the Ames test, the comet assay and the DCFDA antioxidant assay. The genotoxicity was assessed by the comet assay in HepG2 cells. CASB was genotoxic at concentrations higher than 0.30 μM when incubated with the FPG (formamidopyrimidine-DNA glycosylase) enzyme. For the antigenotoxicity comet assay, CASB protected the DNA from damage caused by H2O2 in the HepG2 cell line in concentrations above 0.04 μM with post-treatment, and above 0.08 μM with pre-treatment. CASB was not mutagenic (Ames test) in TA 98 and TA 102. In the antimutagenicity assays, the compound was a strong inhibitor against aflatoxin B1 (AFB) in TA 98 (>88.8%), whereas it was moderate (42.7–59.4%) inhibitor against mytomicin C (MMC) in TA 102. Additionally, in the antioxidant assay using DCFDA, CASB reduced reactive oxygen species (ROS) generated by H2O2. In conclusion, CASB was genotoxic to HepG2 cells at high concentrations; was protective of DNA at low concentrations, as shown by the Ames test and comet assay; and was also antioxidant.  相似文献   

9.
One new norlignan, noralashinol B (1), and one new natural product, proposed noralashinol C (2), were isolated in a continuous phytochemical investigation on the stem barks of Syringa pinnatifolia. Their structures were elucidated based on the analysis of spectroscopic data, including mass spectrometry and 1D and 2D NMR spectroscopies, and the absolute configuration was determined by experimental and calculated electronic circular dichroism. Compound 1 showed a weak cytotoxicity against HepG2 hepatic cancer cells with its IC50 value of 31.7 μM. Furthermore, 1 induced apoptosis of HepG2 cells in a dose-dependent manner at concentrations of 0–80.0 μM.  相似文献   

10.
11.
Hepatocellular carcinoma (HCC) is the third-leading cause of cancer death in the world, with outlook for most patients having a 5-year survivability of less than 5%. In a previous study from our laboratory, novel estrone inspired analogs act as epidermal growth factor receptor (EGFR) inhibitors in HepG2 cells. This study focuses on the effect of these analogs on an HCC cell line resistance to Erlotinib. Lead compounds MMA132 and MMA102 showed 13 and 20 µM IC50 values, respectively against HepG2-R resistant to Erlotinib. These compounds showed cell cycle arrest of the G2 phase up to 54%, and inhibited cell migration of HepG2-R cells up to 48 h. Western blot analysis revealed that MMA132 reduced total EGFR content after 48 h, while MMA102 inhibited MEK kinase by 84% after 48 h. Western blot analysis also revealed that multidrug resistance protein 2 (MRP2) is overexpressed in HepG2-R, suggesting that ABC transporters play a likely cause in drug resistance. MMA102 showed significant inhibition of both P-glycoprotein (83%) and ABCG2 (53%), two additional ABC transporters. Additionally, MMA102 and MMA132 were used in a combination therapy with MK571(MRP1/2 inhibitor) and produced IC50 values of 18 and 10 µM, respectively, better than either MMA102/132 or MK571 alone. To validate our findings, we conducted molecular dynamic simulations with MMA102 and MMA132 in MEK, P-glycoprotein, MRP1, and MRP2. Results coincided with biological findings in which MMA102 orientation is favored in both MEK and P-glycoprotein pockets, whereas MMA132 likely binds with MRP2, as likely suggested by the combinatorial study.  相似文献   

12.
《Toxicology in vitro》2014,28(4):607-615
Phenazine was recently identified as a drinking water disinfection byproduct (DBP), but little is known of its toxic effects. We examined in vitro cytotoxicity and genotoxicity of phenazine (1.9–123 μM) in HepG2 and T24 cell lines. Cytotoxicity was determined by an impedance-based real-time cell analysis instrument. The BrdU (5-bromo-2′-deoxyuridine) proliferation and MTT ((3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) viability assays were used to examine mechanisms of cytotoxicity. Genotoxicity was determined using the alkaline comet assay. Concentration-dependent cytotoxicity was observed in HepG2 cells, primarily due to an antiproliferative effect (BrdU 24 h IC50: 11 μM; 48 h IC50: 7.8 μM) observed as low as 1.9 μM. T24 cells experienced a minor antiproliferative effect (BrdU 24 h IC50: 47 μM; 48 h IC50: 17 μM). IC50 values for HepG2 proliferation and viability were 54–77% lower compared to T24 cells. In both cell lines, IC50 values for proliferation were 66–90% lower than those for viability. At phenazine concentrations producing equivalent cytotoxicity, HepG2 cells (1.9–30.8 μM) experienced no significant genotoxic effects, while T24 cells (7.7–123 μM) experienced significant genotoxicity at ⩾61.5 μM. While these effects were seen at phenazine concentrations above those found in disinfected water, the persistence of the antiproliferative effect and the differential toxicity in each cell line deserves further study.  相似文献   

13.
Redox-responsive nanoparticles having a diselenide linkage were synthesized to target pulmonary metastasis of cancer cells. Methoxy poly(ethylene glycol)-grafted chitosan (ChitoPEG) was crosslinked using selenocystine-acetyl histidine (Ac-histidine) conjugates (ChitoPEGse) for stimuli-responsive delivery of piperlongumine (PL). ChitoPEGse nanoparticles swelled in an acidic environment and became partially disintegrated in the presence of H2O2, resulting in an increase of particle size and in a size distribution having multimodal pattern. PL release increased under acidic conditions and in the presence of H2O2. Uptake of ChitoPEGse nanoparticles by CT26 cells significantly increased in acidic and redox state. PL-incorporated ChitoPEGse nanoparticles (PL NPs) showed similar anticancer activity in vitro against A549 and CT26 cells compared to PL itself. PL NP showed superior anticancer and antimetastatic activity in an in vivo CT26 cell pulmonary metastasis mouse model. Furthermore, an immunofluorescence imaging study demonstrated that PL NP conjugates were specifically delivered to the tumor mass in the lung. Conclusively, ChitoPEGse nanoparticles were able to be delivered to cancer cells with an acidic- or redox state-sensitive manner and then efficiently targeted pulmonary metastasis of cancer cells since ChitoPEGse nanoparticles have dual pH- and redox-responsiveness.  相似文献   

14.
Magnetic manganese ferrite (MnFe2O4) nanoparticles with approximately 100 nm in diameter were used to improve the performance of an immunoassay for detecting influenza infections. The synthesized nanoparticles were tested for long-term storage to confirm the stability of their thermal decomposition process. Then, an integrated microfluidic system was developed to perform the diagnosis process automatically, including virus purification and detection. To apply these nanoparticles for influenza diagnosis, a micromixer was optimized to reduce the dead volume within the microfluidic chip. Furthermore, the mixing index of the micromixer could achieve as high as 97% in 2 seconds. The optical signals showed that this nanoparticle-based immunoassay with dynamic mixing could successfully achieve a detection limit of influenza as low as 0.007 HAU. When compared with the 4.5-μm magnetic beads, the optical signals of the MnFe2O4 nanoparticles were twice as sensitive. Furthermore, five clinical specimens were tested to verify the usability of the developed system.From the Clinical EditorIn this study, magnetic manganese ferrite nanoparticles were used to improve the performance of a novel immunoassay for the rapid and efficient detection of influenza infections.  相似文献   

15.
A series of genistein derivatives were synthesized and evaluated as multifunctional anti‐Alzheimer agents. The results showed that these derivatives had significant acetylcholinesterase (AChE) inhibitory activity; compound 5a exhibited the strongest inhibition to AChE with an IC50 value (0.034 μM) much lower than that of rivastigmine (6.53 μM). A Lineweaver–Burk plot and molecular modeling study showed that compound 5a targeted both the catalytic active site and the peripheral anionic site of AChE. These compounds also showed potent peroxy scavenging activity and metal‐chelating ability. The compounds did not show obvious effect on HepG2 and PC12 cell viability at the concentration of 100 μM. Therefore, these genistein derivatives can be utilized as multifunctional agents for the treatment of AD.  相似文献   

16.
The influence of medium composition and cultural conditions on simultaneous yield of mycelia, intracellular polysaccharide, adenosine, and mannitol by Cordyceps militaris CGMCC 2909 was investigated with desirability functions in this study. An optimization strategy based on the desirability function approach, together with response surface methodology (RSM) has been used to optimize medium composition, and the optimal medium was obtained via the desirability as follows: yeast extract 10.33 g/L, sucrose 27.24 g/L, KH2PO4 5.60 g/L and the optimal culture conditions are initial pH 6, 25°C, rotation speed 150 r/minute, inoculum size 4%(v/v), and medium capacity 40 mL/250 mL. Under these conditions, the yield of mycelia, intracellular polysaccharide, adenosine and mannitol reached 12.19 g/L, 0.6 g/L, 61.84 mg/L, and 1.38 g/L, respectively, and the D value was 0.77. Furthermore, the polysaccharides showed significant antitumor activities against HeLa and HepG2 in vitro in a dose-dependent manner in 72 hours. At a concentration of 1000 mg/mL, the inhibition rate of polysaccharides was 92.38% and 98.79%. The IC50 for HeLa and HepG2 were 70.91 μg/mL and 97.63 μg/mL, respectively.  相似文献   

17.
Antibacterial efficacy of silver nanoparticles developed by a phyto-synthesis method has been investigated and presented in this work. Silver nanoparticles of mean size 30–45 nm having spherical shape and crystalline structure were synthesized at room temperature through bioreduction of silver nitrate solution treated with bark extract of Melia azedarach. Formation of nanoparticles was observed by the color change in the reaction medium which was further established with UV-vis spectroscopy. Structural and morphological characterizations on silver nanoparticles were made by X-ray diffraction (XRD), transmission electron microscopy (TEM), and Fourier transform infra-red spectroscopy (FTIR) analyses. FTIR spectroscopic analysis has revealed the presence of biomolecules enveloped around the silver nanoparticles. Antibacterial efficacy of these nanoparticles was analyzed against Escherichia coli and Klebsiella pneumonia by measuring the zones of inhibition on solid growth medium. These silver nanoparticles have shown efficient inhibitory activity against the tested bacterial strains. It is believed that the proposed biocompatible, eco-friendly, and green synthesis method would lead to development of novel biomedical products based on silver nanoparticles.  相似文献   

18.
Rapanone is a natural occurring benzoquinone with several biological effects including unclear cytotoxic mechanisms. Here we addressed if mitochondria are involved in the cytotoxicity of rapanone towards cancer cells by employing hepatic carcinoma (HepG2) cells and isolated rat liver mitochondria. In the HepG2, rapanone (20–40 μM) induced a concentration-dependent mitochondrial membrane potential dissipation, ATP depletion, hydrogen peroxide generation and, phosphatidyl serine externalization; the latter being indicative of apoptosis induction. Rapanone toxicity towards primary rats hepatocytes (IC50 = 35.58 ± 1.50 μM) was lower than that found for HepG2 cells (IC50 = 27.89 ± 0.75 μM). Loading of isolated mitochondria with rapanone (5–20 μM) caused a concentration-dependent inhibition of phosphorylating and uncoupled respirations supported by complex I (glutamate and malate) or the complex II (succinate) substrates, being the latter eliminated by complex IV substrate (TMPD/ascorbate). Rapanone also dissipated mitochondrial membrane potential, depleted ATP content, released Ca2+ from Ca2+-loaded mitochondria, increased ROS generation, cytochrome c release and membrane fluidity. Further analysis demonstrated that rapanone prevented the cytochrome c reduction in the presence of decylbenzilquinol, identifying complex III as the site of its inhibitory action. Computational docking results of rapanone to cytochrome bc1 (Cyt bc1) complex from the human sources found spontaneous thermodynamic processes for the quinone-Qo and Qi binding interactions, supporting the experimental in vitro assays. Collectively, these observations suggest that rapanone impairs mitochondrial respiration by inhibiting electron transport chain at Complex III and promotes mitochondrial dysfunction. This property is potentially involved in rapanone toxicity on cancer cells.  相似文献   

19.
A novel series of benzoxazole/benzothiazole derivatives 4a–c – 11a–e were designed, synthesized, and evaluated for anticancer activity against HepG2, HCT‐116, and MCF‐7 cells. HCT‐116 was the most sensitive cell line to the influence of the new derivatives. In particular, compound 4c was found to be the most potent derivative against HepG2, HCT‐116, and MCF‐7 cells, with IC50 values = 9.45 ± 0.8, 5.76 ± 0.4, and 7.36 ± 0.5 µM, respectively. Compounds 4b, 9f , and 9c showed the highest anticancer activities against HepG2 cells with IC50 values of 9.97 ± 0.8, 9.99 ± 0.8, and 11.02 ± 1.0 µM, respectively, HCT‐116 cells with IC50 values of 6.99 ± 0.5, 7.44 ± 0.4, and 8.15 ± 0.8 µM, respectively, and MCF‐7 cells with IC50 values of 7.89 ± 0.7, 8.24 ± 0.7, and 9.32 ± 0.7 µM, respectively, in comparison with sorafenib as reference drug with IC50 values of 9.18 ± 0.6, 5.47 ± 0.3, and 7.26 ± 0.3 µM, respectively. The most active compounds 4a–c, 9b,c,e,f,h , and 11c,e were further evaluated for their VEGFR‐2 inhibition. Compounds 4c and 4b potently inhibited VEGFR‐2 at IC50 values of 0.12 ± 0.01 and 0.13 ± 0.02 µM, respectively, which are nearly equipotent to the sorafenib IC50 value (0.10 ± 0.02 µM). Furthermore, molecular docking studies were performed for all synthesized compounds to assess their binding pattern and affinity toward the VEGFR‐2 active site.  相似文献   

20.
Six series of pyrrolo[2,3‐d]pyrimidine and pyrazolo[3,4‐d]pyrimidine derivatives bearing 1,2,3‐triazole moiety were designed and synthesized, and some bio‐evaluation was also carried out. As a result, four points can be summarized: Firstly, some of compounds exhibited excellent cytotoxicity activity and selectivity with the IC50 values in single‐digit μm level. In particular, the most promising compound 16d showed equal activity to lead compound foretinib against A549, HepG2, and MCF‐7 cell lines, with the IC50 values of 4.79 ± 0.82, 2.03 ± 0.39, and 2.90 ± 0.43 μm , respectively. Secondly, the SARs and docking studies indicated that the in vitro antitumor activity of pyrrolo[2,3‐d]pyrimidine derivatives bearing 1,2,3‐triazole moiety was superior to the pyrazolo[3,4‐d]pyrimidine derivatives bearing 1,2,3‐triazole moiety. Thirdly, three selected compounds ( 16d , 18d , and 20d ) were further evaluated for inhibitory activity against the c‐Met kinase, and the 16d could inhibit the c‐Met kinase selectively by experiments of enzyme‐based selectivity. What is more, 16d could induce apoptosis of HepG2 cells and inhibitor the cell cycle of HepG2 on G2/M phase by acridine orange staining and cell cycle experiments, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号