首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The role of the endothelium in cerebrovascular responses to 5-hydroxytryptamine (5-HT) was investigated in spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto rats (WKY) in vitro. 2. Cumulative addition of 5-HT caused concentration-dependent contractions in ring preparations of SHR basilar arteries; the contractile response was smaller in WKY basilar arteries. 3. Removal of the endothelium enhanced markedly the contractile responses to 5-HT in WKY arteries but had only a slight effect in SHR arteries. The responsiveness to 5-HT in WKY arteries after removal of endothelium was comparable to that in SHR arteries. 4. The endothelium-dependent relaxation induced by acetylcholine in WKY basilar arteries was almost abolished by treatment with 10 microM methylene blue or 10 microM NG-nitro-L-arginine (L-NOARG). However, the response to 5-HT was not affected by treatment with methylene blue, L-NOARG or indomethacin. 5. Application of 10-20 mM K+ or 3.2 mM tetraethylammonium (TEA) did not change significantly, or only increased slightly, the resting tension, but markedly enhanced the contractile response to 5-HT in WKY arteries with endothelium. In contrast, the submaximal response to 5-HT in SHR arteries with endothelium was significantly enhanced by 0.3 mM TEA. 6. In the presence of 1 mM TEA, the application of 10 microM L-NOARG further enhanced the responses of 5-HT in WKY arteries with endothelium. In SHR arteries with endothelium, 10 microM L-NOARG per se enhanced slightly but significantly the responses to 5-HT.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The possible role of the endothelium in modulating responses to human urotensin-II (U-II) was investigated using isolated segments of rat thoracic aorta, small mesenteric artery, left anterior descending coronary artery and basilar artery. Human U-II was a potent vasoconstrictor of endothelium-intact isolated rat thoracic aorta (EC(50)=3.5+/-1.1 nM, R(max)=103+/-10% of control contraction induced by 60 mM KCl and 1 microM noradrenaline). However the contractile response was not significantly altered by removal of the endothelium or inhibition of nitric oxide synthesis with L-NAME (100 microM). Human U-II did not cause relaxation of noradrenaline-precontracted, endothelium-intact rat aortae. Human U-II contracted endothelium-intact rat isolated left anterior descending coronary arteries (EC(50)=1.3+/-0.8 nM, R(max)=20.1+/-4.9% of control contraction induced by 10 microM 5-HT). The contractile response was significantly enhanced by removal of the endothelium (R(max)=55.4+/-16.1%). Moreover, human U-II caused concentration-dependent relaxation of 5-HT-precontracted arteries, which was abolished by L-NAME or removal of the endothelium. No contractile effects of human U-II were found in rat small mesenteric arteries. However the peptide caused potent, concentration- and endothelium-dependent relaxations of methoxamine-precontracted vessels. The relaxant responses were potentiated by L-NAME (300 microM) but abolished in the additional presence of 25 mM KCl (which inhibits the actions of endothelium-derived hyperpolarizing factor). The present study is the first to show that human U-II is a potent endothelium-dependent vasodilator in some rat resistance vessels, and acts through release of EDHF as well as nitric oxide. Our findings have also highlighted clear anatomical differences in the responses of different vascular beds to human U-II which are likely to be important in determining the overall cardiovascular activity of this peptide.  相似文献   

3.
The effects of purified baicalin and baicalein from the traditional Chinese herb, Huangqin, on contractions induced by phenylephrine, U46619, and high extracellular K+ were investigated in isolated rat mesenteric arteries. Both baicalin (1-100 microM) and baicalein (1-50 microM) potentiated the contractile response to phenylephrine in a concentration-related manner. Both flavonoids (10 microM) also enhanced the U46619- or 40 mM K+-induced contractions. Baicalein (100-300 microM) reduced the phenylephrine-induced tone. Prazosin at 1 microM did not affect U46619-induced contraction in the absence and presence of baicalein or baicalin. Neither baicalin (1-100 microM) nor baicalein (1-100 microM) affected the basal tension. Removal of the functional endothelium abolished the potentiating effects of baicalin and baicalein in arteries preconstricted by both constrictors. Pretreatment of endothelium-intact rings with 100 microM N(G)-nitro-L-arginine also potentiated phenylephrine- or U46619-induced contraction but completely inhibited the effects of baicalin and baicalein. Pretreatment with 1 mM L-arginine reversed the enhancing effect of baicalin but not of baicalein on phenylephrine-evoked contraction. Pretreatment with 10 microM baicalin or 10 microM baicalein significantly reduced the endothelium-dependent relaxation induced by acetylcholine or ionomycin. These results indicate that both baicalin and baicalein potentiated the evoked contractile response, likely through inhibition of nitric oxide formation and/or release in the endothelium.  相似文献   

4.
1 5-Hydroxytryptamine (5-HT) and 5-carboxamidotryptamine (5-CT) stimulated additional, endothelium-dependent contractions in rabbit isolated basilar arteries which had been submaximally contracted with either histamine or potassium chloride. 2 The additional contractions to 5-HT were not altered by the 5-HT2 antagonist, ketanserin (1 microM), but were abolished in the presence of the cyclo-oxygenase inhibitor indomethacin (3 microM). 3 The additional smooth muscle contraction stimulated by 5-HT was increased in the presence of the competitive substrate inhibitor for nitric oxide synthase, NG-nitro-L-arginine methyl ester (L-NAME, 100 microM). 4 Neither of the selective 5-HT agonists, 8-hydroxy-dipropylaminotetralin (8-OH DPAT) or alpha-methyl 5-HT stimulated endothelium-dependent contraction, but these agonists did reduce the rate at which histamine-induced tension spontaneously declined. This effect represented a direct action on the smooth muscle cells, as it was independent of the presence of endothelial cells. 5 Smooth muscle relaxation was not obtained in response to 5-HT, whether or not indomethacin was present to block endothelium-dependent contraction. None of the other selective 5-HT agonists, 5-CT, 8-OH DPAT or alpha-methyl 5-HT produced endothelium-dependent smooth muscle relaxation, when applied against a background of contraction. 6 These data show that endothelium-dependent smooth muscle contraction can be produced by stimulating 5-HT receptors in the partially contracted rabbit basilar artery. Similar contraction to 5-CT indicates an involvement by 5-HT1 receptors. The susceptibility of the contractions to indomethacin suggest they are mediated by a metabolite of arachidonic acid.  相似文献   

5.
1. The mechanisms of vascular tone regulation by extracellular uridine 5'-triphosphate (UTP) were investigated in bovine middle cerebral arterial strips. Changes in cytosolic Ca2+ concentration ([Ca2+]i) and force were simultaneously monitored by use of front-surface fluorometry of fura-2. 2. In the arterial strips without endothelium, UTP (0.1 microM-1 mM) induced contraction in a concentration-dependent manner. However, when the endothelium was kept intact, cumulative application of UTP (0.1-100 microM) (and only at 1 mM) induced a modest phasic contraction in arterial strips. This endothelium-dependent reduction of the UTP-induced contraction was abolished by 100 microM N omega-nitro-L-arginine (L-NOARG) but not by 10 microM indomethacin. In the presence of intact endothelium, UTP (30 microM) induced a transient relaxation of the strips precontracted with 30 nM U-46619 (a stable analogue of thromboxane A2), which was completely inhibited by pretreatment with L-NOARG but not with indomethacin. 3. In the endothelium-denuded strips, the contractile response to UTP was abolished by desensitization to either ATP gamma S or ATP (P2U receptor agonists), but not by desensitization to alpha, beta-methylene-ATP (P2x receptor agonist) or to 2-methylthio-ATP (P2Y receptor agonist). Desensitization to UTP abolished the contractile response to ATP. 4. In the endothelium-denuded artery, a single dose application of UTP induced an initial transient, and subsequently lower but sustained increase in [Ca2+]i and force. In the absence of extracellular Ca2+, UTP induced only the initial transient increases in [Ca2+]i and force, while the sustained increases in [Ca2+]i and force were abolished. UTP (1 mM) had no effect on the basic [Ca2+]i-force relationship obtained on cumulative application of extracellular Ca2+ at steady state of 118 mM K(+)-depolarization-induced contraction. 5. We conclude that in the presence of an intact endothelium, UTP-induced relaxation of preconstricted middle cerebral artery is mainly mediated indirectly, by the production of an endothelium-derived relaxing factor, but at high doses of UTP, vascular smooth muscle contraction is mediated directly via activation of P2U purinoceptor and [Ca2+]i elevation without Ca(2+)-sensitization of the contractile apparatus. UTP may thus exert a dual regulatory effect upon cerebrovascular tone, but in cases where the endothelium is impaired, it may also act as a significant vasoconstrictor.  相似文献   

6.
Involvement of endothelium-derived nitric oxide (EDNO) in alpha-adrenoceptor agonist-induced contractile responses was studied in isolated pulmonary arteries from Wistar Kyoto rats (WKY) and stroke-prone spontaneously hypertensive rats (SHRSP). In the presence of propranolol, noradrenaline-induced contraction was potentiated by endothelium removal or by N(G)-nitro-L-arginine (L-NOARG). The magnitude of the potentiation was independent of the noradrenaline concentration. L-NOARG also shifted the concentration-response curves for phenylephrine and methoxamine to the left and upward. Contractile responses to 2-amino-5,6,7,8, -tetrahydro-6-ethyl-4H-oxazolo-(5,4-d)-azepine-dihydrochloride (BHT-933) and 5-bromo-6-(2-imidazolin-2-ylamino)-quinoxaline (UK-14304) were augmented by L-NOARG in a concentration-dependent manner. There were no differences in the effects of L-NOARG on the contractile responses to alpha-adrenoceptor agonists between the preparations from WKY and SHRSP. Endothelium-dependent relaxation in response to acetylcholine was not impaired in the preparations from SHRSP when compared with those from WKY. These observations suggest that the contractile responses to the alpha(1)-adrenoceptor agonists were depressed mainly by basally released EDNO, while the responses to the alpha(2)-adrenoceptor agonists were depressed mainly by EDNO released in response to alpha(2)-adrenoceptor stimulation. The comparable influence of the endothelium on the alpha-adrenoceptor agonist-induced contractions in the pulmonary arteries from WKY and SHRSP, which were markedly different from other arteries, could be explained by the unaltered endothelium-dependent relaxation in the preparations from SHRSP.  相似文献   

7.
1. The role of endothelium-derived hyperpolarizing factor and voltage-operated Ca2+ channels in mediating endothelium-dependent, NG-nitro-L-arginine (L-NOARG; 100 microM) -resistant relaxations to bradykinin (BK), was examined in isolated rings of endothelium-intact bovine left anterior descending coronary artery. 2. Rings of artery were contracted isometrically to approximately 40% or their respective maximum contraction to 125 mM KCl Krebs solution (KPSSmax) with the thromboxane A2-mimetic, U46619. Relaxations to BK and the endothelium-independent NO donor, S-nitroso-N-acetylpenicillamine (SNAP), were normalized as percentages of reversal of the initial contraction to U46619. All experiments were carried out in the presence of indomethacin (3 microM). 3. BK caused concentration-dependent relaxations [sensitivity (pEC50) 9.88 +/- 0.05; maximum relaxation (Rmax), 103.3 +/- 0.5%] in U46619-contracted rings of bovine coronary artery. L-NOARG (100 microM) caused a significant (P < 0.01) 3 fold reduction in the sensitivity to BK (pEC50, 9.27 +/- 0.11) without affecting the Rmax (101.8 +/- 2.3%). A similar, significant 3 fold reduction in sensitivity to BK with no change in Rmax was observed after treatment with oxyhaemoglobin (20 microM; pEC50, 9.18 +/- 0.13, P < 0.001) or a combination of oxyhaemoglobin (20 microM) and L-NOARG (100 microM; pEC50, 9.08 +/- 0.10, P < 0.001). Oxyhaemoglobin (20 microM) either alone or in combination with L-NOARG (100 microM) caused an approximate 600 fold decrease in the sensitivity to SNAP. 4. The L-type voltage-operated Ca2+ channel inhibitor, nifedipine (0.3 microM-3 microM), reduced the maximum contraction (Fmax) to isotonic 68 mM KCl Krebs solution (103.5 +/- 2.0% KPSSmax) by 85-90% (P < 0.001); yet, the highest concentration of nifedipine (3 microM) caused only a small but significant reduction in both the sensitivity and Fmax to U46619. By contrast, nifedipine (3 microM) had no effect on the relaxation response to BK. Furthermore, a combination of nifedipine (3 microM) and L-NOARG (100 microM) had no further inhibitory effects on relaxations to BK (pEC50, 8.79 +/- 0.10; Rmax, 101.7 +/- 2.4%) than did L-NOARG (100 microM) alone (pEC50, 9.05 +/- 0.12; Rmax, 99.62 +/- 1.19). Also, nifedipine (0.3 microM and 3 microM) had no effect on the maximum relaxation to the K+ channel opener, levcromakalim (0.3 microM). 5. In the presence of nifedipine (0.3 microM to control contractions induced by high KCl) and isotonic 68 mM KCl Krebs solution (to inhibit K+ channel activity), relaxations to BK (pEC50, 9.42 +/- 0.10; Rmax, 93.9 +/- 1.8%) were similar to those observed in normal Krebs solution (pEC50, 9.58 +/- 0.09; Rmax, 98.4 +/- 0.8%). However, in the presence of 68 mM KCl Krebs solution the inhibitory effect of L-NOARG (100 microM) on relaxations to BK (pEC50, 8.53 +/- 0.20; Rmax, 31.0 +/- 11.3%) was markedly greater than that in normal KCl Krebs solution (pEC50, 9.12 +/- 0.08; Rmax, 91.5 +/- 2.0%). Similar treatment with 68 mM KCl Krebs had no effect on relaxations to the NO donor, SNAP, yet abolished the response to the K+ channel opener, levcromakalim (0.3 microM). 6. In summary, this study has shown that (1) NO synthesis in response to BK in bovine coronary artery endothelial cells in situ is likely to be abolished by L-NOARG, (2) NO-independent relaxations to BK are markedly attenuated by 68 mM KCl-containing Krebs, which, in the absence of L-NOARG, had no effect, (3) nifedipine blocked contractions to a maximum-depolarizing stimulus (KCl) yet had no effect on NO-independent relaxations to BK, and (4) maximum relaxations to levcromakalim were abolished by 68 mM KCl Krebs but were not affected by nifedipine. Therefore, we hypothesize that if smooth muscle hyperpolarization is involved in non-NO-, endothelium-dependent relaxation in bovine coronary arteries contracted with U46619, then it can accomplish this via a mechanism which does not i  相似文献   

8.
In the present study, the ability of intact cardiac valvular endothelial cells to release vasodilatory prostanoids and endothelium-derived relaxing factor was investigated. Endothelium-denuded canine coronary arteries were used for bioassay and contractile force recording. Insertion of small segments of cardiac valve (20-30 mm2) with intact endothelium into endothelium-denuded coronary arterial rings did not markedly alter the sensitivity nor magnitude of the coronary artery contractile response to KCl. In contrast, the prostaglandin F2 alpha (PGF2 alpha)-induced contraction was significantly depressed (70% decrease in magnitude and 216% increase in ED50), compared with contraction in the absence of valvular endothelium (5.52 +/- 0.49 g and ED50 of 1.18 +/- 0.02 microM, respectively). These alterations in PGF2 alpha-induced contractions were reduced to 38% decrease in magnitude and +66% in ED50 in the presence of 5 microM indomethacin. Addition of acetylcholine (0.1-30 microM) into these endothelium-denuded coronary artery/valve preparations resulted in a dose-dependent relaxation, reaching a maximum of -59.9 +/- 1.6% (mean +/- SEM of seven vessels). Preincubation of valvular endothelium with 5 microM indomethacin also reduced these acetylcholine-induced valvular endothelium-dependent relaxations to 40.4 +/- 5.5% (mean +/- SEM of 13 vessels). Addition of hemoglobin (3 microM) further attenuated relaxation to -16.0 +/- 7.7% (mean +/- SEM of 14 vessels), while superoxide dismutase (20 units/ml) potentiated the relaxant response to -81.3 +/- 9.4% (mean +/- SEM of 11 vessels) in the presence of indomethacin. These findings suggest that there is a continuous basal release of vasodilatory prostanoids and endothelium-derived relaxing factor from the valvular endothelium, which can be further stimulated with acetylcholine and superoxide dismutase, and inhibited by indomethacin and hemoglobin.  相似文献   

9.
Complex effects of Gillichthys urotensin II on rat aortic strips.   总被引:6,自引:0,他引:6       下载免费PDF全文
The aim of this study was to determine whether the fish neuropeptide, Gillichthys urotensin II (GUII), possesses significant biological activity on rat aortic strips. On intact strips, pre-contracted by noradrenaline (100 nM), low concentrations (0.1-0.5 nM) of GUII produced relaxations, while higher concentrations (1-10 nM) caused further contraction. On strips rubbed to remove endothelial cells, relaxations were absent but contractile responses to higher concentrations of GUII remained. GUII (0.02-10 nM) produced dose-related contractions of quiescent, intact aortic strips. These contractions consisted of two components, tonic and phasic, and were potentiated in rubbed strips and in the presence of the antioxidant drug hydroquinone (10 microM). Mepacrine (40 microM) and p-bromophenacyl bromide (50 microM) completely abolished contractions to GUII, but indomethacin (10 microM) and nordihydro-guaiaretic acid (10 microM) were without effect. The phasic, but not the tonic, component of the contractile response was inhibited by nitrendipine (200 nM), and was absent in bathing medium from which Ca2+ had been omitted. Addition of EGTA (2 mM) to Ca2+-free bathing medium abolished the residual tonic component. GUII-induced contractions were completely abolished by the calmodulin antagonists trifluoperazine (50 microM) and W-7 (30 microM). It is concluded that GUII, previously considered devoid of significant activity on mammalian tissues, produces potent endothelium-dependent relaxations and endothelium-independent contractions of rat aorta, and possible mechanisms underlying each response are discussed.  相似文献   

10.
1. Many endothelium-dependent vasodilators hyperpolarize the endothelial cells in blood vessels. It is not known whether these hyperpolarizations are linked to nitric oxide synthesis or to an endothelium-derived hyperpolarizing phenomenon, since most of the vasodilators release both factors. In this context, we first verified that the endothelium-dependent relaxations induced by 5-hydroxytryptamine (5-HT) on pig coronary arteries are due only to the activation of the nitric oxide pathway. Then we studied the effects of 5-HT on membrane potential of endothelial and smooth muscle cells. 2. In the absence of endothelium, 5-HT caused a concentration-dependent contraction of coronary artery strips. No change of the smooth muscle cell membrane potential was observed during contraction to 1 microM 5-HT. 3. In the presence of 1 microM ketanserin to suppress the contractile effect of 5-HT, 5-HT induced concentration-dependent relaxation of endothelium-intact strips precontracted by 10 microM prostaglandin F2 alpha (PGF2 alpha). These relaxations were suppressed by 1 microM NG-nitro-L-arginine, an inhibitor of nitric oxide synthesis, showing that they were produced predominantly by nitric oxide. 4. In the presence of 1 microM ketanserin, 1 microM 5-HT did not change the smooth muscle cell membrane potential of strips precontracted by either 10 microM PGF2 alpha or by 10 microM acetylcholine (ACh). In the same conditions, 1 microM 5-HT caused a weak 2.6 +/- 0.4 mV hyperpolarization, of the endothelial cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
M1 and M3 muscarinic receptors in human pulmonary arteries.   总被引:1,自引:0,他引:1       下载免费PDF全文
1. Acetylcholine (ACh) and the M1 agonists (McN-A-343 or PD142505) relaxed human isolated pulmonary arteries which were pre-contracted with noradrenaline (10 microM). In preparations where the endothelium had been removed ACh induced a contractile response whereas the M1 agonists (McN-A-343 or PD142505) had no effect. 2. ACh- and McN-A-343-induced relaxations were abolished after treatment of endothelium-intact preparations with the drug combination NG-nitro-L-arginine (L-NOARG: 0.1 mM) and indomethacin (1.7 microM). 3. The affinity (pKB value) for pirenzepine was higher in human pulmonary arteries when tissues were relaxed with McN-A-343 as compared with ACh (pKB values, 7.71 +/- 0.30 (n = 4) and 6.68 +/- 0.15 (n = 8), respectively). In addition, the affinity for pFHHSiD against McN-A-343- and ACh-induced relaxations was 6.86 +/- 0.13 (n = 3) and 7.35 +/- 0.11 (n = 9) respectively. 4. The low affinities for methoctramine in human isolated pulmonary arteries with the endothelium either intact or removed, suggested the lack of involvement of M2 and M4 receptors in the Ach responses. 5. Phenoxybenzamine (3 microM: 30 min) abolished both ACh contraction and relaxation in human pulmonary artery. The ACh contraction was present when the phenoxybenzamine treatment was preceded by incubation with pFHHSiD (2 microM) but not with pirenzepine (1 microM). In addition, the ACh relaxation was present when preparations were treated with either pFHHSiD (2 microM) or pirenzepine (1 microM), before exposure to phenoxybenzamine. 6. These results in human isolated pulmonary arteries support the notion that only M3 receptors, on smooth muscle, mediate the ACh-induced contraction whereas M3 and M1 receptors are involved in the endothelium-dependent ACh-induced relaxation.  相似文献   

12.
1. The role(s) of the endothelium in modulating the responsiveness of isolated circumflex coronary artery rings (o.d. = 2.0-2.5 mm and o.d. = 0.6-1.3 mm) from sheep was investigated under oxygenated and hypoxic conditions. 2. Removal of the endothelium abolished the contraction produced by lowering the PO2 from 620 to 8 mmHg (either under optimal resting tension or precontracted by 40 mM KCl). In denuded artery rings sudden hypoxia caused relaxation. 3. Under oxygenated conditions, removal of the endothelium augmented the vasoconstrictor effects of U46619, 5-hydroxytryptamine (5-HT) and K+. In the denuded artery rings, hypoxia abolished the contractile effects of U46619 and reduced the contractile effects of 5-HT and K+. 4. Under oxygenated conditions, the vasorelaxant effect of adenosine was depressed by removal of the endothelium. In endothelium-denuded preparations, the small relaxant effect of adenosine remaining was greatly potentiated. 5. Haemolysate (1 microliter ml-1) caused an endothelium-dependent contraction under oxygenated conditions. The hypoxic contraction observed in the artery ring under resting tension was significantly potentiated by haemolysate (1 microliter ml-1). Haemolysate 1 microliter ml-1 had no effect on the denuded artery rings under hypoxic conditions. 6. Haemolysate (1 microliter ml-1) potentiated the vasoconstrictor effects of U46619 (0.5 microM), 5-HT (1 microM) and K+ (24 mM) under oxygenated conditions. 7. These results indicate that endothelium profoundly modifies the effect of hypoxia on the responsiveness of sheep isolated left circumflex coronary artery rings.  相似文献   

13.
1. The effects of leukotriene D4 (LTD4) on the mechanical properties of smooth muscle cells from the guinea-pig basilar artery were investigated in whole and chemically skinned muscle strips. 2. In strips with an intact endothelium, 5-hydroxytryptamine (5-HT; 10 microM), LTD4 and LTC4 (1 microM), STA2 (1 nM-10 nM) and high K+ (30 mM-128 mM) generated contractions. These comprised an initial phasic and subsequently generated tonic response with different amplitudes. Acetylcholine (ACh, 0.1-10 microM) inhibited and methylene blue (1-10 microM) enhanced the tonic component of these contractions in endothelium-intact muscle strips. In endothelium-denuded tissues, methylene blue had no effect on mechanical responses and ACh produced a further contraction in the presence of LTD4. 3. When the endothelium was removed, the amplitude of contractions induced by all tested stimulants markedly increased. In intact muscle strips, the order of potency for the production of a maximum response was; 128 mM K+ greater than STA2 greater than LTD4 = LTC4 = 5-HT. Following removal of the endothelium; STA2 greater than 128 mM K+ greater than LTD4 = LTC4 much greater than 5-HT. 4. In endothelium-denuded strips, the selective LTD4 antagonists, ONO-RS-411 and FPL 55712 inhibited the LTD4-induced contraction. In contrast, guanethidine, prazosin, yohimbine, atropine and mepyramine had no effect. Indomethacin and a thromboxane A2(TXA2) antagonist, ONO-3708 also had no effect on LTD4-induced contractions in endothelium-denuded strips. 5. In endothelium-denuded strips, nifedipine inhibited the tonic contraction induced by LTD4 but not the phasic component. In Ca2+-free solution containing 2 mM EGTA, LTD4 produced only the phasic contractions. 6. In saponin-treated chemically skinned muscle strips, LTD4 had no effect on either the pCa-tension relationship or on the release of Ca2+ from intracellular stores. However, inositol 1,4,5-triphosphate released Ca2+ from the stores and 1,2-diolein, an activator of protein kinase C, enhanced the contractions induced by 0.3 microM Ca2+. 7. It was concluded that LTD4 acts on both the endothelium and on the smooth muscle cells of the guinea-pig basilar artery. It stimulates the release of endothelium-derived relaxing factor (EDRF) which tends to inhibit the LTD4-induced contraction. It also interacts with receptors on the smooth muscle and produces a contraction as a result of an increase in both voltage-dependent and receptor-activated Ca2+ influx and, in part, the release of Ca2+ from cellular storage sites.  相似文献   

14.
This study examined the effects of chlorpheniramine, citalopram and fluoxetine on 5-hydroxytryptamine (5-HT)-induced contraction and 5-HT uptake in rat thoracic aortic rings in vitro. Chlorpheniramine and citalopram markedly potentiated 5-HT-induced contraction. Potentiation by fluoxetine was less pronounced. Chlorpheniramine (0.01-1 microM) and citalopram (0.1-1 microM) induced concentration-dependent parallel shifts to the left of the 5-HT concentration-response curves. The potentiation by chlorpheniramine was selective as chlorpheniramine (1 microM) did not potentiate phenylephrine-induced contraction. The potentiation did not depend upon the presence of endothelium, and was not related to H1 receptor antagonism as diphenhydramine and pyrilamine (1 microM) did not similarly enhance 5-HT-induced contractions. Whereas cocaine (1-10 microM) similarly potentiated 5-HT-induced contraction, imipramine (1-10 microM) inhibited, rather than enhanced, contraction elicited by 5-HT. In the presence of 10 microM cocaine, maximally effective concentrations of chlorpheniramine (1 microM) or citalopram (100 nM) did not induce any additional potentiation of 5-HT-induced contraction. Cooling (4 degrees C) markedly inhibited uptake of [3H]5-HT in rings with and without endothelium. Although less marked, imipramine (10 microM), cocaine (1 microM), chlorpheniramine (1 microM) and citalopram (100 nM) inhibited [3H]5-HT uptake in endothelium-intact and endothelium-denuded rings. Fluoxetine also inhibited [3H]5-HT uptake, but the inhibition was only statistically significant in endothelium-intact rings. The monoamine oxidase (MAO) inhibitor, pargyline (10-100 microM), did not significantly affect 5-HT-induced contraction. The results demonstrate that chlorpheniramine, citalopram and to a lesser extent, fluoxetine potentiate 5-HT-induced contraction in rat aorta in which neuronal 5-HT uptake is negligible. The data are consistent with inhibition of non-neuronal 5-HT uptake as at least one mechanism responsible for potentiation of 5-HT-induced contraction in rat aorta by chlorpheniramine, citalopram and fluoxetine.  相似文献   

15.
This study explored the modulatory effects of nitric oxide and thromboxane A2 on contractions to ergonovine and methylergonovine in human coronary arteries. To elucidate the different role of nitric oxide synthase in the response to the ergot alkaloids, the serotonin (5-HT) receptors involved in nitric oxide synthase in the response to the ergot alkaloids, the 5-HT receptors involved in nitric oxide release and the contraction of the vascular smooth muscle were characterized with more selective 5-HT-receptor agonists and antagonists. Rings of human coronary arteries from explanted hearts were suspended in organ chambers for isometric tension recording. After testing for contractile (potassium chloride, 60 mM) and endothelial function (substance P, 10(-8) M), respectively, they were exposed to ergot alkaloids or other agonists in the absence or presence of U 46619 (10(-9) M), or nitro-L-arginine (10(-4) M), or both. Ergonovine and methylergonovine were comparable, weak vasoconstrictors in untreated preparations. Contractions to ergonovine were augmented by U 46619, but not by nitro-L-arginine. Contractions to methylergonovine were augmented only by combining U 46619 and nitro-L-arginine. Serotonin and methylergonovine, but not ergonovine, elicited endothelium-dependent, nitric oxide-mediated relaxations. Nonselective 5-HT(1B/1D)-receptor stimulation caused both contractions and relaxations; selective 5-HT1B stimulation caused relaxations only. In the human coronary artery, contractions to ergonovine are not dependent on NO release but are synergistically augmented by thromboxane. Methylergonovine causes similar effects on the vascular smooth muscle, but contractions are inhibited by the release of NO from the endothelium. The 5-HT receptor on the endothelium appears to be different from the receptor on the vascular smooth muscle, which mediates the contractile response to the ergot alkaloids.  相似文献   

16.
1. Incubation of proximal segments of the rat isolated duodenum with NG-nitro-L-arginine (L-NOARG; 3-100 microM) produced a concentration-dependent increase in both resting tone and the amplitude of the spontaneous contractions. These effects were attenuated by concurrent incubation with L-arginine (1 mM) but not D-arginine (1 mM). 2. These changes in resting tone and motility induced by L-NOARG (30 microM) were substantially reduced by concurrent incubation with tetrodotoxin (1 microM) or hexamethonium (10 microM), implicating the involvement of a local neuronal response. 3. The L-NOARG-induced increase in duodenal motility was not, however, inhibited by atropine (1 microM), guanethidine (6.4 microM) phentolamine (1 microM), or indomethacin (10 microM), indicating a non-cholinergic, non-adrenergic and non-prostanoid-mediated contractile response. 4. The NK1/NK2 tachykinin receptor antagonist, (D-Pro2, D-Trp7.9 substance P, 1-10 microM), and the NK2-receptor antagonists, MEN 10,207 and MEN 10,376 (1-5 microM), concentration-dependently reduced the effect of L-NOARG (30 microM) on spontaneous duodenal motility. 5. The resting tone and amplitude of the spontaneous contractions was likewise increased by incubation with NG-monomethyl-L-arginine (L-NMMA; 100-1000 microM). However, incubation with L-NMMA (100 microM) attenuated the actions of more potent L-NOARG (30 microM) on resting motility. 6. Administration of E.coli endotoxin (3 mg kg-1, i.v.) to the rat 5 h prior to tissue removal, at a time of known induction of NO synthase, reduced the amplitude of spontaneous contractions of the isolated duodenum, an effect inhibited by pretreatment of the rats with dexamethasone (1 mg kg-1) 2 h prior to endotoxin challenge. 7. These findings indicate a role of endogenous NO in the modulation of spontaneous tone and motility in the rat duodenum. Induction of NO synthase may result in a reduction in spontaneous motility of the tissue. By contrast, inhibition of constitutive NO biosynthesis unmasks a contractile response that is neuronally mediated and involves tachykinin NK2 receptors.  相似文献   

17.
1. Small strips from third-order branches of rabbit mesenteric artery (approximately 150-200 microM wide) contracted in response to noradrenaline (10 microM) or 5-hydroxytryptamine (5-HT; 10 microM) in oxygenated Krebs solution containing 2.5 mM Ca2+. In a Ca(2+)-free mock intracellular solution (0 Ca2+ plus 0.2 mM EGTA), noradrenaline (10 microM) and caffeine (10 mM) induced only a single, transient contraction in artery strips, while 5-HT (10 microM) failed to induce any response. 2. In strips of mesenteric artery which had been permeabilized with Staphylococcus alpha-toxin and bathed in Ca(2+)-free mock intracellular solution, noradrenaline (10 microM), caffeine (10 mM) and D-myo-inositol (1,4,5)-trisphosphate (IP3, 100 microM), but not 5-HT (10 or 100 microM) induced a transient contraction. In contrast to the non-permeabilized strips, contractions to noradrenaline, caffeine and IP3 were restored by prior incubation (10 min) in solution containing 0.08 microM Ca2+. The contractions to noradrenaline and IP3 in permeabilized muscle strips required the presence of 100 microM guanosine 5'-triphosphate (GTP), although in the absence of Ca2+. GTP alone did not induce contraction. 3. Exposure of permeabilized mesenteric artery strips to IP3 significantly reduced the subsequent contractile responses to caffeine. Contractile responses to caffeine and IP3 were abolished by the Ca(2+)-ATPase inhibitor, thapsigargin (1 microM). 4. Ca2+ (0.1-10 microM) induced concentration-dependent contraction in permeabilized artery strips. In strips which were submaximally contracted with 0.5 microM Ca2+/100 microM GTP, the subsequent addition of 5-HT (10 microM) stimulated further contraction. The protein kinase C inhibitor, H-7 (1 microM) abolished the 5-HT/GTP-induced contraction, but did not alter the contraction to Ca2+.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
1. The aim of this study was to characterize the receptors mediating the atropine-resistant neurogenic contraction to 5-hydroxytryptamine (5-HT) in the longitudinal muscle of the guinea-pig proximal colon and to determine the type of tachykinin receptors involved in the contractile response to 5-HT by the use of selective antagonists. 2. In the presence of atropine (0.3 microM), guanethidine (5 microM), hexamethonium (100 microM), ketanserin (0.1 microM) and indomethacin (3 microM), 5-HT (0.01-3 microM) produced concentration-dependent neurogenic contractions of colonic strips and at 0.3 microM produced a maximal effect (pEC50 = 7.39 +/- 0.09, n = 18). The 5-HT4 receptor stimulant, 5-methoxytryptamine (5-MeOT, 0.03-10 microM) also produced neurogenic contractions with similar maximum effect to those of 5-HT (pEC50 = 6.89 +/- 0.16). 3. The 5-HT4 receptor antagonist, DAU 6285 (3 microM) shifted the concentration-response curves to both 5-HT and 5-MeOT to the right without significant depression of the maximum, but the 5-HT1/5-HT2 receptor antagonist, metitepine (0.1 microM) and the 5-HT3 receptor antagonist, ondansetron (0.3 microM) had no effect on the control curves to 5-HT and 5-MeOT. 4. The selective NK1 receptor antagonist, FK 888 (1 microM) markedly attenuated the contractions to 5-HT and 5-MeOT. In contrast, the selective NK2 receptor antagonist, SR 48968 (10 nM) and the selective NK3 receptor antagonist, SR 142801 (10 nM) had no effect on the contractions to 5-HT and 5-MeOT. 5. These results indicate that the 5-HT-induced atropine-resistant neurogenic contraction of guinea-pig proximal colon is due to activation of 5-HT4 receptors, presumably located on excitatory motor neurones, innervating the longitudinal muscle. The contraction evoked by activation of the 5-HT4 receptors is mediated primarily via NK1 receptors but not NK2 or NK3, suggesting that the 5-HT4 receptor-mediated contraction is evoked indirectly via tachykinin release from tachykinin-releasing excitatory neurones.  相似文献   

19.
The endothelium-dependent and -independent relaxant effect of procaine was examined in isolated rat aortic rings. Procaine induced relaxation of arteries precontracted with phenylephrine or with 60 mM K+ in a concentration-dependent manner (0.01-3 mM). Procaine (1 mM) inhibited the transient contraction induced by caffeine (10 mM) in Ca2+-free Krebs solution. Removal of the endothelium caused a rightward shift of the concentration-response curve for procaine. N(G)-Nitro-L-arginine (L-NNA, 10-100 microM), N(G)-nitro-L-arginine methyl ester (L-NAME, 100 microM) and methylene blue (1-10 microM) significantly attenuated the procaine-induced relaxation without affecting the maximal response. L-Arginine (1 mM) partially but significantly antagonized the effect of L-NAME (100 microM). Pretreatment of endothelium-intact aortic rings with procaine (1 mM) or with acetylcholine (10 microM) significantly elevated the tissue contents of cyclic GMP and this increase was inhibited in the presence of 100 microM L-NNA. Tetrapentylammonium ions (1-3 microM) reduced the procaine-induced relaxation in both endothelium-intact and -denuded arteries. Tetrapentylammonium ions (3 microM) did not affect the procaine-induced relaxation of 60 mM K+-contracted arteries. Tetraethylammonium ions (3 mM) inhibited the procaine-induced relaxation. In contrast, iberiotoxin (100 nM), glibenclamide (3 microM), 4-aminopyridine (3 mM) and indomethacin (10 microM) had no effect. These results indicate that the procaine-induced relaxation may be mediated through multiple mechanisms. A substantial portion of the procaine-induced relaxation in rat aorta was caused by nitric oxide but not by other endothelium-derived factors. The activation of tetrapentylammonium- and tetraethylammonium-sensitive K+ channels contributes in part to the procaine-induced vasorelaxation. Besides, procaine may directly inhibit both external Ca2+ entry and internal Ca2+ release in aortic smooth muscle cells.  相似文献   

20.
1. In vitro experiments in a microvascular myograph were designed in order to investigate the effects of human neuropeptide Y (NPY), its receptor subtype and the mechanisms underlying NPY actions in bovine isolated retinal proximal (PRA) and distal (DRA) arteries. 2. A single concentration of NPY (10 nM) induced a prompt and reproducible contraction which reached a plateau within 1-4 min, after which the response returned to baseline over the next 2-10 min. Cumulative addition of NPY induced concentration-dependent contractions of bovine retinal arteries, with an EC50[M] of 1.7 nM and a maximal response equal to 54 +/- 8% of Emax (absolute maximal contractile levels of vessels) and not different from that obtained by a single addition of the peptide. There were no significant differences in either sensitivity or maximal response to NPY between PRA and DRA. 3. Porcine NPY and the selective Y1-receptor agonist, [Pro34]NPY, also induced concentration-dependent contractions of the retinal arteries with a potency and maximal response not significantly different from those of human NPY; in contrast, the selective Y2-receptor agonist, NPY(13-36), caused only a 5% contraction at the highest concentration used. 4. Removal of extracellular Ca2+ or pretreatment with the 1,4-dihydropyridine Ca(2+)-channel blocker, nifedipine (1 microM), reduced the contractile response of 10 nM NPY to 18.4 +/- 3.3% (n = 6) and 18.6 +/- 3.9% (n = 6); respectively, of the controls. 5. Mechanical removal of the endothelium depressed the maximal contraction elicited by NPY in PRA but did not affect either sensitivity or maximal response to the peptide in DRA. In endothelium-intact arteries, blockade of the cyclo-oxygenase pathway with 3 microM indomethacin increased resting tension in both PRA and DRA and significantly inhibited sensitivity and maximal contraction to NPY of PRA and DRA, respectively. The thromboxane A2 (TXA2)/prostaglandin H2 (PGH2) receptor antagonist, SQ30741, reduced both sensitivity and maximal contraction to NPY in PRA but not in DRA. 6. In endothelium-denuded PRA, indomethacin but not SQ30741 significantly reduced NPY maximal response and induced a marked increase in resting tension suggesting a basal release of a vasodilator prostanoid from smooth muscle cells. 7. Superoxide dismutase (SOD) (150 u ml-1) reduced the maximal contraction to NPY in PRA. Inhibition of the nitric oxide (NO) synthase with NG-nitro-L-arginine (L-NOARG) (30 microM), enhanced sensitivity and maximal contraction to NPY in both PRA and DRA. In the presence of L-NOARG, SOD did not further inhibit NPY responses in PRA. 8. NPY (10 nM) induced a 2.9 fold leftwards shift of the noradrenaline concentration-response curves in PRA and increased maximal response by 50 +/- 16%. Neither 1 nor 10 nM NPY affected noradrenaline responses in DRA. [Pro34]NPY (10 nM), but not NPY(13-36), mimicked the potentiating effect of NPY on noradrenaline responses in PRA. 9. TXA2 analogue, U46619, at 10 nM elicited 3.6 fold leftwards shift of the noradrenaline concentration-responses curves in PRA and increased the maximal contraction by 32 +/- 3%, whereas in the presence of 1 microM SQ30741, 10 nM NPY did not potentiate noradrenaline responses. 10. The present results indicate that NPY may play a role in the regulation of retinal blood flow through both a direct contractile action, independent of the vessel size and a potentiation of the responses induced by noradrenaline in the proximal part of the retinal circulation, both effects being mediated by Y1 receptors. NPY promotes Ca2+ influx through voltage-dependent Ca2+ channels and stimulates the synthesis of contractile prostanoids in PRA and DRA, although only in PRA does the peptide trigger the release of an endothelium-derived contractile factor which facilitates the contraction and also seems to account for the potentiating effect of NPY.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号