首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 169 毫秒
1.
A vaccine against the novel pandemic influenza virus (2009 H1N1) is available, but several problems in preparation of vaccines against the new emerging influenza viruses need to be overcome. DNA vaccines represent a novel and powerful alternative to conventional vaccine approaches. To evaluate the ability of a DNA vaccine encoding the hemagglutinin (HA) of 2009 H1N1 to generate humoral responses and protective immunity, BALB/c mice were immunized with various doses of 2009 H1N1 HA-encoding plasmid and anti-HA total IgG, hemagglutination inhibition antibodies and neutralizing antibodies were assayed. The total IgG titers against HA correlated positively with the doses of DNA vaccine, but immunization with either a low dose (10 μg) or a higher dose (25-200 μg) of HA plasmid resulted in similar titers of hemagglutination inhibition and neutralizing antibodies, following a single booster. Further, 10 μg plasmid conferred effective protection against lethal virus challenge. These results suggested that the DNA vaccine encoding the HA of 2009 H1N1 virus is highly effective for inducing neutralizing antibodies and protective immunity. DNA vaccines are a promising new strategy for the rapid development of efficient vaccines to control new emerging pandemic influenza viruses.  相似文献   

2.
Vaccination is a cost-effective way to control the influenza epidemic. Vaccines based on highly conserved antigens can provide protection against different influenza A strains and subtypes. In this study, the recombinant nucleoprotein (rNP) of the A/PR/8/34 (H1N1) influenza virus strain was effectively expressed using a prokaryotic expression system and then purified with a nickel-charged Sepharose affinity column as a candidate component for an influenza vaccine. The rNP was administered intranasally three times at 3-week intervals to female BALB/c mice in combination with an adjuvant (cholera toxin B subunit containing 0.2% of the whole toxin). Twenty-one days after the last immunization, the mice were challenged with homologous or heterologous influenza viruses at a lethal dose. The results showed that intranasal immunization of 10 μg rNP with adjuvant completely protected the immunized mice against the homologous influenza virus, and immunization with 100 μg rNP in combination with adjuvant provided good cross-protection against heterologous H5N1 and H9N2 avian influenza viruses. The results indicate that such a vaccine administered intranasally can induce mucosal and cell-mediated immunity, thus having the potential to control epidemics caused by new emerging influenza viruses.  相似文献   

3.
H5N1 influenza virus is one of the viruses that can potentially cause an influenza pandemic. Protection of newborns against influenza virus infection could be effectively provided by maternal immunization. In this study, female mice were immunized with H5N1 HA DNA vaccine or inactivated whole-virion vaccine, and the protection provided by maternal antibodies in their offspring against a lethal homologous influenza virus challenge was compared. The results showed that maternal antibodies, whether induced by a DNA vaccine or an inactivated vaccine, could completely protect offspring aged 1-4 weeks from a lethal influenza virus challenge. Breast-feeding was the major route of transfer for maternal antibodies. Milk-derived antibodies were able to effectively protect the offspring aged 1-4 weeks from lethal influenza virus infection, whereas maternal antibodies transferred through the placenta only partially protected the offspring 1-2 weeks of age. The milk- and placenta-transferred IgG2a antibody levels in offspring from their mothers, whether vaccinated with DNA vaccine or inactivated vaccine, were higher than the IgG1 levels. Our results indicated that maternal vaccination with HA DNA, as well as with whole-virion inactivated vaccine, could offer effective protection to offspring against H5N1 influenza virus infection.  相似文献   

4.
目的 研究CpG-ODN和氢氧化铝复合佐剂对流感病毒裂解疫苗体液免疫和细胞免疫效果的影响,为今后研制新佐剂流感疫苗和解决流感疫苗产能不足的问题提供依据.方法 以不同剂量的2009 H1N1流感病毒裂解疫苗为抗原,分别以CpG-ODN、氢氧化铝以及CpG-ODN和氢氧化铝复合佐剂为疫苗佐剂免疫BALB/c小鼠,通过ELISA、血凝抑制试验和假病毒中和试验等方法评价体液免疫效果,通过ELISPOT、胞内细胞因子染色和体内CTL杀伤等方法评价细胞免疫效果.结果 与无佐剂对照组相比,CpG-ODN或氢氧化铝单独使用能够在一定程度上增强体液免疫,2针免疫后不同抗原剂量组中抗原特异性IgG抗体滴度、血凝抑制抗体滴度和中和抗体滴度分别提高3~6倍、2~4倍和4~8倍.CpG-ODN和氢氧化铝复合佐剂具有更强的佐剂效应,2针免疫后不同抗原剂量组中抗原特异性IgG抗体滴度、血凝抑制抗体滴度和中和抗体滴度分别提高23~ 57倍、9~20倍和16~64倍.根据体液免疫结果,复合佐剂能够使流感病毒裂解疫苗的抗原用量降低至少16倍.此外,复合佐剂能够显著增强流感病毒裂解疫苗的细胞免疫应答,不但能够促进抗原特异性CD4+T细胞的IFN-γ分泌,而且能够促进抗原特异性CD8+T细胞的CTL杀伤活性.结论 CpG-ODN和氢氧化铝复合佐剂能够增强流感病毒裂解疫苗的体液免疫和细胞免疫应答并显著降低抗原用量.  相似文献   

5.
The effectiveness in cynomolgus macaques of intranasal administration of an influenza A H5N1 pre‐pandemic vaccine combined with synthetic double‐stranded RNA (polyI/polyC12U) as an adjuvant was examined. The monkeys were immunized with the adjuvant‐combined vaccine on weeks 0, 3, and 5, and challenged with the homologous virus 2 weeks after the third immunization. After the second immunization, the immunization induced vaccine‐specific salivary IgA and serum IgG antibodies, as detected by ELISA. The serum IgG antibodies present 2 weeks after the third immunization not only had high neutralizing activity against the homologous virus, they also neutralized significantly heterologous influenza A H5N1 viruses. The vaccinated animals were protected completely from the challenge infection with the homologous virus. These results suggest that intranasal immunization with the Double stranded RNA‐combined influenza A H5N1 vaccine induce mucosal IgA and serum IgG antibodies which could protect humans from homologous influenza A H5N1 viruses which have a pandemic potential. J. Med. Virol. 82:1754–1761, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
The novel influenza A (H1N1) 2009 virus has emerged to cause the first pandemic of the twenty-first century. Disease outbreaks caused by the influenza A (H1N1) virus have prompted concerns about the potential for a pandemic and have driven the development of vaccines against this subtype of influenza A. In this study, we developed a monovalent influenza A (H1N1) split vaccine and evaluated its effects in BALB/c mice. Mice were immunized subcutaneously with 2 doses of the vaccine containing hemagglutinin (HA) alone or HA plus an aluminum hydroxide (Al(OH)3) adjuvant. Immunization with varying doses of HA (3.75, 7.5, 15, 30, 45 or 60 µg) was performed to induce the production of neutralizing antibodies. The vaccine elicited strong hemagglutination inhibition (HI) and microneutralization, and addition of the adjuvant augmented the antibody response. A preliminary safety evaluation showed that the vaccine was not toxic at large doses (0.5 ml containing 60 µg HA+600 µg Al(OH)3 or 60 µg HA). Moreover, the vaccine was found to be safe at a dose of 120 µg HA+1200 µg Al(OH)3 or 120 µg HA in 1.0 ml in rats. In conclusion, the present study provides support for the clinical evaluation of influenza A (H1N1) vaccination as a public health intervention to mitigate a possible pandemic. Additionally, our findings support the further evaluation of the vaccine used in this study in primates or humans.  相似文献   

7.
Wu J  Wang F  Fang F  Zhang W  Chang H  Zheng L  Chen Z 《Archives of virology》2011,156(3):387-395
Vaccination is the preferred strategy for the prevention of influenza virus infection. Both H5N1 subunit and split vaccines have shown poor immunogenicity in clinical trials thus far. Therefore, it is urgent to develop more immunogenic and antigen-sparing H5N1 influenza vaccines as well as safe and effective adjuvants for humans, especially for immunocompromised people such as patients with diabetes mellitus. In this study, the protective effect of an MF59-adjuvanted inactivated whole-virion H5N1 vaccine was investigated in a type 1 diabetic mouse model. Mice (both healthy and diabetic) were immunized with a single dose of the inactivated vaccine, alone or adjuvanted with MF59 or Al(OH)3. After four weeks, mice were challenged with a lethal dose of H5N1 virus. Antibody responses, survival rates, lung virus titers and body weight changes were tested. The results showed that addition of MF59 or Al(OH)3 to the vaccine enhanced the antibody responses in both healthy mice and diabetic mice, but the MF59-adjuvanted groups showed higher antibody responses than the Al(OH)3-adjuvanted groups. The addition of MF59 or Al(OH)3 to the vaccine led to a conversion of the immune response from a Th1-biased response to an enhanced mixed Th1/Th2 profile. The MF59-adjuvanted inactivated whole-virion H5N1 vaccine provided superior protection in type 1 diabetic mice to either the vaccine alone or the vaccine adjuvanted with Al(OH)3.  相似文献   

8.
Vaccination represents the most economic and effective strategy of preventing influenza pandemics. We previously demonstrated that intranasal immunization of mice with recombinant hemagglutinin and the mast cell activator C48/80 elicited protective immunity against challenge with the 2009 pandemic H1N1 influenza in mice, demonstrating that the novel C48/80 mucosal adjuvant was safe and effective. The present study demonstrated that intranasal immunization with inactivated H1N1 virus and C48/80 elicited protective immunity against lethal challenge with homologous virus, however, when the immunogen was replaced with inactivated H5N1 virus protection was lost. These observations suggested that the adjuvant effects conferred by C48/80 were virus subtype specific and that its use as a broad-spectrum adjuvant for use in immunizations against all influenza viruses needs to be further analyzed.  相似文献   

9.
Influenza virus-like particles (VLPs) represent promising alternative vaccines. However, it is necessary to demonstrate that influenza VLPs confer cross-protection against antigenically distinct viruses. In this study, a VLP vaccine comprising hemagglutinin (HA) and M1 from the A/California/04/2009 (H1N1) were used and its ability to induce cross-protective efficacy against heterologous viruses A/PR/8/34 (H1N1) and A/New Caledonia/20/99 (H1N1) in mice was assessed. Vaccination with 2009 H1 VLPs induced significantly higher levels of IgG cross-reactive with these heterologous viruses after the second boost compared to after the prime or first boost. Lung virus titers also decreased significantly and the lung cross-reactive IgG response after lethal virus challenge was significantly greater in immunized mice compared to naïve mice. Vaccinated mice showed 100% protection against A/PR/8/34 and A/Caledonia/20/99 viruses with only moderate body weight loss and induction of cross-reactive recall, IgG antibody-secreting cell responses. The variations in HA amino acid sequences and antigenic sites were determined and correlated with induction of cross-protective immunity. These results indicate that VLPs can be used as an effective vaccine that confers cross-protection against antigenically distinct viruses.  相似文献   

10.
Immunization of the world population before an influenza pandemic such as the 2009 H1N1 virus spreads globally is not possible with current vaccine production platforms. New influenza vaccine technologies, such as virus-like-particles (VLPs), offer a promising alternative. Here, we tested the immunogenicity and protective efficacy of a VLP vaccine containing hemagglutinin (HA) and M1 from the 2009 pandemic H1N1 influenza virus (H1N1pdm) in ferrets and compared intramuscular (i.m.) and intranasal (i.n.) routes of immunization. Vaccination of ferrets with VLPs containing the M1 and HA proteins from A/California/04/2009 (H1N1pdm) induced high antibody titers and conferred significant protection against virus challenge. VLP-vaccinated animals lost less weight, shed less virus in nasal washes, and had markedly lower virus titers in all organs tested than naïve controls. A single dose of VLPs, either i.m. or i.n., induced higher levels of antibody than did two doses of commercial split vaccine. Ferrets vaccinated with split vaccine were incompletely protected against challenge; these animals had lower virus titers in olfactory bulbs, tonsils, and intestines, but lost weight and shed virus in nasal washes to a similar extent as naïve controls. Challenge with heterologous A/Brisbane/59/07 (H1N1) virus revealed that the VLPs conferred minimal cross-protection to heterologous infection, as revealed by the lack of reduction in nasal wash and lung virus titers and slightly higher weight loss relative to controls. In summary, these experiments demonstrate the strong immunogenicity and protective efficacy of VLPs compared to the split vaccine and show that i.n. vaccination with VLPs has the potential for highly efficacious vaccination against influenza.  相似文献   

11.
《Mucosal immunology》2015,8(1):211-220
The influenza viral hemagglutinin (HA) is comprised of two subunits. Current influenza vaccine predominantly induces neutralizing antibodies (Abs) against the HA1 subunit, which is constantly evolving in unpredictable fashion. The other subunit, HA2, however, is highly conserved but largely shielded by the HA head domain. Thus, enhancing immune response against HA2 could potentially elicit broadly inhibitory Abs. We generated a recombinant adenovirus (rAd) encoding secreted fusion protein, consisting of codon-optimized HA2 subunit of influenza A/California/7/2009(H1N1) virus fused to a trimerized form of murine CD40L, and determined its ability of inducing protective immunity upon intranasal administration. We found that mice immunized with this recombinant viral vaccine were completely protected against lethal challenge with divergent influenza A virus subtypes including H1N1, H3N2, and H9N2. Codon-optimization of HA2 as well as the use of CD40L as a targeting ligand/molecular adjuvant were indispensable to enhance HA2-specific mucosal IgA and serum IgG levels. Moreover, induction of HA2-specific T-cell responses was dependent on CD40L, as rAd secreting HA2 subunit without CD40L failed to induce any significant levels of T-cell cytokines. Finally, sera obtained from immunized mice were capable of inhibiting 13 subtypes of influenza A viruses in vitro. These results provide proof of concept for a prototype HA2-based universal influenza vaccine.  相似文献   

12.
The skin is rich with immunocompetent cells and therefore immunization through the skin is an attractive alternative to the invasive vaccination methods currently used. In this study the backs of mice were gently shaved, hydrated, and painted with a DNA vaccine encoding influenza M protein with adjuvant. The immunized mice were then challenged with two mouse-adapted strains of the influenza virus A: A/PR/8/34 (H1N1) and A/Udorn/72 (H3N2). This adjuvanated and topically applied DNA vaccine efficiently induced cytotoxic as well as humoral immune response and provide cross-reactive protection against several strains of influenza A virus. For better protection against virus infection, it will be necessary to select and combine the DNA vaccine with an appropriate adjuvant.  相似文献   

13.
Toll-like receptors (TLRs) of the innate immune system are known targets for enhancing vaccine efficacy. We investigated whether imiquimod, a synthetic TLR7 agonist, can expedite the immune response against influenza virus infection when combined with influenza vaccine. BALB/c mice were immunized intraperitoneally with monovalent A(H1N1)pdm09 vaccine combined with imiquimod (VCI) prior to intranasal inoculation with a lethal dose of mouse-adapted A(H1N1)pdm09 virus. For mice immunized 3 days before infection, the survival rates were significantly higher in the VCI group (60%, mean survival time[MST], 11 days) than in the vaccine-alone (30%; MST, 8.8 days), imiquimod-alone (5%; MST, 8.4 days), and phosphate-buffered saline (PBS) (0%; MST, 6.2 days) groups (P < 0.01). In the VCI group, 45 and 35% of the mice survived even when they were infected 2 days or 1 day after immunization. Virus-specific serum IgM, IgG, and neutralizing antibodies appeared earlier with higher geometric mean titers in the VCI group than in the control groups. The pulmonary viral load was significantly lower at all time points postinfection in the VCI, vaccine-alone, and imiquimod-alone groups than in the PBS control group (P < 0.05). The protection induced by VCI was specific for A(H1N1)pdm09 virus but not for A(H5N1) virus. Since imiquimod combined with RNase-treated vaccine is as protective as imiquimod combined with untreated vaccine, mechanisms other than TLR7 may operate in expediting and augmenting immune protection. Moreover, increased gamma interferon mRNA expression and IgG isotype switching, which are markers of the Th1 response induced by imiquimod, were not apparent in our mouse model. The mechanisms of imiquimod-induced immune protection deserve further study.  相似文献   

14.
The identification of a safe and effective adjuvant that is able to enhance mucosal immune responses is necessary for the development of an efficient inactivated intranasal influenza vaccine. The present study demonstrated the effectiveness of extracts of mycelia derived from edible mushrooms as adjuvants for intranasal influenza vaccine. The adjuvant effect of extracts of mycelia was examined by intranasal co‐administration of the extracts and inactivated A/PR8 (H1N1) influenza virus hemagglutinin (HA) vaccine in BALB/c mice. The inactivated vaccine in combination with mycelial extracts induced a high anti‐A/PR8 HA‐specific IgA and IgG response in nasal washings and serum, respectively. Virus‐specific cytotoxic T‐lymphocyte responses were also induced by administration of the vaccine with extract of mycelia, resulting in protection against lethal lung infection with influenza virus A/PR8. In addition, intranasal administration of NIBRG14 vaccine derived from the influenza A/Vietnam/1194/2004 (H5N1) virus strain administered in conjunction with mycelial extracts from Phellinus linteus conferred cross‐protection against heterologous influenza A/Indonesia/6/2005 virus challenge in the nasal infection model. In addition, mycelial extracts induced proinflammatory cytokines and CD40 expression in bone marrow‐derived dendritic cells. These results suggest that mycelial extract‐adjuvanted vaccines can confer cross‐protection against variant H5N1 influenza viruses. The use of extracts of mycelia derived from edible mushrooms is proposed as a new safe and effective mucosal adjuvant for use for nasal vaccination against influenza virus infection. J. Med. Virol. 82:128–137, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
Influenza vaccines based on conserved antigens could provide cross-protection against infections by multiple subtypes of influenza A virus. Influenza matrix protein 2 (M2) is highly conserved in all influenza A strains. In this study, we deleted the transmembrane domain of the M2 of the avian influenza virus (AIV) A/Chicken/Jiangsu/7/2002 (H9N2) strain to create an M2 without a transmembrane domain, named sM2, which was efficiently expressed in Escherichia coli. The sM2 protein was administered intranasally to mice in combination with chitosan adjuvant three times at an interval of 3 weeks. Three weeks after the last immunization, the mice were challenged with a lethal dose (5 × LD50) of A/Chicken/Jiangsu/7/2002 (H9N2) virus, PR8 (H1N1) virus and A/Chicken/Henan/12/2004 (H5N1) virus. The protective immunity of the vaccine was evaluated by determining the survival rates, residual lung virus titers, body weight, and the serum antibody titers of the mice. Nasal administration of 15 μg sM2 in combination with chitosan completely protected mice against the homologous virus and protected 90 and 30% of the mice against the heterologous H1N1 and H5N1 viruses, respectively. The study indicated that the sM2 protein was a candidate antigen for a broad-spectrum influenza virus vaccine and that the adjuvant chitosan improved the efficacy of the sM2 vaccine.  相似文献   

16.
Skin vaccination with influenza virus-like particles (VLPs) using microneedles has been shown to induce protection similar to or better than that induced by intramuscular immunization. In this study, we examined the long-term protective efficacy of influenza (H1N1 A/PR/8/34) VLPs after skin vaccination using microneedle patches coated with the vaccine. Microneedle vaccination of mice in the skin induced 100% protection against lethal challenge infection with influenza A/PR/8/34 virus 14 months after a single vaccine dose. Influenza virus-specific total IgG response and hemagglutination inhibition (HAI) titers were maintained at high levels for over 1 year after microneedle vaccination. Microneedle vaccination also induced substantial levels of lung IgG and IgA antibody responses, and antibody-secreting plasma cells from spleen and bone marrow, as well as conferring effective control of lung viral loads, resulting in complete protection 14 months after vaccination. These strong and long-lasting immune responses were enabled in part by stabilization of the vaccine by formulation with trehalose during microneedle patch fabrication. Administration of the stabilized vaccine using microneedles was especially effective at enabling strong recall responses measured 4 days after lethal virus challenge, including increased HAI and antibody-secreting cells in the spleen and reduced viral titer and inflammatory response in the lung. The results in this study indicate that skin vaccination with VLP vaccine using a microneedle patch provides long-term protection against influenza in mice.  相似文献   

17.
The conventional hemagglutinin (HA)- and neuraminidase (NA)-based influenza vaccines need to be updated most years and are ineffective if the glycoprotein HA of the vaccine strains is a mismatch with that of the epidemic strain. Universal vaccines targeting conserved viral components might provide cross-protection and thus complement and improve conventional vaccines. In this study, we generated DNA plasmids and recombinant vaccinia viruses expressing the conserved proteins nucleoprotein (NP), polymerase basic 1 (PB1), and matrix 1 (M1) from influenza virus strain A/Beijing/30/95 (H3N2). BALB/c mice were immunized intramuscularly with a single vaccine based on NP, PB1, or M1 alone or a combination vaccine based on all three antigens and were then challenged with lethal doses of the heterologous influenza virus strain A/PR/8/34 (H1N1). Vaccines based on NP, PB1, and M1 provided complete or partial protection against challenge with 1.7 50% lethal dose (LD50) of PR8 in mice. Of the three antigens, NP-based vaccines induced protection against 5 LD50 and 10 LD50 and thus exhibited the greatest protective effect. Universal influenza vaccines based on the combination of NP, PB1, and M1 induced a strong immune response and thus might be an alternative approach to addressing future influenza virus pandemics.  相似文献   

18.
The adjuvant activity of avridine, a synthetic lipoidal amine, incorporated in liposomes, was studied in mice immunized orally with killed influenza virus vaccine (A/PR/8/34, H1N1). Coadministration of avridine-containing liposomes and viral antigen enhanced the remote-site IgA antibody response in the respiratory tract without a concomitant serum antibody response or side effects. The results support the possible use of mucosal adjuvants for oral immunization against respiratory pathogens.  相似文献   

19.
A safe and effective adjuvant is necessary to enhance mucosal immune responses for the development of an inactivated intranasal influenza vaccine. The present study demonstrated the effectiveness of surf clam microparticles (SMP) derived from natural surf clams as an adjuvant for an intranasal influenza vaccine. The adjuvant effect of SMP was examined when co-administered intranasally with inactivated A/PR8 (H1N1) influenza virus hemagglutinin vaccine in BALB/c mice. Administration of the vaccine with SMP induced a high anti-PR8 haemagglutinin (HA)-specific immunoglobulin A (IgA) response in the nasal wash and immunoglobulin G (IgG) response in the serum, resulting in protection against both nasal-restricted infection and lethal lung infection by A/PR8 virus. In addition, administration of SMP with A/Yamagata (H1N1), A/Beijing (H1N1), or A/Guizhou (H3N2) vaccine conferred complete protection against A/PR8 virus challenge in the nasal infection model, suggesting that SMP adjuvanted vaccine can confer cross-protection against variant influenza viruses. The use of SMP is suggested as a new safe and effective mucosal adjuvant for nasal vaccination against influenza virus infection.  相似文献   

20.
目的探讨季节性流感疫苗在小鼠中的免疫原性及其使50%小鼠血凝抑制抗体滴度(HI)达到40的血凝素(HA)有效剂量(ED50。)。方法以我国2008—2009年度季节性流感裂解疫苗为模式,将该疫苗中针对甲型流感病毒HlNl与H3N2两种组分按照HA不同剂量免疫小鼠,通过比较1针免疫与2针免疫所产生的Hl抗体强度探讨季节性流感疫苗在小鼠中的免疫原性,确定疫苗免疫程序;此后,观察两种疫苗组分免疫小鼠后的HI抗体动力学,确定HI抗体产生的高峰期;最后,使用HA不同剂量免疫小鼠,在HI抗体高峰期测定使50%小鼠HI抗体滴度达到40的HA有效剂量(ED50。)。结果季节性流感疫苗1针与2针免疫结果显示,两种疫苗组分1针免疫可在小鼠中产生HI抗体滴度范围为10~120,2针免疫可以使HI抗体滴度为1针免疫的10~100倍;HI抗体动力学研究表明,两种疫苗组分1针免疫后第28~35天为HI抗体产生的高峰期;该高峰期的ED50‘测定结果表明,两种疫苗组分使50%小鼠HI抗体滴度达到40的HA有效剂量(ED50。)均为1.5μg。结论季节性流感疫苗在小鼠中具有良好的免疫原性,1针免疫后第28~35天为抗体产生的高峰期,使50%小鼠HI达到40的HA有效剂量为1.5μg,为建立以季节性流感疫苗为参考的免疫保护评价体系奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号