首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Melatonin, a pineal neurohormone, mediates circadian and seasonal processes in birds and mammals. Diencephalic astrocytes are sites of action, at least in birds, since they express melatonin receptors and melatonin affects their metabolism. We tested whether astrocytic calcium waves are also modulated by melatonin. Calcium waves, which we found to be regulated in cultured chick glial cells by an IP(3)-dependent mechanism, were potentiated by physiological concentrations of melatonin. Melatonin also increased resting calcium levels and reduced gap junctional coupling among astrocytes, at concentrations that facilitated calcium waves. These modulatory effects were diminished by melatonin receptor blockade and pertussis toxin (PTX). Thus, melatonin induced a functional shift in the mode of intercellular communication, between junctional coupling and calcium waves, among glial cells. We suggest a mechanism where neuroglial physiology, involving GTP-binding protein signaling pathways, links rhythmic circadian outputs to pervasive neurobehavioral states.  相似文献   

2.
Circadian rhythms in Syrian hamsters can be phase shifted by behavioral arousal during the usual rest phase of the circadian rest-activity cycle. Phase shifts can be greatly potentiated by exposing the animals to constant light for 1 or 2 cycles. This could reflect a change in a specific nonphotic input pathway to the suprachiasmatic nucleus (SCN) circadian pacemaker, or it could be caused by a change in the amplitude of the pacemaker. If the latter, then phase shifts to any stimulus, including those activating the photic input pathway, should be potentiated. This hypothesis was tested by measuring phase shifts induced by microinjections of NMDA (500 nl, 10 mM) into the SCN area of hamsters exposed to constant light or dark for 2 days. NMDA induced significant phase delay shifts that mimicked those induced by light exposure early in the night. The magnitude of these shifts did not differ by prior lighting condition. Shifts induced by NMDA (200 nl, 10 mM) microinjections on day 3 and 13 of LL also did not differ. Phase shifts induced by a nonphotic stimulus (3 h of running stimulated by confinement to a novel wheel) were significantly potentiated by 2 days of exposure to constant light. These results indicate that exposure to constant light for 2 circadian cycles differentially affects phase resetting responses to photic and nonphotic inputs to the circadian pacemaker, suggesting that potentiation of shifts to nonphotic stimuli reflect changes in a nonphotic input pathway rather than in an amplitude dimension of the circadian pacemaker.  相似文献   

3.
Transforming growth factor-alpha (TGF-alpha) is a candidate output signal of the hypothalamic circadian pacemaker. TGF-alpha is expressed in the suprachiasmatic nucleus (SCN) of rats, hamsters, and rhesus macaques [A. Kramer, F.C. Yang, P. Snodgrass, X. Li, T.E. Scammell, F.C. Davis and C.J. Weitz, Regulation of daily locomotor activity and sleep by hypothalamic EGF receptor signaling, Science, 294 (2001) 2511-5., X. Li, N. Sankrithi and F.C. Davis, Transforming growth factor-alpha is expressed in astrocytes of the suprachiasmatic nucleus in hamster: role of glial cells in circadian clocks, Neuroreport, 13 (2002) 2143-7., Y.J. Ma, M.E. Costa and S.R. Ojeda, Developmental expression of the genes encoding transforming growth factor alpha and its receptor in the hypothalamus of female rhesus macaques, Neuroendocrinology, 60 (1994) 346-59., Y.J. Ma, M.P. Junier, M.E. Costa and S.R. Ojeda, Transforming growth factor-alpha gene expression in the hypothalamus is developmentally regulated and linked to sexual maturation, Neuron, 9 (1992) 657-70.]. TGF-alpha reversibly inhibits wheel-running activity during long-term infusions into the third ventricle of hamsters (2 weeks, intracerebroventricular or ICV) [A. Kramer, F.C. Yang, P. Snodgrass, X. Li, T.E. Scammell, F.C. Davis and C.J. Weitz, Regulation of daily locomotor activity and sleep by hypothalamic EGF receptor signaling, Science, 294 (2001) 2511-5.], and this effect appears to be mediated by the epidermal growth factor receptor (EGFR or ErbB-1) [A. Kramer, F.C. Yang, P. Snodgrass, X. Li, T.E. Scammell, F.C. Davis and C.J. Weitz, Regulation of daily locomotor activity and sleep by hypothalamic EGF receptor signaling, Science, 294 (2001) 2511-5.]. Here, we demonstrate that this inhibitory effect is not restricted to wheel-running behavior or to mediation by the EGFR. Using direct observation, we found the effects of long-term TGF-alpha infusion (ICV, 12 microl/day, 3.3 microM) to be more general than previously reported. Other active behaviors such as grooming and feeding were reversibly inhibited and hamsters showed dramatic weight loss as a result of reduced feeding (34% of body weight over 19 days). TGF-alpha did not disrupt a non-behavioral rhythm, the rhythm in pineal melatonin. Wheel-running activity was also inhibited by another epidermal growth factor-like (EGF-like) peptide, neuregulin (NRG-1), that binds to different ErbB receptors. Like TGF-alpha, NRG-1 caused a significant weight loss. We also show that an acute injection of TGF-alpha inhibits activity (ICV, 5 microl, 3.3 microM over 2 min), with inhibition and recovery occurring over a few hours. Although the results are consistent with the proposed [A. Kramer, F.C. Yang, P. Snodgrass, X. Li, T.E. Scammell, F.C. Davis and C.J. Weitz, Regulation of daily locomotor activity and sleep by hypothalamic EGF receptor signaling, Science, 294 (2001) 2511-5.] role for EGF-like peptides in the daily regulation of activity, the actions of these peptides might also contribute to the behavioral etiology of diseases in which EGF-like peptides are expressed.  相似文献   

4.
Loss of muscle tone during active (rapid-eye-movement, REM) sleep is due to the inhibition of motoneurons. This inhibition is manifest in high-gain intracellular electrophysiological records as hyperpolarizing synaptic noise, which includes large amplitude active sleep-specific inhibitory postsynaptic potentials (IPSPs). We report here evidence that the large active sleep-specific IPSPs are comprised of a small number of minimal unitary potentials that are characterized by fast rise-times (10-90% rise-times < or = 0.75 ms); they are present in high-gain records during quiet sleep or during active sleep where they are intermingled with larger active sleep-specific IPSPs with 10-90% rise-times > or = 1.00 ms and amplitudes that are integer multiples of the minimal unitary potentials. In hypoglossal motoneurons, the amplitude of these minimal unitary potentials averaged 0.33 +/- 0.04 mV (mean +/- S.D., n = 6). It is concluded that the large IPSPs with slow rise-times that are observed in motoneurons during active sleep are due to the nearly simultaneous arrival of multiple (< or = 5) minimal unitary potentials. We hypothesize that the same inhibitory interneurons that produce small IPSPs with fast rise-times during quiet sleep are also responsible for the large amplitude active sleep-specific IPSPs.  相似文献   

5.
Cyclic GMP is the second messenger that mediates most of the neuronal effects of nitric oxide (NO). Several lines of evidence suggest that NO-ergic mechanisms play an integral role in the regulation of vigilance. In the present study, we tested the effects of the activation of cGMP-receptive mechanisms and the inhibitor of guanylyl cyclase (GC), LY-83,583, on sleep in rats. Rats were injected intracerebroventricularly (icv) with 0.16, 4, 100, and 500 microg or 2.5 mg 8-Br-cGMP, a membrane-permeable analogue of cGMP, or 1 and 100 microg LY-83,583. Administration of 4 microg-2.5 mg 8-Br-cGMP increased wakefulness and suppressed rapid-eye-movement sleep (REMS) and non-REMS (NREMS) in rats when given before dark onset but not when given before the light period. The GC inhibitor LY-83,583 strongly promoted NREMS and suppressed REMS during the light period of the day. Furthermore, LY-83,583 induced striking increases in the delta-wave activity of the electroencephalogram (EEG) during NREMS, whereas EEG activity above the 4.5 Hz wave range was suppressed in all vigilance states. Our finding that cGMP has an arousal-promoting activity is in line with the hypothesis that NO/cGMP signaling pathway is involved in the regulation of vigilance.  相似文献   

6.
Microinjection of adenosine A1 receptor agonist or an inhibitor of adenylyl cyclase into the caudal, oral pontine reticular formation (PnOc) of the rat induces a long-lasting increase in REM sleep. Here, we report significant inhibition of forskolin-stimulated cAMP in dissected pontine tissue slices containing the PnOc incubated with the A1 receptor agonist, cyclohexaladenosine (10(-8) M). These data are consistent with adenosine A1 receptor agonist actions on REM sleep mediated through inhibition of cAMP.  相似文献   

7.
The participation of histaminergic H(1) and noradrenergic alpha(1) receptors in orexin A-induced wakefulness was studied by examining the sleep-wakefulness cycle in rats. Intracerebroventricular infusion of orexin A (1 nmol) caused an increase in the wakefulness state, while non-rapid eye movement sleep (NREM sleep) and rapid eye movement sleep (REM sleep) states were decreased. Prazosin (150 nmol) showed no significant antagonistic effect on the orexin A-induced increase in the wakefulness state and decrease in NREM and REM sleep. On the contrary, pyrilamine (150 nmol) was effective in antagonizing orexin A-induced increase in wakefulness and decrease in NREM sleep. When prazosin (150 nmol) and pyrilamine (150 nmol) were simultaneously perfused into the lateral ventricle, an almost complete antagonistic effect was observed with the increase in the wakefulness state and decrease in NREM sleep. Orexin A (1 nmol) caused a significant decrease in the histamine contents of the cortex, hippocampus and hypothalamus, whereas noradrenaline contents were decreased only in the hypothalamus. From these results, we concluded that the arousal effect induced by orexin A occurs through histaminergic H(1) and noradrenergic alpha(1) receptors, although participation of the H(1) receptor was more important than the alpha(1) receptor.  相似文献   

8.
Neuropeptide Y (NPY) blocks the effect of light on the mammalian circadian clock during the subjective night. The present study explores the role of the NPY Y1 receptor in this interaction. The effect of NPY when co-applied with NMDA, a glutamate agonist that can mimic the effect of light, was examined in NPY Y1-/- mice (background strain 129SVXBalb/c) using electrophysiology. Cells in the suprachiasmatic nucleus (SCN), the master circadian pacemaker, show a circadian rhythm in spontaneous firing rate that can be recorded in vitro. The results demonstrated that NPY attenuated the phase shifts to NMDA in both the Y1-/- mice and control mice, indicating that the Y1 receptor does not mediate the NPY blockade of photic-like phase shifts. The peak in frequency in the untreated control brain slices from Y1-/- mice was advanced by approximately 1 h as compared to the Y1+/+ mice. The Y1 receptor may contribute to a functional model of circadian rhythms, but apparently is not essential for the effects of NPY on photic phase shifts.  相似文献   

9.
Daily rhythms in behavior and physiology are under control of the suprachiasmatic nucleus (SCN), the main mammalian circadian pacemaker located in the hypothalamus. The SCN communicates with the rest of the brain via various output systems. The aim of the present study was to determine the neuroanatomical and temporal relationship between two output systems, arginine-vasopressin (AVP) and transforming growth factor alpha (TGFalpha), in the mouse SCN. TGFalpha-positive cells were found throughout the SCN, but more abundantly in the core than the shell area, while AVP was predominantly found in the shell. Fluorescent double labeling revealed a total lack of co-expression for the two proteins in SCN cells. The circadian profile, studied by way of optical density in immunostaining at 3 h intervals, showed peak values for AVP shortly after the LD transitions. Immunoreactivity for TGFalpha was highly variable, especially at time points before the LD transitions. In addition, strong lateralization in TGFalpha immunostaining in the SCN was found in some individuals. Daily fluctuations in the paraventricular nucleus were absent for TGFalpha, and only weakly present for AVP. The main conclusion derived from this study is that these two output systems of the biological clock are anatomically separated with different daily profiles in expression.  相似文献   

10.
Sleep disturbances in the rotenone animal model of Parkinson disease   总被引:3,自引:0,他引:3  
Parkinson disease (PD) is characterized by the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc) and the presence of intracytoplasmatic inclusions known as Lewy bodies. Chronic administration of rotenone (RT) produces Parkinson's-like symptoms in rats. Because PD patients have disrupted sleep patterns, we determined if chronic RT administration produces similar changes in rat sleep. RT was administered for 28 days to rats. Basal and vehicle (VH) rats received saline or dimethyl sulfoxide and polyethylene glycol (1:1), respectively. VH infusion induced a progressive decrease in non-rapid eye movement sleep (NREMS) during the 4-week period of VH infusion and REMS was reduced in the third and fourth week of VH infusion. VH infusion did not induce dopaminergic cell degeneration. Rats receiving RT infusion also showed decreased NREMS during the treatment. REMS was dramatically reduced on day 7 although subsequently on days 13 and 20 REMS was similar to basal values. After 4 weeks of RT infusion, time in REMS was decreased again. In RT-treated rats, progressive dopaminergic cell degeneration occurred in the SNc. After 4 weeks of daily injections of L-dopa in RT-infused rats, NREMS values remained similar to those values obtained after RT alone. L-dopa therapy did, however, induce a recovery of REMS in weeks 3 and 4 of RT infusion. Dopaminergic cell damage persisted in the L-dopa-RT-infused rats. We conclude that the RT-PD rat model is associated with large long-term sleep disruption, however, the vehicle, DMSO/PEG had as large an effect as RT on sleep, thus changes in sleep cannot be ascribed to loss of dopaminergic cells. Such results question the validity of the RT-PD rat model.  相似文献   

11.
Chronic exposure to an environmental noise (EN) induces sleep disturbances. However, discrepancies exist in the literature since many contradictory conclusions have been reported. These disagreements are largely due to inappropriate evaluation of sleep and also to uncontrolled and confounding factors such as sex, age and also inter-individual vulnerability. Based on a recently validated animal model, aims of the present study were (i) to determine the effects of a chronic exposure to EN on sleep and (ii) to evaluate the inter-individual vulnerability of sleep to EN. For this purpose, rats were exposed during 9 days to EN. Results show that a chronic exposure to EN restricts continually amounts of slow wave sleep (SWS) and paradoxical sleep (PS) and fragments these two sleep stages with no habituation effect. Results also evidence the existence of subpopulations of rats that are either resistant or vulnerable to these deleterious effects of EN on sleep and especially on SWS amounts, bouts number and bout duration. Furthermore, importance of SWS debt and daily decrease of SWS bout duration are correlated to each others and both correlate to the amplitude of the locomotor reactivity to novelty, a behavioral measure of reactivity to stress. This last result suggests that this psychobiological profile of subjects, known to induce profound differences in neural and endocrine systems, could be responsible for their SWS vulnerability under a chronic EN exposure.  相似文献   

12.
We investigated the temporal relationship between hippocampal theta waves and ponto-geniculo-occipital waves (PGO) during rapid eye movement sleep (REM sleep) in cats. In addition, we analyzed the relationship between hippocampal theta waves and PGO as elicited by tone stimulus (PGO(E)) in order to quantitively characterize the PGO wave generator mechanism. The results showed that a spontaneous PGO tended to be phase-locked to the theta wave, which was more clearly observed in the single PGO than in the cluster. However, cluster PGO(E) tended to be phase-locked as well as single PGO(E). It was therefore suggested that the generator of PGO is activated in relation to the hippocampal theta wave. An acceleration of the theta wave associated with PGO occurrence was found, and was more markedly observed than with the cluster PGO. Although the magnitude of it was less than in the spontaneous case, an acceleration around the PGO(E) was also observed. These results suggest that the generators of theta and PGO receive some common activations, especially when a cluster PGO is generated. The interaction between PGO and hippocampal theta waves is expected to be involved in the possible functions of REM sleep.  相似文献   

13.
Aging leads to many changes in the circadian timekeeping system, including reduced sensitivity to phase-resetting signals such as systemic administration of the serotonergic agonist, 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT). In previous studies, we observed an age-related decrease in 5-HT7 receptor binding sites, one of the receptor subtypes that is activated by 8-OH-DPAT, in the dorsal raphe nucleus. In this study, we tested the hypotheses that (1) aging reduces circadian phase shifts induced by local administration of 8-OH-DPAT (30 microM, i.e., 1.97 ng) or 5-carboxamidotryptamine (5-CT, 100 nM, i.e., 6.39 pg), another serotonin agonist, into the dorsal raphe and (2) 5-HT7 receptors mediate the phase shifts induced by administration of 5-CT and 8-OH-DPAT into the dorsal raphe. Young (3-5 months), middle-aged (12-13 months) and old hamsters (17-19 months) were surgically implanted with chronic guide cannulae aimed at the dorsal raphe, and were housed in cages equipped with running wheels. Aging significantly inhibited (P<0.01) the phase advances in running-wheel rhythms induced by 8-OH-DPAT microinjected during the midsubjective day. 5-CT induced phase advances tended to decrease with aging, but this effect was not significant (P<0.12). Microinjection of the selective 5-HT7 receptor antagonist, SB-269970-A (50-5000 nM, i.e., 0.39-390 pg), 15 min before microinjection of 5-CT or 8-OH-DPAT into the dorsal raphe of young hamsters, significantly inhibited phase shifts. In conjunction with our previous study, these findings indicate that an age-related reduction in 5-HT7 receptors in the dorsal raphe nucleus is an important neurochemical mechanism leading to aging deficits in the circadian timekeeping system.  相似文献   

14.
Surface evoked potentials (SEPs) during auditory clicks and whisker twitches are usually larger during quiet sleep (QS) over waking and REM sleep. However, SEP amplitudes from single trials fluctuate periodically between high and low values regardless of sleep-wake cycle. To test the hypothesis that state-independent fluctuations represent local functional sleep-like states of individual cortical columns, we examined single trial SEP amplitudes from multiple cortical locations across sleep-wake cycles. Bilateral stimuli produced SEP amplitude fluctuations in each hemisphere that usually covaried (r = 0.4), but with frequent hemispheric differences. Two neighboring whiskers, twitched simultaneously on the same side, produced highly correlated SEPs in neighboring cortical columns (r = 0.9) with frequent divergences. We found 50% more disparity during QS over waking, indicating that the differences did not result from recording noise or stimulus inconsistency. Local SEP fluctuations also followed local differences in the delta wave signal during QS (r = 0.4), suggesting that similar mechanisms may modulate the SEP. The duration of the localized sleep-like (high SEP amplitude) state was dependent on the duration of prior wake-like (low SEP amplitude) state (r = 0.5), suggesting a use dependence of prior functional state period. Since SEP indicators fluctuated independently from whole animal sleep state, and were frequently different between hemispheres and nearby cortical columns, these data support the theory that sleep-like functional states may be localized to brain regions at least as small as cortical columns.  相似文献   

15.
The retinohypothalamic tract, a monosynaptic retinal projection to the suprachiasmatic nucleus (SCN), is the path by which light entrains the circadian system to the external photoperiod. Serotonergic neurons in the mesencephalic median raphe nucleus (MnR) also give rise to a major SCN afferent projection. The present study was designed to determine the extent to which MnR serotonergic projections regulate sensitivity of the circadian rhythm system to light. Serotonergic neurons in the MnR were destroyed by the direct application of the neurotoxin, 5,7-dihydroxytryptamine. Animals in constant darkness were given 5-min white light pulses at circadian time 19. Light intensity varied from 0.0011 to 70 microW/cm2. Assessment of rhythm phase response to light by lesioned and control animals revealed that animals lacking the MnR serotonergic projection are considerably more sensitive to light at high irradiances. The results are consistent with behavioral and physiological evidence implicating serotonin as an inhibitory modulator of the effects of light on circadian rhythmicity.  相似文献   

16.
17.
Studies using various methodologies have implicated n. reticularis pontis oralis (RPO) and n. subcoeruleus (SubC) in the generation of rapid eye movement sleep (REM). In rats, electrolytic lesions in these regions may give rise to the phenomenon of REM without atonia (REM-A), in which the electrophysiological features of REM are normal except that atonia is absent and elaborate behaviors may be exhibited. However, electrolytic lesions damage both cell bodies and fibers of passage, and the neural reorganization and adaptation that can occur post-lesion can complicate interpretation. Tetrodotoxin (TTX) is a sodium channel blocker that temporarily inactivates both neurons and fibers of passage and thus may be functionally equivalent to an electrolytic lesion, but without allowing time for neural adaptation. In this study, we examined the influence of microinjections of TTX into RPO and SubC on sleep in freely behaving rats. Rats (90 day old male Sprague-Dawley) were implanted with electrodes for recording EEG and EMG. Guide cannulae were implanted aimed into RPO or SubC. Each animal received one unilateral microinjection (TTXUH: 5.0 ng/0.2 microl) and two bilateral microinjections (TTXBL: 2.5 ng/0.1 microl; TTXBH: 5.0 ng/0.2 microl) of TTX, and control microinjections of saline alone (SAL). The injections were made 2 h following lights on, and sleep was recorded for the subsequent 22 h. Sleep was scored from computerized records in 10 s epochs. Recordings from the 10-h light period and the 12-h dark period were examined separately. TTX inactivation of RPO could decrease REM and non-REM (NREM), whereas inactivation of SubC produced relatively more specific decreases in REM with smaller effects on NREM. The results complement studies that have implicated RPO and SubC in REM generation. REM-A was not observed, suggesting that REM-A is a complex phenomenon that requires time for reorganization of the nervous system after insult.  相似文献   

18.
During the analysis of wheel running activity, we found that corticosterone (1 mg/100 g BW) injection decreased wheel activity, while dexamethasone (0.1 mg/100 g) increased the activity. To clarify the functional differences between corticosterone and dexamethasone, we measured Arg-vasopressin (AVP) release from the suprachiasmatic nucleus (SCN) slice culture in vitro and AVP coding mRNA in the SCN in vivo. The corticosterone (0.2 and 2 microg/ml, final concentration in medium) decreased the AVP release, while it increased by dexamethasone (0.2 and 2 microg/ml). An AVP mRNA in the SCN was decreased by both corticosterone (1 mg/100 g) and dexamethasone (0.1 mg/100 g). The differences in wheel activity by corticosterone and dexamethasone are discussed from the changes of AVP in the SCN.  相似文献   

19.
20.
Moore TO  Karom M  O'Farrell L 《Brain research》2004,1016(1):102-110
We used a phytoestrogen (PE) and a phytoestrogen-free (PE-Free) diet to determine whether or not diet can have neurobehavioral effects on intermale aggression in Syrian hamsters (Mesocricetus auratus). In Experiment 1, 20 adult male hamsters were pre-tested for aggression and then placed on a PE (n=10) or a PE-Free diet (n=10) for 4 weeks in isolation. During week 5, experimental hamsters were exposed to a group-housed, nonaggressive opponent (NAO) for 5 min in a neutral cage arena. PE-fed hamsters exhibited more attacks (33.4+/-6.1) toward the NAO compared to the PE-Free-fed hamsters (18.1+/-4) (p<0.05). Interestingly, testosterone in the blood serum was higher in the PE-fed group (11.01+/-1.48 ng/ml) compared to the PE-Free group (6.5+/-0.87 ng/ml). In Experiment 2, 16 juvenile hamsters were weaned onto a PE (n=8) or a PE-Free diet (n=8). After 7 weeks on the diet, experimental hamsters were exposed to a NAO for 5 min in a neutral cage arena. Although the PE group exhibited higher levels of aggressive behavior, there were no statistically significant differences between groups. However, the PE group had higher levels of testosterone (9.0+/-0.95 ng/ml) compared to the PE-Free group (4.6+/-0.98 ng/ml) (p<0.05). In addition, analysis of the brains from both experiments revealed differences in binding for vasopressin 1A (V1A) receptors. Optical densities were converted to disintegrating units per min/mg. The PE-Free group had higher levels of V1A receptor binding (2689.93+/-254.8 dpm/mg) compared to the PE group (1907.32+/-136.3 dpm/mg) in the lateral septum (p<0.05). In addition, there were differences in the lateral hypothalamus, but the PE group had higher receptor binding (2550.9+/-63.59 dpm/mg) when compared to the PE-Free group (2011.9+/-174.14 dpm/mg) (p<0.05). In sum, these data present the first evidence that phytoestrogens can affect aggressive behavior and, concurrently, alter hormonal status and stimulate changes in the brain of male hamsters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号