首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The aim of this study was to evaluate the toxic effect of nanosized ZnO, CuO and TiO2 to Saccharomyces cerevisiae – a widely used unicellular eukaryotic model organisms in molecular and cell biology. The effect of metal oxide nanoparticles, their bulk forms and respective ionic forms were compared. The bioavailable Zn2+ and Cu2+ ions in the growth medium were quantified by recombinant microbial sensors.Nano and bulk TiO2 were not toxic even at 20000 mg/l. Both, nano and bulk ZnO were of comparable toxicity (8-h EC50 121–134 mg ZnO/l and 24-h EC50 131–158 mg/l). The toxicity was explained by soluble Zn-ions as proved by the microbial sensor. However, nano CuO was about 60-fold more toxic than bulk CuO: 8-h EC50 were 20.7 and 1297 mg CuO/l and 24-h EC50 were 13.4 and 873 mg/l, respectively. The increase in toxicity of both CuO formulations at 24th hour of growth was due to the increased dissolution of copper ions from CuO over time. Comparison of EC50 values of nano CuO, bulk CuO and Cu2+ with bioavailable copper concentrations in the growth medium showed that the solubilized Cu-ions explained only about 50% of the toxicity of both, nano and bulk CuO. To our knowledge, this is the first study that evaluates the toxicity of ZnO, CuO and TiO2 nanoparticles to S. cerevisiae.  相似文献   

2.
Gold nanoparticles (Au NPs), silver nanoparticles (Ag NPs), zinc oxide nanoparticles (ZnO NPs) and titanium dioxide nanoparticles (TiO2 NPs) are widely used in cosmetic products such as preservatives, colorants and sunscreens. This study investigated the genotoxicity of Au NPs, Ag NPs, ZnO NPs and TiO2 NPs using the SOS chromotest with Escherichia coli PQ37. The maximum exposure concentrations for each nanoparticle were 3.23 mg l–1 for Au NPs, 32.3 mg l–1 for Ag NPs and 100 mg l–1 for ZnO NPs and TiO2 NPs. Additionally, in order to compare the genotoxicity of nanoparticles and corresponding dissolved ions, the ions were assessed in the same way as nanoparticles. The genotoxicity of the titanium ion was not assessed because of the extremely low solubility of TiO2 NPs. Au NPs, Ag NPs, ZnO NPs, TiO2 NPs and ions of Au, Ag and Zn, in a range of tested concentrations, exerted no effects in the SOS chromotest, evidenced by maximum IF (IFmax) values of below 1.5 for all chemicals. Owing to the results, nanosized Au NPs, Ag NPs, ZnO NPs, TiO2 NPs and ions of Au, Ag and Zn are classified as non‐genotoxic on the basis of the SOS chromotest used in this study. To the best of our knowledge, this is the first study to evaluate the genotoxicity of Au NPs, Ag NPs, ZnO NPs and TiO2 NPs using the SOS chromotest. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
An in vitro blood-brain barrier (BBB) model being composed of co-culture with endothelial (bEnd.3) and astrocyte-like (ALT) cells was established to evaluate the toxicity and permeability of Ag nanoparticles (AgNPs; 8 nm) and TiO2 nanoparticles (TiO2NPs; 6 nm and 35 nm) in normal and inflammatory central nervous system. Lipopolysaccharide (LPS) was pre-treated to simulate the inflammatory responses. Both AgNPs and Ag ions can decrease transendothelial electrical resistance (TEER) value, and cause discontinuous tight junction proteins (claudin-5 and zonula occludens-1) of BBB. However, only the Ag ions induced inflammatory cytokines to release, and had less cell-to-cell permeability than AgNPs, which indicated that the toxicity of AgNPs was distinct from Ag ions. LPS itself disrupted BBB, while co-treatment with AgNPs and LPS dramatically enhanced the disruption and permeability coefficient. On the other hand, TiO2NPs exposure increased BBB penetration by size, and disrupted tight junction proteins without size dependence, and many of TiO2NPs accumulated in the endothelial cells were observed. This study provided the new insight of toxic potency of AgNPs and TiO2NPs in BBB.  相似文献   

4.
Titanium dioxide nanoparticles (TiO2NPs), in the two crystalline forms, rutile and anatase, have been widely used in many industrial fields, especially in cosmetics. Therefore, a lot of details about their safety issues have been discussed by the scientific community. Many studies have led to a general agreement about TiO2NPs toxicity, in particular for anatase form, but no mechanism details have been proved yet. In this study, data confirm the different toxic potential of rutile and anatase TiO2NPs in two cell lines up to 5 nM nanoparticles concentration. Moreover, we evaluated the role of titanium ions released by TiO2NPs in different conditions, at pH = 4.5 (the typical lysosomal compartment pH) and at pH = 5.5 (the skin physiological pH) in conditions of darkness and light, to mimic the dermal exposure of cosmetics. Anatase nanoparticles were proner to degradation both in the acidic conditions and at skin pH. Our study demonstrates that pH and sunlight are dominant factors to induce oxidative stress, TiO2NPs degradation and toxicity effects.  相似文献   

5.
Major efforts have been made relating to the development of novel biosorbents applied to remove wastewater pollutants such as heavy metal ions and dyes. This work is focused on preparing a biosorbent from oil palm bagasse and alumina nanoparticles and using it for cadmium and nickel uptake. FT-IR, SEM and EDX analyses were carried out to test the diversification of functional groups, morphology and elemental composition. Batch adsorption experiments were performed varying pH (2, 4 and 6) and particle size (0.355, 0.5 and 1 mm) in order to determine suitable parameter values for further experiments using chemically modified biomass. The presence of absorption bands attributed to bonds with aluminum indicated a successful synthesis of this biosorbent. The carbon and oxygen elements most contribute to biosorbent composition due to the nature of this lignocellulosic biomass. The highest removal yields (87% for cadmium and 81% for nickel) were achieved at pH = 6 and particle size = 0.355 mm. In addition, the modification with alumina nanoparticles using dimethyl sulfoxide (DMSO) as organic solvent reflected no significant enhancement of adsorption process.  相似文献   

6.
In this study, dried orange peel powder [DOPP] is chemically modified with nanosilica (SiO2) employing sonication technique to produce nanobioadsorbent [SiO2@DOPP]. [SiO2@DOPP] This nanoadsorbent was evaluated for Cd2+ removal from aqueous systems. Successful functionalization of [DOPP] into nanosilica was confirmed by various analytical techniques like XRD, FTIR, SEM, EDX, TEM, DLS, pHzpc and TGA. XRD, FTIR and EDX confirmed the emergence of new peaks after modification of [DOPP] by nanosilica and adsorption of Cd2+ onto [SiO2@DOPP]. Further, TGA spectrum suggested that [SiO2@DOPP] nanoadsorbent is thermally more stable than [DOPP]. pH plays a major role to Cd2+ adsorption onto [SiO2@DOPP]. The optimum conditions for Cd2+ removal include pH = 6.5 and 0.03g adsorbent dose with 100 min contact time. Different adsorption isotherms models [best fitted-(Langmuir adsorption model)], adsorption kinetics [best fitted–(Pseudo second order and Intraparticle diffusion)] were examined for the removal of Cd2+. The maximum monolayer adsorption capacity [qmax] was 142 mg/g. Thermodynamic evaluation indicates the endothermic and spontaneous nature of Cd2+ adsorption onto [SiO2@DOPP]. Furthermore complexation mechanism of Cd2+ onto [SiO2@DOPP] is discussed in detail. The results indicate involvement of functional group interactions, π–metal interactions, proton exchange, chelate complexes and electrostatic interactions during adsorption of Cd2+ onto [SiO2@DOPP]. Based on the results it has been inferred that [SiO2@DOPP] is a promising nanobioadsorbent to manage environment burden of Cd2+ from aqueous systems.  相似文献   

7.
Our laboratory recently reported gut pathology following incidental ingestion of titanium dioxide nanoparticles (TiO2 NPs) during aqueous exposures in trout, but there are almost no data on dietary exposure to TiO2 NPs in fish. The aim of this experiment was to observe the sub-lethal effects of dietary exposure to TiO2 NPs in juvenile rainbow trout (Oncorhynchus mykiss). Stock solutions of dispersed TiO2 NPs were prepared by sonication without the use of solvents and applied to a commercial trout diet. Fish were exposed in triplicate to either, control (no added TiO2), 10, or 100 mg kg−1 TiO2 NPs diets for 8 weeks followed by a 2 week recovery period where all fish were fed the control diet. TiO2 NPs had no impact on growth or nutritional performance, and no major disturbances were observed in red or white blood cell counts, haematocrits, whole blood haemoglobin, or plasma Na+. Ti accumulation occurred in the gill, gut, liver, brain and spleen during dietary TiO2 exposure. Notably, some of these organs, especially the brain, did not clear Ti after exposure. The brain also showed disturbances to Cu and Zn levels (statistically significant at weeks 4 and 6; ANOVA or Kruskal–Wallis, P < 0.05) and a 50% inhibition of Na+K+-ATPase activity during TiO2 NP exposure. Na+K+-ATPase activity was unaffected in the gills and intestine. Total glutathione in the gills, intestine, liver and brain were not affected by dietary TiO2 NPs, but thiobarbituric acid reactive substances (TBARS) showed up to 50% decreases in the gill and intestine. We conclude that TiO2 NPs behave like other toxic dietary metals where growth rate and haematology can be protected during sub-lethal exposures, but in the case of TiO2 NPs this may be at the expense of critical organs such as the brain and the spleen.  相似文献   

8.
To assess the tolerance and phytoaccumulation ability of the duckweed Lemna gibba L. to copper (Cu) and nickel (Ni), the plants were exposed to different concentrations of Cu and Ni (0.1–2.0 mg/l) under laboratory conditions. The results showed that Cu and Ni were tolerated by L. gibba at concentrations ≤0.3 and ≤0.5 mg/l, respectively. However, plant growth decreased by 50% (I50) when the medium contained 0.45 mg Cu/l or 0.75 mg Ni/l. The observed LCI (lowest concentration causing complete inhibition) were 0.5 and 1.0 mg/l respectively in the presence of Cu and Ni. Results from metal analysis in plant biomass revealed a high accumulation of Cu (1.5 mg g−1 DW), a low accumulation of Ni (0.5 mg g−1 DW) within the plants and a corresponding decrease of metals in the water. The removal percentage of Cu was about 60–80%. We conclude that the duckweed L. gibba L. showed a higher accumulation potential for Cu from polluted water than Ni after 4 days of exposure.  相似文献   

9.
Over the course of 78?days, nine outdoor mesocosms, each with 1350?L capacity, were situated on a pontoon platform in the middle of a lake and exposed to 0?μg?L?1 TiO2, 25?μg?L?1 TiO2 or 250?μg?L?1 TiO2 nanoparticles in the form of E171 TiO2 human food additive five times a week. Mesocosms were inoculated with sediment, phytoplankton, zooplankton, macroinvertebrates, macrophytes and fish before exposure, ensuring a complete food web. Physicochemical parameters of the water, nutrient concentrations, and biomass of the taxa were monitored. Concentrations of 25?μg?L?1 TiO2 and 250?μg?L?1 TiO2 caused a reduction in available soluble reactive phosphorus in the mesocosms by 15 and 23%, respectively, but not in the amount of total phosphorus. The biomass of Rotifera was significantly reduced by 32 and 57% in the TiO2 25?μg?L?1 and TiO2 250?μg?L?1 treatments, respectively, when compared to the control; however, the biomass of the other monitored groups—Cladocera, Copepoda, phytoplankton, macrophytes, chironomids and fish—remained unaffected. In conclusion, environmentally relevant concentrations of TiO2 nanoparticles may negatively affect certain parameters and taxa of the freshwater lentic aquatic ecosystem. However, these negative effects are not significant enough to affect the overall function of the ecosystem, as there were no cascade effects leading to a major change in its trophic state or primary production.  相似文献   

10.
The uptake of Pb(II) from the aqueous solution by Coffee Husk Biomass Waste (CHBW) as a green low cost solid phase adsorbent was critically studied. The chemical composition and the surface morphology of the CHBW were determined and fully characterized by FESEM-EDX. In batch mode, the effect of various analytical parameters e.g. adsorbent dose, contact time and analyte concentration on lead(II) ions retention by the biomass CHBW was performed. The adsorption equilibrium of Pb(II) ions was achieved after 60 min with very high percentage 98%, and an adsorption capacity of 19.02 mg/g lead towards the adsorbent was determined. Sorption kinetics data was fitted well with pseudo-second-order model with good correlation coefficient (R2 = 1) and (qe,cal) 19.23 mg/g, (eqe,exp) 19.07 mg/g. The sorption isotherm fitted better with the Freundlich model (R2 is close to the unity). The Langmuir gives maximum adsorption capacity (qmax) of Pb(II) was 37.04 mg/g. These results indicated that, the coffee husk is an efficient, sustainable, and low-cost adsorbent for Pb(II) uptake from wastewater.  相似文献   

11.
As food additives, titanium dioxide nanoparticles (TiO2 NPs) have been widely used in various products that are usually simultaneously consumed with a high content of sugar, thus necessitating research on the effect of TiO2 NPs on glucose homeostasis. We conducted an animal study to explore the effect of orally administrated TiO2 NPs on glucose absorption and metabolism in rats at 0, 2, 10 and 50 mg kg–1 body weight day–1 for 30 and 90 days. The results showed that oral exposure to TiO2 NPs caused a slight and temporary hypoglycemic effect in rats at 30 days post‐exposure but recovered at 90 days post‐exposure. Decreased levels of intestinal glucose absorption and increased levels of hepatic glucose metabolism may be responsible for the hypoglycemic effect. Remodeling of the villi in the small intestine that decreased the surface area available for glucose absorption and increased levels of hepatic glucose uptake, utilization and storage related to hepatocellular injury are supposed to be the mechanisms. Our results demonstrated that dietary intake of TiO2 NPs as food additives could affect the absorption and metabolism of glucose.  相似文献   

12.
《Inhalation toxicology》2013,25(3):181-190
Abstract

The inhalation of manufactured metal oxide nanoparticles may lead to pulmonary toxicity. For instance, ZnO nanoparticles are known to induce pulmonary oxidative stress and inflammation. On the other hand, the pulmonary toxicity of TiO2 nanoparticles is less than that of ZnO nanoparticles. Although, there have been some investigations concerning the induction of pulmonary oxidative stress and inflammation caused by manufactured metal oxide nanoparticles. And, although, it has reported that some nanoparticles cause aggravation of allergic reactions, there have so far been no reports regarding allergy aggravation effects of manufactured metal oxide nanoparticles. In this study, three types of nanoparticles, TiO2, ZnO and SiO2, were administered to mouse lungs by pharyngeal aspiration. Subsequently, the mice inhaled ovalbumin (OVA) a total of eight times over 3 weeks. After inhalation of OVA, the concentrations of total IgE, OVA-specific IgE and OVA-specific IgG1 in serum increased in the mice treated with ZnO. TiO2 and SiO2 nanoparticles did not affect the OVA-specific IgE and IgG1 levels. These results suggest that ZnO nanoparticles have the potential to aggravate allergic reactions. The results also suggest that Zn2+ release from ZnO nanoparticles is involved in the aggravation potential of allergies. However, pharyngeal aspiration of ZnCl2 solution was not able to aggravate allergic reactions. Continuous Zn2+ release from ZnO nanoparticles to the lung is necessary for the aggravation of allergic reactions.  相似文献   

13.
The marine macroalga, Ulva lactuca, has been exposed for 48 h to different concentrations of Ag added as either silver nanoparticles (AgNP) or aqueous metal (AgNO3) and the resulting toxicity, estimated from reductions in quenching of chlorophyll-a fluorescence, and accumulation of Ag measured. Aqueous Ag was toxic at available concentrations as low as about 2.5 μg l−1 and exhibited considerable accumulation that could be defined by the Langmuir equation. AgNP were not phytotoxic to the macroalga at available Ag concentrations up to at least 15 μg l−1 and metal measured in U. lactuca was attributed to a physical association of nanoparticles at the algal surface. At higher AgNP concentrations, a dose–response relationship was observed that was similar to that for aqueous Ag recorded at much lower concentrations. These findings suggest that AgNP are only indirectly toxic to marine algae through the dissolution of Ag+ ions into bulk sea water, albeit at concentrations orders of magnitude greater than those predicted in the environment.  相似文献   

14.
The toxicity of a range of inorganic (Ag, Cu, Ni, Al2O3, SiO2, TiO2 and ZrO2) nanoparticles (NP) and their corresponding metal salt or bulk metal oxide were screened for toxicity toward the earthworm Eisenia fetida using the limit-test design (1000 mg/kg). This study provides the first ecotoxicological life history trait data on earthworms for each these NPs, as well as for AgNO3, Al2O3, SiO2, TiO2 and ZrO2. Significant effects were observed on survival for AgNO3 (2.5% of controls), CuCl2 (17.5% of controls) and NiCl2 (32.5% of controls) and on reproduction (AgNO3, CuCl2, NiCl2, Ag-NP, Cu-NP, TiO2-NP); with total reproductive failure in both silver treatments. Ag-NP, Cu-NP and TiO2-NP were the only NPs that caused toxic effects to E. fetida. The toxicity could not be singularly related to particle size or zeta potential or to the inherent element constituting the NPs (e.g. Ag).  相似文献   

15.
《Nanotoxicology》2013,7(4):687-699
Abstract

Measurement of the surface area of airborne nanoparticles as administered to an experimental subject is critical for characterizing exposures during inhalation experiments. A filter-based surface area measurement methodology is described herein that allows for such determinations. Krypton gas adsorption was used to determine total particle surface area. Track-etched polycarbonate 0.4 μm pore filters were chosen as the collection substrate for metal oxide particles due to their highly reproducible surface areas and low background weights. The subject nanomaterials included two different batches of ultrafine TiO2, TiO2 nanorods, and SiO2. The instrument detection limit for surface area was 200 cm2 (0.02 m2). Ninety percent confidence interval estimates of method accuracy were 17.7–23.5% with a point estimate of 20.8%. The filter-based surface area measurement strategy is demonstrated to be a viable sampling and analysis methodology that provides much needed physical characterization information of particles as administered in an animal inhalation chamber.  相似文献   

16.
Low cost adsorbents prepared from the epicarp of Raphia hookeri fruit were used for the removal of copper (II) ion from aqueous solution. The effects of operational parameters such as pH, concentration and contact time, dosage as well as interference of other ions were studied. Optimum pH for raw and modified biomass were 5.0 and 5.5 with percentage removal of 75.08% and 95.62% respectively. Concentration of competing ions greatly reduced Cu2+ removal with both adsorbents while agitation speed had negligible effect on Cu2+ uptake. Adsorbents surfaces were activated as temperature increased thus enhancing adsorbent adsorption capacity at high temperature. Adsorption kinetic data fitted best into the pseudo second order model while the thermodynamics studies confirmed adsorption spontaneity and feasibility. The Freundlich adsorption isotherm best described the adsorption process and the Langmuir maximum monolayer adsorption capacity for the raw (RHE) and acid treated (ARHE) biomass were 81.97 and 103.09 mg/g respectively. Chemisorption predominate the Cu2+-ARHE system hence desorption efficiency was obtained to be 72.65% with CH3COOH as eluent.  相似文献   

17.
18.
Local application requires fewer nanoparticles than systemic delivery to achieve effective concentration. In this study, we investigated the potential toxicity and efficacy of bare titanium dioxide (TiO2) nanoparticles by local administration into the eye. Mono-disperse, 20 nm-size TiO2 nanoparticles did not affect the viability of retinal constituent cells within certain range of concentrations (~ 1.30 μg/mL). Furthermore, local delivery of TiO2 nanoparticles did not induce any significant toxicity at the level of gene expression and histologic integrity in the retina of C57BL/6 mice. Interestingly, at the low concentration (130 ng/mL) without definite toxicity, these nanoparticles suppressed in vitro angiogenesis processes and in vivo retinal neovascularization in oxygen-induced retinopathy mice when they are administered intravitreally. Taken together, our results demonstrate that even TiO2 nanoparticles can be safely utilized for the treatment of retinal diseases at the adequate concentration levels, especially through local administration.From the Clinical EditorIn this paper the local application of titanium dioxide is described as a local treatment for retinal diseases associated with neovascularization. While these nanoparticles have known systemic toxicity, this work demonstrates that when applied locally in a mouse model, they can be used without observable toxicity even in their native forms.  相似文献   

19.
Water pollution caused by antibiotics is a serious environmental problem in recent years. Using biochar to remove such pharmaceutical pollutants has recently emerged as a promising option. After H3PO4 modification, a new waste-based biochar (MPCWSB500) from sour cherry stalk was successfully synthesized to remove ciprofloxacin (CFX) from aquatic media, and modification of feedstock has significantly improved the adsorption capacity of biochar. MPCWSB500 is suitable for both batch and continuous treatment systems. The CFX sorption was systematically studied using various kinetics and isotherm models. The surface characteristics of the modified biochar and the possible CFX?biochar interactions were investigated by BET, FT?IR, and SEM?EDX analysis. Short operation time, high sorption capacity (410.06 mg g?1), and nearly 100% removal efficiency were recorded as significant findings at optimum experimental conditions (pH: 6.3, contact time: 40 min, MPCWSB500 dose: 15 mg). Furthermore, the modified biochar exhibited more than 95% CFX removal efficiency in continuous mode at all flow rates (1–10 mL min?1). Its sorption performance was minimally affected by the presence of Cl?, K+, Na+, and NO3? ions in the adsorption medium. In addition, up to 5 sorption-desorption cycles, biochar regeneration and recycling produced satisfactory results. The proposed biochar was also successfully used to remove CFX from simulated hospital wastewater and synthetic urine samples. These features are all important advantages for its real applications. Overall, our research offers a practical approach for removing CFX from the polluted aquatic environment.  相似文献   

20.
To uncover the size influence of TiO2 nanoparticles on their potential toxicity, the cytotoxicity of different-sized TiO2 nanoparticles with and without photoactivation was tested. It was demonstrated that without photoactivation, TiO2 nanoparticles were inert up to 100 μg/ml. On the contrary, with photoactivation, the toxicity of TiO2 nanoparticles significantly increased, which correlated well with the specific surface area of the particles. Our results also suggest that the generation of hydroxyl radicals and reactive oxygen species (ROS)-mediated damage to the surface-adsorbed biomolecules could be the two major reasons for the cytotoxicity of TiO2 nanoparticles after photoactivation. Higher ROS generation from smaller particles was detected under both biotic and abiotic conditions. Smaller particles could adsorb more proteins, which was confirmed by thermogravimetric analysis. To further investigate the influence of the generation of hydroxyl radicals and adsorption of protein, poly (ethylene-alt-maleic anhydride) (PEMA) and chitosan were used to coat TiO2 nanoparticles. The results confirmed that surface coating of TiO2 nanoparticles could reduce such toxicity after photoactivation, by hindering adsorption of biomolecules and generation of hydroxyl radical (·OH) during photoactivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号